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Failure of random matrix theory to correctly describe quantum dynamics
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Consider a classically chaotic system that is described by a HamiltonianH0. At t50 the Hamiltonian
undergoes a sudden changeH0°H. We consider the quantum-mechanical spreading of the evolving energy
distribution, and argue that it cannot be analyzed using a conventional random-matrix theory~RMT! approach.
Conventional RMT can be trusted only to the extent that it gives trivial results that are implied by first-order
perturbation theory. Nonperturbative effects are sensitive to the underlying classical dynamics, and therefore
the \→0 behavior for effective RMT models is strikingly different from the correct semiclassical limit.

DOI: 10.1103/PhysRevE.64.065202 PACS number~s!: 05.45.Mt, 03.65.2w, 73.23.2b
s,
at

t

re

r t

al
o

l

e

a
ion
de
is
th

it

e
lf-

e.

-
o

re

the
ics.
ajor

ght
n-

T

of
h
to
ted
ed
are
fore
y
er
of
nt
ing
sys-

se
ef.

-
el

of
rre-

e

fre-

ion.
Consider a system whose total Hamiltonian isH
5H(Q,P;x), where (Q,P) is a set of canonical coordinate
andx is a constant parameter. We assume that the prepar
and the representation of the system are determined by
HamiltonianH05H(Q,P;x0), and that bothH0 andH gen-
erate classically chaotic dynamics of similar nature. Mo
over, we assume thatdx[(x2x0) is classically small,
meaning that it is possible to apply linear analysis in orde
describe how the energy surfacesH(Q,P;x)5E are de-
formed as a result of changing the value ofx. Physically,
going from H0 to H may signify a change of an extern
field, or switching on a perturbation, or sudden change
effective interaction~as in molecular dynamics!. Quantum
mechanically, we can use a basis whereH05E0 has a diag-
onal representation, while

H5E01dxB. ~1!

For reasonably small\, it follows from general semiclassica
considerations@1#, that B is a banded matrix. Generically,
this matrixlooks random, as if its off-diagonal elements wer
independentrandom numbers.

It was the idea of Wigner@2# forty years ago, to study a
simplified model, where the Hamiltonian is given by Eq.~1!,
and whereB is a banded random matrix~BRM! @3#. This
approach is attractive both analytically and numerically. An
lytical calculations are greatly simplified by the assumpt
that the off-diagonal terms can be treated as indepen
random numbers. Also from numerical point of view it
quite a tough task to calculate the true matrix elements of
B matrix. It requires a preliminary step where the chaoticH0
is diagonalized. Due to memory limitations one ends up w
quite small matrices. We can think of Eq.~1! as describing
fictitious motion on a lattice. For the model below~Eq. 2! we
were able to handleN55000 sites maximum. This should b
contrasted with BRM simulations, where using se
expanding algorithm @4# we were able to handleN
5100 000 sites along with significantly reduced CPU tim

However, the applicability of the above~convential!
random-matrix theory~RMT! approach is a matter of conjec
ture. Obviously this conjecture should be tested. To be m
specific, one should be aware that there is a hierarchy
challenges where the applicability of the RMT conjectu
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should be tested. Namely, the study of spectral statistics,
study of eigenstates, and the study of quantum dynam
While the issue of spectral statistics has become a m
subject in ‘‘quantum chaos’’ studies@5#, the two other issues
are barely treated. In a previous study@7#, we have demon-
strated that the RMT approach is capable of giving the ri
qualitative picture of the parametric evolution of the eige
states. Asdx is increased, the eigenstates of Eq.~1! change
in a qualitative agreement with Wigner’s theory. Still, RM
fails to capture nonuniversal system-specific features.

In this Rapid Communication we turn to the study
quantumdynamics. Here we are going to end up with a muc
more alarming claim. Namely, the RMT approach fails
give the correct dynamical picture. The RMT can be trus
only to the extent that it gives trivial results that are impli
by first-order perturbation theory. Nonperturbative effects
sensitive to the underlying classical dynamics, and there
the \→0 behavior for effective RMT models is strikingl
different from the correct semiclassical limit. In this pap
we are going to establish the failure of RMT for the case
dynamics that~for t.0) is generated by a time-independe
Hamiltonian. This we hope paves the way towards mak
an analogous statement regarding the response of driven
tems@6#.

