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Failure of random matrix theory to correctly describe quantum dynamics
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Consider a classically chaotic system that is described by a HamiltdrijamAt t=0 the Hamiltonian
undergoes a sudden chargg—H. We consider the quantum-mechanical spreading of the evolving energy
distribution, and argue that it cannot be analyzed using a conventional random-matrix(fREGry approach.
Conventional RMT can be trusted only to the extent that it gives trivial results that are implied by first-order
perturbation theory. Nonperturbative effects are sensitive to the underlying classical dynamics, and therefore
the—0 behavior for effective RMT models is strikingly different from the correct semiclassical limit.
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Consider a system whose total Hamiltonian 1§  should be tested. Namely, the study of spectral statistics, the
=H(Q,P;x), where Q,P) is a set of canonical coordinates, study of eigenstates, and the study of quantum dynamics.
andx is a constant parameter. We assume that the preparatidfihile the issue of spectral statistics has become a major
and the representation of the system are determined by ttsubject in “quantum chaos” studi¢$§], the two other issues
HamiltonianH,=H(Q,P;X,), and that botl#, and gen-  are barely treated. In a previous stUdy, we have demon-
erate classically chaotic dynamics of similar nature. More-strated that the RMT approach is capable of giving the right
over, we assume thabx=(x—Xg) is classically small qualitative picture of the parametric evolution of the eigen-
meaning that it is possible to apply linear analysis in order tcstates. Asdx is increased, the eigenstates of Eh. change
describe how the energy surfac2qQ,P;x)=E are de- in a qualitative agreement with Wigner’s theory. Still, RMT
formed as a result of changing the valueofPhysically, fails to capture nonuniversal system-specific features.
going from H, to H may signify a change of an external  In this Rapid Communication we turn to the study of
field, or switching on a perturbation, or sudden change ofjuantumdynamicsHere we are going to end up with a much
effective interaction(as in molecular dynamig¢sQuantum more alarming claim. Namely, the RMT approach fails to
mechanically, we can use a basis whefg=E, has a diag- give the correct dynamical picture. The RMT can be trusted

onal representation, while only to the extent that it gives trivial results that are implied
by first-order perturbation theory. Nonperturbative effects are
‘H=Ey+ 6xB. (1) sensitive to the underlying classical dynamics, and therefore

the 4#—0 behavior for effective RMT models is strikingly

For reasonably smati, it follows from general semiclassical different from the correct semiclassical limit. In this paper
considerationg1], that B is a banded matrix Generically, —we are going to establish the failure of RMT for the case of
this matrixlooks randomas if its off-diagonal elements were dynamics thatfor t>0) is generated by a time-independent
independentandom numbers. Hamiltonian. This we hope paves the way towards making

It was the idea of Wignef2] forty years ago, to study a an analogous statement regarding the response of driven sys-
simplified model, where the Hamiltonian is given by Et),  tems[6].
and whereB is a banded random matriRM) [3]. This In order to test the RMT conjecture, we are going to use
approach is attractive both analytically and numerically. Anathe same “direct” approach and the same model as in Ref.
lytical calculations are greatly simplified by the assumption[7]. We are going to compare thliynamicsthat is generated
that the off-diagonal terms can be treated as independehy a “physical” Hamiltonian, with the corresponding dy-
random numbers. Also from numerical point of view it is hamics that is obtained from an effective BRM model
quite a tough task to calculate the true matrix elements of théEBRM). The latter is constructed by taking the mat#of
B matrix. It requires a preliminary step where the chagtic  the physical Hamiltonian, and then randomizing the signs of
is diagonalized. Due to memory limitations one ends up withits off-diagonal elements. Such operation destroys any corre-
quite small matrices. We can think of E@) as describing lations between the matrix elements&fwhile keeping the
fictitious motion on a lattice. For the model bel¢iqg. 2 we  band profile unaffectefB]. We study the Hamiltoniafi7]
were able to handIBl=5000 sites maximum. This should be
contrasted with BRM simulations, where using self- H(Q,P;x)=3(P;+P3+Q5+Q5) +x-QiQ5 (2
expanding algorithm[4] we were able to handleN
=100 000 sites along with significantly reduced CPU time. with Xx=Xy+ dx andXy=1. This Hamiltonian describes the

