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Stadium billiard with moving walls
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We study the evolution of the energy distribution for a stadium with moving walls. We consider a one period
driving cycle, which is characterized by an amplitudeA and a wall velocityV. This evolving energy distribu-
tion has both ‘‘parametric’’ and ‘‘stochastic’’ components. The latter are important for the theory of quantum
irreversibility and dissipation in driven mesoscopic devices. For an extremely slow wall velocityV, the
spreading mechanism is dominated by transitions between neighboring levels, while for larger~nonadiabatic!
velocities, the spreading mechanism has both perturbative and nonperturbative features. We present a numeri-
cal study which is aimed at identifying the latter features. A procedure is developed for the determination of the
variousV regimes. The possible implications of linear response theory are discussed.
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I. INTRODUCTION

Consider the problem of a particle in a box, where so
piece of the wall is deformed periodically in time. As a
example, one may think of a particle in a cylinder with
moving piston. The particle has massm and kinetic energyE.
The piston is pushed back and forth. The velocity in wh
the piston is displaced is6V and the maximum displace
ment isA. At the end of each cycle, the piston is back in
original location.

In the present paper, we are going to study what happ
to a quantum-mechanical particle in such a box, during
cycle of the driving. We assume that the particle is initia
prepared in an energy eigenstate of the~undeformed! box.
We shall explain that it is important to specify whether t
maximum displacementA is lesser or greater compared wi
the de Broglie wavelength.

The problem of a particle in a box with a moving wall
a prototype example for study of driven systems@1# which
are described by a HamiltonianH„x(t)…, where x(t) is a
time dependent parameter. In the case of a piston, the pa
eterx is the position of the piston, and we use the notat

V5uẋu.
There is a lot of interest today in studies of quantum ir

versibility. This is an issue relevant to the design of quant
computers, where the fidelity of a driving cycle is importa
If at the end of a driving cycle, the system is back in
initial state, then we say that the driving cycle has high
delity. Obviously, the piston model can serve as a protot
example for studying of quantum irreversibility@2#.

The study of one-cycle driving also constitutes a bridge
the study of the response to multicycle~periodic! driving. It
should be clear that the long time behavior of driven syste
is determined by the short time dynamics. Therefore, i
essential to have a good understanding of the latter.

At first sight, one may think that it is simple to study th
one-dimensional~1D! box case, also known as ‘‘infinite
square well potential with moving wall’’@3,4#. The case of
periodic driving is also known as the ‘‘Fermi accelerati
problem’’ @5#. At a second sight, one finds out that the 1
1063-651X/2003/67~2!/026206~14!/$20.00 67 0262
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box case is actually the most complicated one. As in the c
of the kicked rotator~standard map! @6,8,9#, there is a com-
plicated route to chaos and stochasticity.

Things become much simpler if the motion in the box
chaotic to begin with. Driven chaotic systems exhibit, as
result of the driving, stochastic energy spreading of a re
tively simple nature@1#. This is the case that we want t
consider in this paper. Hence, we consider the simplest ‘‘c
otic box,’’ which is a 2D ‘‘billiard’’ model. Specifically, we
are going to introduce a detailed numerical study of theone-
pulse response of a stadium billiard to a shape deformati.
The stadium billiard is a recognized prototype system
‘‘quantum chaos’’ studies. Our simulations are feasib
thanks to a new powerful technique for finding clusters
billiard eigenstates@7,10,11#. Previous applications of this
technique, to the study of restricted aspects of the pre
problem, have been reported in Refs.@12,13#.

The work that is presented in this paper is a numeri
study which is aimed at presenting a systematic analysi
nonperturbative features of atime dependentspreading pro-
cess@14–16#. A procedure is developed for the determinati
of the various time stages in the evolution of the ene
distribution. This allows the identification of the variousV
regimes ~‘‘adiabatic,’’ ‘‘perturbative,’’ ‘‘nonperturbative,’’
and ‘‘sudden’’!, which were predicted in past theoretic
studies.

II. OUTLINE

In Secs. III and IV, we define the model system, a
briefly describe the classical picture. In particular, we expl
that thetime dependent featureswhich we study in this pape
are purely quantum mechanical, and not of semiclassical
gin.