In order to test the RMT conjecture, we are going to u
the same ‘‘direct’’ approach and the same model as in R
@7#. We are going to compare thedynamicsthat is generated
by a ‘‘physical’’ Hamiltonian, with the corresponding dy
namics that is obtained from an effective BRM mod
~EBRM!. The latter is constructed by taking the matrixB of
the physical Hamiltonian, and then randomizing the signs
its off-diagonal elements. Such operation destroys any co
lations between the matrix elements ofB, while keeping the
band profile unaffected@8#. We study the Hamiltonian@7#

H~Q,P;x!5 1
2 ~P1

21P2
21Q1

21Q2
2!1x•Q1

2Q2
2 ~2!

with x5x01dx and x051. This Hamiltonian describes th
motion of a particle in a two-dimensional well~2DW!. The
units are chosen such that the mass is equal to one, the
quency for small oscillations is one, and fordx50 the coef-
ficient of the anharmonic term is also one. The energyE is
the only dimensionless parameter of the classical mot
©2001 The American Physical Society02-1
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Our numerical study is focused on an energy window aro
E;3, where the motion is mainly chaotic. Upon quantiz
tion we have a second dimensionless parameter, which is
scaled\. Associated with\ are two energy scales. One is th
mean level spacingD}\d with d52, and the other is the
bandwidthDb}\. The second scale is further discussed
low.

It is useful to define a fluctuating quantityF(t)[
2(]H/]x), which for the 2DW model equalsF(t)5
2Q1

2(t)Q2
2(t). The autocorrelation function ofF(t) is de-

noted byC(t). The associated correlation time is denoted
tcl . The power spectrum of the fluctuationsC̃(v) is the
Fourier transform ofC(t). The band profile of the ma
trix B satisfies the semiclassical relationuBnmu2

'„D/(2p\)…C̃„(En2Em)/\…. See Fig. 2 of@7# for numeri-
cal demonstration. It is implied by this relation that the ban
width is Db52p\/tcl . For the quantum-mechanical simul
tion, the exact matrixB has been calculated numericall
Memory constraints limit the maximum size~N! of the ma-
trix that we can get. The EBRM Hamiltonian is obtained
randomizing the signs of the off-diagonal elements. A s
ond, more ‘‘loose’’ strategy, is to generate the EBRMB
from scratch using the semiclassical band profile as an in
The advantage of the latter strategy is that it opens the
to EBRM-model simulations with smaller\, where the re-
quired N is much larger. We have verified that the latt
strategy gives numerical results that agree with the s
randomization approach.

The initial preparation is assumed to be microcanonic
This means, in the classical case, an ergodic distribution
initial ‘‘points’’ on the energy surfaceH0(Q,P)5E with
E;3. In the quantum-mechanical case we start each si
lation with an initial eigenstatem that has an energy
2.75,Em,3.2. The time-dependent evolution is determin
by Schrödinger equation. The probability distribution afte
time t is Pt(num). An average over initial state~m! is taken
in order to get the average profilePt(n2m). We character-
ize the evolving distribution using three different measur
The variance isM (t)5( r r

2Pt(r ), or in energy units it is
dE(t)5D3AM (t). The width N(t) is defined as ther re-
gion that contains 50% of the probability. In case that
have a spreading profile that is characterized by a sin
energy scale, it is implied thatN(t) andAM (t) would be the
same~up to a numerical factor!. The survival probability is
P(t)5Pt(r 50). The results of the simulations are presen
in the Figs. 1–4. The analysis of these results is discus
below.

TakingH to be a generator for the classical dynamics,
energyE(t)5H0„Q(t),P(t)… fluctuates. The fluctuations ar
characterized by the correlation timetcl , and by an ampli-
tudedEcl . The initial preparation is assumed to be a mic
canonical distribution that is supported by the energy surf
H0(Q,P)5E(0). For t.0, the phase-space distributio
spreads away from the initial surface. ‘‘Points’’ of the evol
ing distribution move upon the energy surfaces ofH(Q,P).
We are interested in the distribution of the energyE(t) of the
evolving points. It is easily argued that for short times th
distribution evolves in a ballistic fashion. Then, fort@tcl ,
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due to ergodicity, a ‘‘steady-state distribution’’ appea
where the evolving points occupy an ‘‘energy shell’’ in th
phase space. The thickness of this energy shell equalsdEcl .
Thus we have a crossover from ballistic energy spreadin
saturation. The dynamics in the classical limit is fully cha
acterized by the two classical parameterstcl anddEcl .