However, the applicability of the abovéconvential motion of a particle in a two-dimensional wéRDW). The
random-matrix theoryRMT) approach is a matter of conjec- units are chosen such that the mass is equal to one, the fre-
ture. Obviously this conjecture should be tested. To be morguency for small oscillations is one, and féx=0 the coef-
specific, one should be aware that there is a hierarchy dicient of the anharmonic term is also one. The endfgg
challenges where the applicability of the RMT conjecturethe only dimensionless parameter of the classical motion.
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Our numerical study is focused on an energy window around o[ (a') e L
E~3, where the motion is mainly chaotic. Upon quantiza- A //:// TN TV A
tion we have a second dimensionless parameter, which is the 8F .- 7

scaledh. Associated withh are two energy scales. One is the
mean level spacing=#% with d=2, and the other is the
bandwidthAyo<7. The second scale is further discussed be-
low.

It is useful to define a fluctuating quantity-(t)=
—(dHIax), which for the 2DW model equalsF(t)=
—Q2(t)Q3(t). The autocorrelation function aff(t) is de-
noted byC( 7). The associated correlation time is denoted by

T - The power spectrum of the fluctuatioﬁs(w) is the
Fourier transform ofC(7). The band profile of the ma-
trix B satisfies the semiclassical relatioriB,y|?
~(Al(27h))C((E,— E)/%). See Fig. 2 of 7] for numeri-
cal demonstration. It is implied by this relation that the band-
width is Ay=2w#/ 7. For the quantum-mechanical simula-  FIG. 1. (a) The classical energy spreading as a function of time.
tion, the exact matrix8 has been calculated numerically. (b) The QM spreading for the 2DW Hamiltoniaic) The QM
Memory constraints limit the maximum siZ8l) of the ma-  spreading for the EBRM Hamiltonian. The energy in these simula-
trix that we can get. The EBRM Hamiltonian is obtained bytions is E~3, and 6x=0.2123. In(a) we see a crossover from
randomizing the signs of the off-diagonal elements. A secballistic spreading §E=t) to saturation §E~const). Only one
ond, more “loose” strategy, is to generate the EBRB/ time scale ¢y~ 1) is involved. The light dashed line has a slope of
from scratch using the semiclassical band profile as an inpuk and is drawn to guide the eye. (b) we see that the classical
The advantage of the latter strategy is that it opens the wal havior is approached &s-0. In (c) we see the opposite trend: as
to EBRM-model simulations with smallgr, where the re- —0 an intermediate stage of diffusioBi o« \/f) develops(Here
quired N is much larger. We have verified that the |atter the light dashed line has a slope of 1/ifferent lines correspond

strategy gives numerical results that agree with the signt-f’ different valﬁes %fh asdic? éb)' and additional curves(
randomization approach. =0.009,0.005) have been added.

The initial preparation is assumed to be microcanonical, ue to ergodicity. a “steadv-state distribution” appears
This means, in the classical case, an ergodic distribution 0\?\/here the %volvir):, oints oc%:lu an “ener sheII”pFn the'
initial “points” on the energy surfaceHy(Q,P)=E with 9p by 9y

E~3. In the quantum-mechanical case we start each simur%hase space. The thickness of this energy shell eqiials
lation with an initial eigenstatem that has an energy hus we have a crossover from ballistic energy spreading to

2.75<E, <3.2. The time-dependent evolution is determinedsaturation' The dynamics in the classical limit is fully char-
. m<3.2. . .
by Schralinger equation. The probability distribution after acterized by the two classical parametegsand 5E.

. . R . A quantitative description of the classical spreading is
time t is P;(n|m). An average over initial stat@n) is taken . . ; N

. . easily obtained. A straightforward derivation leads to the fol-
in order to get the average profig(n—m). We character-

ize the evolving distribution using three different measures!owmg result for the spreading