In Sec. V, we define the main objective of our stud
which is the energy spreading kernelPt(num). See Eq.~4!.
Regarded as a function of the level indexn, it is the energy
distribution after timet, while m is the initial level. We also
define the square root of the variancedE(t) and the 50%
probability widthG(t), which characterize the evolving en
ergy distribution.
©2003 The American Physical Society06-1
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D. COHEN AND D. A. WISNIACKI PHYSICAL REVIEW E67, 026206 ~2003!
Our three-phase strategy for analysis of energy sprea
is presented in Sec. VI. The three phases are as follows

~I! Study of the band profile.
~II ! Study of parametric evolution.
~III ! Study of the actual time evolution.

The relevant information regarding ‘‘phase I’’ is summariz
in Sec. VII. Various approximations forPt(num) and, in par-
ticular, the notion of ‘‘parametric evolution’’ are presented
Sec. VIII. The relevant information regarding ‘‘phase II’’ i
summarized in Sec. IX. The main concern of this pape
‘‘phase III.’’

For a givenV, one should be able to characterize t
nature of the dynamical scenario. The theoretical consi
ations regarding this issue have been discussed in R
@17,14–16#, and for a concise review see Ref.@2#. Rather
than duplicating these discussions, we are going to prese
Sec. X a phenomenological definition, and a practical pro
dure, for the identification of theV regimes. We would like to
emphasize that here the different dynamical scenarios~cor-
responding to the differentV regimes! are illustrated in a
numerical simulation. The only other numerical stud
~mainly Refs.@15,12#! were too restricted in scope, and d
not contain analysis of the stages in the evolution of
energydistribution.

Sections XI and XII question the applicability of linea
response theory~LRT! to the analysis of the energy sprea
ing. Further discussion on nonperturbative response and
clusions are presented in Sec. XIII.

III. THE SEMICLASSICAL PICTURE

Consider aclassical particleinside a box. Its kinetic en-
ergy isE and the corresponding velocity isvE5A2E/m. The
shape of the box is externally controlled. The control para
eter is denoted byx. We assume thatx has units of length,
such thatV5uẋu is the typical wall velocity. Obviously, dif-
ferent parts of the wall may have different velocities. In ca
of the ‘‘piston model,’’ only one piece of the wall is movin
~either inward or outward!. However, we are not interested
the trivial conservativework which is being done, but only in
the irreversible work. Therefore, rather than analyzing a
actual piston model configuration, it is wiser to conside
volume preservingdeformation. In such a case, the cons
vative work is zero, and the major issue is the irreversi
effect that is explained below.

As a result of the collisions of the particle with the d
forming walls, there is a stochasticlike diffusion in ener
space. The explanation is as follows: Each time that the
ticle collides with the moving wall, it either gains or lose
energy. To simplify the presentation, let us assume head
collisions. The change in energy is62mvEV depending on
whether the wall is moving inward or outward at the point
the collision. For volume preserving deformation, the
godic average overdE gives zero. Thus, we have rando
walk in energy space where the steps are62mvEV. This
leads to diffusion in energy space. As explained in Ref.@16#,
this diffusion is biased~the diffusion is stronger for large
E). This leads, in the long run, to a systematic~irreversible!
02620
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increase of the average energy. For a more detailed pre
tation that takes the box geometry into account, see R
@18#.

Do we have a corresponding~semiclassical! picture in the
quantum-mechanical case? Again, we remind the reader
we assume a volume preserving deformation. This imp
that the energy levels of the system do not have a collec
upward or downward change as a result of the deformat
The physics in which we are interested is related to the tr
sitions between different levels. The question that we as
whether these transitions are ‘‘classical-like.’’

Let us assume that we start with an eigenstate whose
ergy isE. Semiclassically, it is as if we start with a microc
nonical preparation. If the dynamics is of classical natu
then we expect that after a short time, some of the proba
ity will make a transition E°E8 such that uE82Eu
;2mvEV. Naturally, such description is meaningful only
the energy scale 2mvEV is much larger than the mean-lev
spacing. This leads for 1D box to the condition

V.\/mL. ~1!

In the general case~e.g., 2D box!, having 2mvEV much
larger than the mean-level spacing isnot a sufficient condi-
tion for getting semiclassical behavior. Still, nontrivial anal
sis @19# reveals that the condition for getting semiclassic
spreading in the general case is the same as in the 1D c
namely, given by Eq.~1!.