A quantitative description of the classical spreading
easily obtained. A straightforward derivation leads to the f
lowing result for the spreading

dEcl~ t !5dx3A2„C~0!2C~ t !…. ~3!

As a particular result we getdEcl[dEcl(`)5dxA2C(0).
The calculation ofdEcl(t) for the model Hamiltonian is pre
sented in Fig. 1~a!. It is implied by Eq.~3! that the spreading
dE(t), from semiclassical point of view, is just a property
the band profile. Thus, one may get to the wrong conclus
that models with the same band profile should lead to
samedE(t), provided the off-diagonal elements look ra
dom. If this were the case, it would be implied that t
EBRM model would be equivalent to the 2DW model as
as the spreadingdE(t) is concerned. Looking at Fig. 1 w
see that this is not the case. As\→0 the EBRM model
further and further deviates from the~correct! semiclassical
expectation.

In order to understand the observed results, we would
to recall some of the theory of@9,7#. We already said tha
upon quantization we have the two energy scalesD}\d and
Db}\. Actually there is also a semiclassical energy sc
DSC}\2/3. Associated with these energy scales are th

FIG. 1. ~a! The classical energy spreading as a function of tim
~b! The QM spreading for the 2DW Hamiltonian.~c! The QM
spreading for the EBRM Hamiltonian. The energy in these simu
tions is E;3, and dx50.2123. In ~a! we see a crossover from
ballistic spreading (dE}t) to saturation (dE;const). Only one
time scale (tcl;1) is involved. The light dashed line has a slope
1 and is drawn to guide the eye. In~b! we see that the classica
behavior is approached as\→0. In ~c! we see the opposite trend: a
\→0 an intermediate stage of diffusion (dE}At) develops.~Here
the light dashed line has a slope of 1/2.! Different lines correspond
to different values of\ as in ~b!, and additional curves (\
50.009,0.005) have been added.
2-2
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parametric scalesdxc
qm!dxprt!dxSC, where the strong in-

equalities hold in the\→0 limit. For the 2DW model, as-
suming E;3 we have@7# the estimatesdxc

qm'3.83\3/2,
dxprt'5.33\, anddxSC'43\2/3. In the standard perturba
tive regime (dx,dxc

qm) the eigenstates of Eq.~1! have a
simple perturbative structure. In the extended perturba
regime (dxc

qm,dx,dxprt) the eigenstates of Eq.~1! have a
core-tail structure that can be regarded as a generalizatio
Wigner’s Lorentzian. In the nonperturbative regime (dx
.dxprt) the eigenstates have a purely nonperturbative st
ture. Depending on whether it is the EBRM Hamiltonian
the 2DW Hamiltonian, this ‘‘ergodic’’ nonperturbative struc
ture is either semicirclelike or semiclassical-like, resp
tively. The semiclassical regime (dx.dxSC) is contained in
the nonperturbative regime. It is only there that we can tr
detailed quantal-classical correspondence~QCC!.

For the purpose of the present analysis it is convenien
specify the different regimes by regarding\ as a free param
eter. Thus, the standard perturbative regime is\.Ccqm, the
extended perturbative regime isCprt,\,Ccqm, and the
nonperturbative regime is\,Cprt . The latter contains the
semiclassical regime\,CSC. Thus the semiclassical limi
\→0 is a nonperturbative limit. In case of the 2DW mod
the classical quantities are Ccqm50.413dx2/3,
Cprt50.193dx, and CSC50.123dx3/2. We have used in
most of our numerical simulationsdx;0.2. Largerdx may
take us out of the classical linear regime. For this value ofdx
we getCcqm50.14, Cprt50.04, andCSC50.01. The smalles
\ value that we could allow without having memor
overflow was\50.015. This means that we were able
access the nonperturbative regime, though the semiclas
regime was out of reach.