The variance isM (t)==,r?P,(r), or in energy units it is — J2(C(0)—C(1)
SE(t)=AXM(t). The widthN(t) is defined as the re- SEat) = X v2(C(0) ~C(1)). 3
gion that contains 50% of the probability. In case that weAs a particular result we gefE = 6E (=)= 6x\/2C(0).
have a spreading profile that is characterized by a singl&he calculation ofSE(t) for the model Hamiltonian is pre-
energy scale, it is implied th&(t) andM(t) would be the  sented in Fig. @). It is implied by Eq.(3) that the spreading
same(up to a numerical factpr The survival probability is  SE(t), from semiclassical point of view, is just a property of
P(t)=P(r=0). The results of the simulations are presentedhe band profile. Thus, one may get to the wrong conclusion
in the Figs. 1-4. The analysis of these results is discussethat models with the same band profile should lead to the
below. same SE(t), provided the off-diagonal elements look ran-
Taking H to be a generator for the classical dynamics, thedom. If this were the case, it would be implied that the
energyE(t) =Hy(Q(t),P(t)) fluctuates. The fluctuations are EBRM model would be equivalent to the 2DW model as far
characterized by the correlation timg, and by an ampli- as the spreadingE(t) is concerned. Looking at Fig. 1 we
tude SE . The initial preparation is assumed to be a micro-see that this is not the case. As—~0 the EBRM model
canonical distribution that is supported by the energy surfacérther and further deviates from thieorrecy semiclassical
Ho(Q,P)=E(0). For t>0, the phase-space distribution expectation.
spreads away from the initial surface. “Points” of the evolv-  In order to understand the observed results, we would like
ing distribution move upon the energy surfacesH{iQ,P).  to recall some of the theory d®,7]. We already said that
We are interested in the distribution of the eneEdy) of the  upon quantization we have the two energy scales: and
evolving points. It is easily argued that for short times thisAy#. Actually there is also a semiclassical energy scale
distribution evolves in a ballistic fashion. Then, for 7, Agcx 1?3, Associated with these energy scales are three

In(SE(t))
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FIG. 2. The widthA X N(t) as a function of time. Different lines
correspond to different values as in Fig. (b). The heavy dashed
line is the classicabE(t). Having separation of scalda X N(t)
< SE(t)) is an indication for having @erturbativespreading pro-
file. The upper panel is for the 2DW Hamiltonian, while the lower
panel is for the EBRM model.
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FIG. 3. The widthN(t) and the survival probabilit{?(t) for the
2DW model. Different lines correspond to differéntvalues as in
Fig. 1(b). HavingN(t) =1 or P(t)~1 is the indication for having a
standardperturbative spreading profile.

nonperturbative regime where the question of their equiva-

lence becomes nontrivial. In case of the standard BRM we
parametric scale$xg"'< 6x,<dxsc, where the strong in- have witnessefl10] in the nonperturbative regime a prema-
equalities hold in théz—0 limit. For the 2DW model, as- ture departure from ballistic behavior, and appearance of an
suming E~3 we have[7] the estimatessxJ"~3.8X 732, intermediate diffusive stage. We observe essentially the same
SXpn~5.3% 1, and Sxsc~4x£2°. In the standard perturba- behavior in case of the EBRM Hamiltonidfig. 1(c)]. But
tive regime Ex<oxI™ the eigenstates of Eql) have a Wwith the 2DW Hamiltoniar{Fig. 1(b)] we do not have such
simple perturbative structure. In the extended perturbativén effect: Aszi—0 the correspondence with the classical
regime (OxIM< ox< 8%y the eigenstates of E¢l) have a behavior becomes bgtter .and_ bet_ter. Thus our S|mglat|ons
core-tail structure that can be regarded as a generalization gemonstrate that having diffusion in the nonperturbative re-
Wigner's Lorentzian. In the nonperturbative regiméx( 9ime is an artifact of the RMT approach. In our previous
> 5X,r) the eigenstates have a purely nonperturbative strugvork [10] we did not have a numerical proof to support such
ture. Depending on whether it is the EBRM Hamiltonian or@ Strong statement. There, all we were able to do, was to
the 2DW Hamiltonian, this “ergodic” nonperturbative struc- argue that RMT should fail in the deep semiclassical regime
ture is either semicirclelike or semiclassical-like, respec{%<Csd, thus leaving open the possibility for having an
tively. The semiclassical regimeS> dxso) is contained in ~ intermediate regime§sc<%<Cp,y) where RMT might be
the nonperturbative regime. It is only there that we can trus¥alid. As we see, our numerical results do not give any in-

detailed quantal-classical corresponde(@@€C).