The above Eq.~1! is a necessary condition for havin
semiclassical transitions. In order to actuallywitnesssemi-
classical transitions, it is also necessary to have a time pe
much larger compared with the ballistic time (A/V
@L/vE), and to have an amplitude that is much larger co
pared with the de Broglie wavelength@A@\/(mvE)#. These
additional conditions can be satisfied only in thesemiclassi-
cal regime, which is defined by Eq.~1!, else they are not
compatible.

IV. THE NUMERICAL MODEL

As a specific example for chaotic box, we consider t
quarter stadium billiard. We definex as the length of the
straight edge, and adjust the radius parameter such tha
total area is kept constant. For numerical reasons, we do
analyze this model ‘‘literally’’ but rather consider, as in pr
vious study@12#, a linearized version of the quarter stadiu
billiard Hamiltonian. Namely, we study a model Hamiltonia
that has the matrix representation

H„x~ t !…°E1dx~ t !F. ~2!

Here, E is an ordered diagonal matrix that consists of t
eigenenergiesEn of the quarter stadium billiard with straigh
edgex51. The eigenenergies were determined numerica
The perturbation due todx deformation is represented by th
matrix F. Also this matrix has been determined numerica
as explained in Ref.@12#. We note that the fingerprints of th
classical chaos are present in the statistical properties o
matricesE ~level statistics! andF ~band structure!. The latter
is discussed in Sec. VII.
6-2
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STADIUM BILLIARD WITH MOVING WALLS PHYSICAL REVIEW E 67, 026206 ~2003!
The linearization@Eq. ~2!# of the billiard Hamiltonian can
be regarded as a validapproximationif the wall displace-
ment parameterdx is small as compared with the de Brogl
wavelength. This automatically excludes the possibility
addressing the semiclassical regime, which has been
cussed in the preceding section. In our simulation, the
Broglie wavelength is roughly 0.1. This implies that~at best!
the maximum driving amplitude that can be allowed isA
50.2, so as to haveudx(t)u,0.1. @Note that for presentation
purposes, we later redefinedx(t) as dx(t)2dx(0)]. In the
simulations we indeed haveA50.2, meaning that we allow a
deformation that is comparable or possibly somewhat lar
than that ‘‘allowed’’ by the linearization.

However, in spite of the fact that Eq.~2! may be a ‘‘bad’’
or even an ‘‘inadequate’’ approximation to real-world phy
ics, it is still a totally ‘‘legitimate’’ Hamiltonian from math-
ematical point of view. Moreover, the numerical model E
~2! contains all thephysicalingredients that are relevant fo
the aim of the present study.

To summarize, in this paper we consider, as far as form
lation is concerned, a chaotic billiard driven by volume p
serving shape deformation. On the other hand, as far as
merics is concerned, we analyze a specific quantu
mechanical model defined by Eq.~2!. The numerical mode
is motivated by the quarter stadium billiard system Ham
tonian, but still it is not literally the same model. In partic
lar, Eq. ~2! does not possess the semiclassical regime wh
has been discussed in the preceding section.

V. THE EVOLVING ENERGY DISTRIBUTION

In the case of the time independent Hamiltonian, the
ergy distribution does not change with time. In order to ha
an ‘‘evolving’’ energy distribution, we have to makedx(t)
time dependent. One possibility is to assume linear drivi
In such a case, we writedx(t)5Vt. But more generally, for
a cycle, we writedx(t)5A f(t), with the conventionf (0)
5 f (T)50. In some equations below, whenever a line
driving is concerned,A can be replaced byV, which assumes
the particular choicef (t)5t. For practical purpose, give
f (t), it is convenient to associate with it the spectral functi

F̃ t~v!5U E
0

t

ḟ ~ t8!eivt8dt8U2

. ~3!

Some useful cases are summarized in Appendix A. In
paper, we are primarily interested in the case of triangu
pulse@Eq. ~A10!#.

Given the model Hamiltonian@Eq. ~2!#, and the driving
schemedx(t), we can calculate the unitary evolution oper
tor U(t). This kernel propagates ‘‘wave functions’’ in time
Equivalently, we can describe the quantum-mechanical s
using a probability density matrix. The propagator of t
latter is denoted byL(t). In order to describe the evolutio
of the energy distribution, we define the kernel

Pt~num!5tr@rnL~ t !rm#

5 z^n„x~ t !…uU~ t !um„x~0!…& z2, ~4!
02620
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wherern can be interpreted as either the probability mat
or as the corresponding Wigner function that represents
eigenstateun&. In the latter case, the trace operation sho
be interpreted asdPdQ/(2p\)d integration over phase
space, where (Q,P) are the canonical coordinates of the pa
ticle, andd52 is the dimensionality.