As explained in@10#, the essential features of the sprea
ing behavior in the perturbative regimes can be analy
using first-order perturbation theory~FOPT!. Since correla-
tions between off-diagonal elements are not important
FOPT, it follows that the EBRM model and the 2DW mod
should be trivially equivalent in such case. It is only in t

FIG. 2. The widthD3N(t) as a function of time. Different lines
correspond to different\ values as in Fig. 1~b!. The heavy dashed
line is the classicaldE(t). Having separation of scales„D3N(t)
!dE(t)… is an indication for having aperturbativespreading pro-
file. The upper panel is for the 2DW Hamiltonian, while the low
panel is for the EBRM model.
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nonperturbative regime where the question of their equi
lence becomes nontrivial. In case of the standard BRM
have witnessed@10# in the nonperturbative regime a prem
ture departure from ballistic behavior, and appearance o
intermediate diffusive stage. We observe essentially the s
behavior in case of the EBRM Hamiltonian@Fig. 1~c!#. But
with the 2DW Hamiltonian@Fig. 1~b!# we do not have such
an effect: As\→0 the correspondence with the classic
behavior becomes better and better. Thus our simulat
demonstrate that having diffusion in the nonperturbative
gime is an artifact of the RMT approach. In our previo
work @10# we did not have a numerical proof to support su
a strong statement. There, all we were able to do, was
argue that RMT should fail in the deep semiclassical regi
(\!CSC), thus leaving open the possibility for having a
intermediate regime (CSC,\,Cprt) where RMT might be
valid. As we see, our numerical results do not give any
dication for the existence of such intermediate regime. T
failure of RMT happensas soon aswe enter the nonpertur
bative regime (\,Cprt).

FIG. 3. The widthN(t) and the survival probabilityP(t) for the
2DW model. Different lines correspond to different\ values as in
Fig. 1~b!. HavingN(t)51 or P(t);1 is the indication for having a
standardperturbative spreading profile.

FIG. 4. The spreading profileP`(r ) in representative cases. Th
upper panel is an example for a standard perturbative pro
@P(t);1#. The middle panel is an example for a perturbative co
tail structure (D3N!dE). The lower panel is an example for a
ergodiclike nonperturbative structure (D3N;dE). The vertical
axis is lnP, while the horizontal axis isr.
2-3
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As we make\ smaller there is no indication in Fig. 1 fo
entering a nonperturbative regime. In@9,7,10# we have made
the important distinction betweendetailed QCC and re-
stricted QCC. The former pertains to the whole spreadi
profile, while the latter pertains only to the variance. R
stricted QCC is a robust type of correspondence that does
require a ‘‘very small\.’’ If we want to have an indication
for the crossover to a nonperturbative behavior, we sho
look on other measures, such asN(t) of Fig. 2. If the spread-
ing were classical-like, it would imply that the spreadin
profile is characterized by a single energy scale. In such c
we would expect thatN(t) and AM (t) would be the same
~up to a numerical factor!. Indeed this is the case for the\
,0.04 runs of Fig. 2. However, this is definitely not the ca
in the perturbative regimes, where we have a separatio
energy scalesN(t)!AM (t). In the perturbative regime
M (t) is determined by the tails, and it is insensitive to t
size of the ‘‘core’’ region. The widthN(t) constitutes a prac
tical estimate for the latter@see Fig. 3~a!#. It is N(t)51 for a
standard perturbative profile, and 1!N(t)!AM (t) for a
fully developed core-tail structure. An alternate way to ide
tify a standard perturbative profile is via the survival pro
ability P(t). Indeed for\,0.14 we see in Fig. 3~b! that we
haveP(t);1.

The difference between the perturbative and the non
turbative spreading profiles is further illustrated in Fig.
ys
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Here we have plotted representative average saturation
files, along with a comparison with the perturbative core-t
calculation~PRT for brevity!. The saturation profile is given
by the expression

P`~num!5(n8u^n~x0!un8~x!&u2u^n8~x!um~x0!&u2.

It can be regarded as the autoconvolution ofPE(num)
5u^n(x)um(x0)&u2. Thus the average saturation profile
P`(r ) is approximately related to theaveragelocal density
of statesPE(r ). The latter has been analyzed in@7#. In Fig. 3
we have calculated the PRT ofP`(r ) via an autoconvolution
of the PRT ofPE(r ). In the extended perturbative regime th
major features of the saturation profile are captures by
PRT. The differences are mainly in the far tails whe
higher-order perturbation theory is essential. There are
differences in the small scale details, where the nonpertu
tive mixing is important. In the nonperturbative regime t
saturation profile becomes purely non-perturbative, and
PRT becomes useless. This is because there is no lo
separation of energy scales, which is the working assump
of the core-tail theory.

We thank Felix Izrailev for suggesting to study the 2D
model.
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