dication for the existence of such intermediate regime. The

For the purpose of the present analysis it is convenient téilure of RMT happenss soon asve enter the nonpertur-
specify the different regimes by regardificas a free param- bative regime £ <Cpy).

eter. Thus, the standard perturbative regimg3sC,,, the
extended perturbative regime 6,,</A<Ccy, and the
nonperturbative regime i8<C,,. The latter contains the
semiclassical regimé& <Cgc. Thus the semiclassical limit
n—0 is a nonperturbative limit. In case of the 2DW model,
the classical quantities  are Cegqn=0.41x 6x?3,
Cpr=0.19x 8x, and Csc=0.12x 6x¥2 We have used in
most of our numerical simulation&x~0.2. Largerdx may
take us out of the classical linear regime. For this valué&of
we getCqm=0.14, C,=0.04, andCgc=0.01. The smallest
f value that we could allow without having memory-
overflow wasA=0.015. This means that we were able to
access the nonperturbative regime, though the semiclassical
regime was out of reach.

As explained i 10], the essential features of the spread-

InP

-5 +

-15

— 2DW
——- EBRM
PRT

", :
TN

-10

-400

=

W i

-200

200 400

FIG. 4. The spreading profile..(r) in representative cases. The

ing behavior in the perturbative regimes can be analyze@pper panel is an example for a standard perturbative profile
using first-order perturbation theoff¥fOPT). Since correla-  [p(t)~1]. The middle panel is an example for a perturbative core-
tions between off-diagonal elements are not important fokail structure A x N<SE). The lower panel is an example for an
FOPT, it follows that the EBRM model and the 2DW model ergodiclike nonperturbative structure\ K N~ 8E). The vertical
should be trivially equivalent in such case. It is only in the axis is InP, while the horizontal axis is.
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As we makefi smaller there is no indication in Fig. 1 for Here we have plotted representative average saturation pro-
entering a nonperturbative regime.[§7,10 we have made files, along with a comparison with the perturbative core-tail
the important distinction betweedetailed QCC andre-  calculation(PRT for brevity. The saturation profile is given
stricted QCC. The former pertains to the whole spreadingby the expression
profile, while the latter pertains only to the variance. Re-
stricted QCC is a robust type of correspondence that does not ) . 5
require a “very smalli.” If we want to have an indication P..(n[m)=Z:[(n(xo0)[n’ (x))[*|{n’ (x)[m(xo))[*.
for the crossover to a nonperturbative behavior, we should
look on other measures, suchM&) of Fig. 2. If the spread-
ing were classical-like, it would imply that the spreading
profile is characterized by a single energy scale. In such ca
we would expect thaN(t) and VM (t) would be the same
(up to a numerical factor Indeed this is the case for tie
<0.04 runs of Fig. 2. However, this is definitely not the cas
in the perturbative regimes, where we have a separation
energy scaleN(t)<yM(t). In the perturbative regimes
M(t) is determined by the tails, and it is insensitive to the

It can be regarded as the autoconvolution Bf(n|m)
=|(n(x)|m(xo))|2. Thus the average saturation profile

ﬁgw(r) is approximately related to thaveragelocal density

of statesPg(r). The latter has been analyzedifi. In Fig. 3

Qe have calculated the PRT Bf,(r) via an autoconvolution

&f the PRT ofPg(r). In the extended perturbative regime the
major features of the saturation profile are captures by the
PRT. The differences are mainly in the far tails where

higher-order perturbation theory is essential. There are also

§ize of the “core” region. The vvjdth(t) cgnstitutgs aprac-  gitferences in the small scale details, where the nonperturba-
tical estimate for the lattefisee Fig. &)]. ItisN(t)=1 fora e mixing is important. In the nonperturbative regime the

standard perturbative profile, and €N(t)<yM(t) for a  gatyration profile becomes purely non-perturbative, and the
fully developed core-tail structure. An alternate way to iden-pRT pecomes useless. This is because there is no longer

tify a standard perturbative profile is via the survival prOb'separation of energy scales, which is the working assumption
ability P(t). Indeed for2<0.14 we see in Fig.(®) that we  4f the core-tail theory.

haveP(t)~1.
The difference between the perturbative and the nonper- We thank Felix Izrailev for suggesting to study the 2DW
turbative spreading profiles is further illustrated in Fig. 4.model.
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