We shall use the notationPt(r )5Pt(n2m)5Pt(num),
with implicit average over the reference statem. We shall
refer toPt(r ) as the ‘‘average spreading profile.’’ Whenev
we have a wide distribution, we disregard the distincti
between ‘‘energy difference’’ and ‘‘level difference,’’ an
make the identification

En2Em[\vnm'D3r , ~5!

where D is the mean-level spacing andr 5n2m. ~In our
numericsD'7.22.)

Figure 1 displays the evolution as a function of time. Ea

FIG. 1. Images of time evolution within one-pulse period f
V5100 ~upper panel! and forV51 ~lower panel!. Each column is
a profile of the probability distributionPt(r ) for a different time
stept. The first seven time steps are log spaced, while the rest
linearly spaced. TheV5100 evolution is predominantly parametric
6-3
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D. COHEN AND D. A. WISNIACKI PHYSICAL REVIEW E67, 026206 ~2003!
column is a profile of the probability distributionPt(r ). The
first seven time steps are log spaced, while the rest are
early spaced. TheV5100 evolution is predominantly para
metric. As V becomes smaller and smaller, the deviati
from parametric evolution becomes larger and larger. So
representative spreading profiles are presented in Fig. 2

There are various practical possibilities available for
characterization of the distributionPt(r ). It turns out that the
major features of this distribution are captured by the follo
ing three measures:

P~ t !5Pt~r 50!, ~6!

G~ t !550% probability width, ~7!

dE~ t !5S (
r

r 2Pt~r ! D 1/2

D. ~8!

FIG. 2. Spreading profile at the end of one pulse period foV
5100 ~upper panel! and for V510 ~lower panel!. The thin solid
lines are from standard first-order perturbation theory, which me
Pt

prt of Eq. ~10! with G50. The dashed lines are for the Gaussi
with the same variance.
02620
n-

e

e

-

The first measure is the survival probabilityP(t). It is men-
tioned here just for completeness of presentation. The sec
measureG(t) is the energy width of the centralr region that
contains 50% of the probability. It is calculated asG(t)
5(r 75%2r 25%)D, where r 25% and r 75% are the values for
which the cumulative energy distribution equals 25% a
75%, respectively. Finally, the energy spreadingdE(t) is
defined above as the square root of the variance.

Figure 3 shows how the widthG(t) of the profile evolves.
The lower panel of Fig. 3 is a log-log plot. We see clea
that up todxc50.006, the width is one level, which is a
indication for the applicability of standard first-order pertu
bation theory. For largerdx, several levels are mixed non
perturbatively and, therefore, the width becomes lar
than 1.

s

FIG. 3. The widthG(t) as a function of time. The numerica
determination ofG is explained after Eq.~7!. The horizontal axis is
the scaled timeVt. The different curves correspond to the differe
velocities V5100,80,40,20,10,7,5,3,1,0.5,0.2,0.1,0.07,0.05. T
solid lines highlight the velocitiesV5100 ~uppermost!, 10, 1, and
0.1. The lower panel is the same as in the upper figure, bu
log-log scale, and only half period is displayed.
6-4
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Figure 4 shows how the spreadingdE(t) of the profile
evolves. The lower panel displays the relative spread
which is defined as the ratio between the actual sprea
and the parametric one. The notion of parametric evolutio
defined in the next paragraph. AsV becomes smaller, the
departure from the parametric behavior happens earlier.

The sudden limit (V→`) of Pt(num) will be denoted by
P(num). We shall refer to it as the parametric kernel. It
formally obtained by the replacementL(t)°1, or equiva-
lently U(t)°1 in Eq. ~4!, namely,

P~num!5tr~rnrm!

5 z^n„x~ t !…um„x~0!…& z2. ~9!

FIG. 4. The spreadingdE(t) of Eq. ~8! as a function of time, for
differentV simulations. The upper panel is in one to one corresp
dence with the upper panel of the previous figure. In the low
panel, the data of the upper panel are presented in a different
the vertical axis is the relative spreading, the horizontal axis is
scale, and only the half period is displayed. The location ofdxprt

50.05 is indicated by vertical line. See the text for more detail
02620
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Obviously, its dependence ont is exclusively viadx5x(t)
2x(0), irrespective ofV. The parametric evolution ofP(r )
versusdx for a deforming billiard has been studied in Re
@13#. The numerics in this paper can be regarded as an
tension of the numerics of Ref.@13# to the case of finiteV.

VI. THREE-PHASE STRATEGY

In the future we want to have a theory that allows t
prediction of the~numerically simulated! time evolution. The
minimum input that is required for such theory is the ba
profile of the F matrix. For precise definition of the ban
profile, see Appendix B. Note the existence of a very e
cient semiclassical recipe to find the band profile. This c
save the need for tedious quantum-mechanical calculatio

Using the band profile, one hopes to be able, in the ‘‘s
ond phase’’@20#, to calculate the parametric kernelP(num).
The band profile does not contain information about the c
relations between the off-diagonal elements. Therefore,
has to make the so-called random matrix theory~RMT! con-
jecture, namely, to assume that the off-diagonal elements
effectively uncorrelated. It turns out that, upon using su
conjecture, the nonuniversal features of the parametric e
lution are lost. Still, the obtained results are qualitative
correct and, therefore, such an approach is legitimate a
approximation.

However, finding the parametric kernelP(num), using the
band profile as an input, is not the subject of this pap
Therefore, as a matter of strategy, we would like to take
numerically determined parametric evolution as an inp
Given the parametric kernelP(num), the question is whethe
we can calculate the actual evolutionPt(num) for any finite
V.

In previous works~see review in Ref.@2#!, we gave a
negative answer to the above question. We have claimed
nonperturbative features of the dynamics cannot be dedu
from the parametric analysis. To explain this observation,
us assume that we have two model Hamiltonians,
Hphysical(x) and Hartificial(x). Let us assume further that th
two models have the same band profile and the same p
metric kernelP(num). Still we claim that for finiteV, the
two Hamiltonians may generatedifferent temporal kernels
Pt(num). In particular, it has been argued that this is in fa
the case ifHartificial(x) is an effective RMT model which is
associated withHphysical(x).

In past publications, the manifestation of nonperturbat
features in case of driven physical~non-RMT! models has
not been investigated numerically. On the theoretical side
is an open subject for further research@15#. The purpose of
the following sections is to present a strategy for analysis
numerical simulations that paves the way towards a the
for the nonperturbative aspects of the energy spreading.

VII. THE BAND PROFILE

The band profile ofF is described by the spectral functio
C̃(v), which is a Fourier transform of a correlation functio
C(t). See Appendix B. If the collisions are uncorrelated,
in the case where the deformation involves only a small s

-
r
y:

g
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D. COHEN AND D. A. WISNIACKI PHYSICAL REVIEW E67, 026206 ~2003!
face element, thenC(t) is ad function, and the band profile
is flat. This is not the case in the present model. The co
lations between collisions cannot be neglected and, there
C(t) equalsd function plus a smooth component@18#. Due
to the smooth component, the band profile has a very p
nounced nonuniversal structure. See Fig. 5.

For large enoughv, the contribution of the nonuniversa
component vanishes. Thus, the band profile should pos
flat tails. These tails reflect the presence of thed-function
component inC(t). For numerical reasons, due to trunc
tion, the band profile of our system is multiplied by a Gau
ian envelope. Therefore, the tails of the effective band pro
are not flat, but rather vanishingly small. The lack of flat ta
in the numerical model can be loosely interpreted as hav
‘‘soft’’ rather than ‘‘hard’’ walls.

Thus, our system is characterized by a finite bandwid
This is actually the generic case. Namely, for gene
~‘‘smooth’’ ! Hamiltonian, the correlation functionC(t) is
nonsingular, which implies finite bandwidth.

VIII. APPROXIMATIONS

A major issue in the studies of energy spreading is
knowledge of how to combine tools or approximations
order to understand or calculate the kernelPt(num). In par-
ticular, we have the following approximations:

~1! The perturbative kernelPt
prt(num).

~2! The semiclassical kernelPt
scl(num).

~3! The Gaussian kernelPt
sto(num).

~4! The parametric kernelP(num).

The parametric kernelP(num) that corresponds to the sud
den limit (V→`) has already been defined in Eq.~9!. The
other kernels will be defined in the present section. Ob

FIG. 5. The band profile, as defined in Appendix B. The tw
curves are the outcome of two different numerical procedures:
thin line is based on direct evaluation of matrix elements, while
thick line is deduced from the evolution over an infinitesimal tim
step ~see Sec. XII for further details!. A third possible procedure
~not displayed! is to use the semiclassical recipe, Eq.~B3!.
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ously, the kernels listed above are very different. Our aim
to clarify in what regime (V), in what time stage (t), and in
what energy region (r ), which of them is the valid approxi-
mation.

The semiclassical kernelPt
scl(num) is defined and ob-

tained by assuming in Eq.~4!, that the Wigner functions can
be approximated by smeared microcanonical distributio
See Refs.@17,13,20# for further details and numerical ex
amples. WheneverPt(num);Pt

scl(num), we say that the
spreading profile is ‘‘semiclassical.’’ In order to have a va
semiclassical approximation in case of billiard systems,
displacementdx of the walls should be much larger than th
de Broglie wavelength@13#. Thus, for reasons that were ex
plained in Sec. III, the semiclassical approximation is n
applicable for the numerical model that we consider in t
paper.

The perturbative kernelPt
prt(num) is obtained from per-

turbation theory@17,16#. The defining expression is

Pt
prt~num!5A2F̃ tS En2Em

\ D
3

D

2p\
C̃S En2Em

\ D 1

G21~En2Em!2
,

~10!

where G is determined bynormalization. If we make the
replacementG°0, we get the standard result of first-ord
perturbation theory@see Eq.~D5!#. The presence ofG in the
denominator reflects corrections to infinite order. We n
thatPt

prt(num) constitutes a generalization of Wigner Loren
zian. We indeed would get from it a Lorentzian if the ba
profile were flat with no finite bandwidth.

WheneverPt(num);Pt
prt(num), we say that the spread

ing profile is ‘‘perturbative.’’ The perturbative structure
characterized by having separation of scales

G~ t !!dE~ t !. ~11!

We say thatPt(num) has a ‘‘standard’’ perturbative structur
@Eq. ~D5!#, which is given by first-order perturbation theor
if G,D. This means that more than 50% probability is co
centrated in the initial level. We use the term ‘‘core-tai
structure if we want to emphasize the existence of a fin
nonperturbative core regionur u,G/D. The core widthG, as
determined by perturbation theory by imposing normaliz
tion on Eq.~10!, constitutes a rough estimate for the wid
G(t) of the energy distribution@Eq. ~7!#.

The spreadingdE(t) for the core-tail structure is deter
mined by the tail region, which is defined asur u@G/D. If Eq.
~10! were a Lorentzian, it would implydE(t)5`. This is of
course not the case because the spectral functions prov
physical cutoff. Thus, the core-tail structure which is d
scribed by Eq.~10! is characterized by a tail component th
contains a vanishingly small probability but still dominat
the variance.

If we do not have the separation of energy scales Eq.~11!,
then perturbation theory becomes useless@17,16#. In such a

e
e
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STADIUM BILLIARD WITH MOVING WALLS PHYSICAL REVIEW E 67, 026206 ~2003!
case,Pt(num) becomes purely nonperturbative. In order
determinePt(num), we have to use tools that go beyon
perturbation theory. In particular, for long times, one c
justify @17,16# a stochastic approximation leading to th
Gaussian kernel

Pt
sto~num!5

1

A2p

D

d~E~ t !!
expF2

1

2 S En2Em

d„E~ t !…D
2G . ~12!

Note that for very long times, this Gaussian should be
placed by an appropriate solution of a diffusion equation. B
this is not relevant to our simulations. For a critical discu
sion that incorporates estimates for the relevant time sca
see Refs.@17,16#.

A final remark is that for a Gaussian profile, the 50
width is G(t)51.35dE(t). However, whenever a nonpertu
bative structure is concerned, it is better, in order to av
confusion, not to use the notationG(t). The notationG has
been adopted in the common diagrammatic formulation
the perturbation theory. In case of nonperturbative struct
this formulation becomes useless and, therefore, the sig
cance ofG, as a distinct energy scale, is lost.

IX. ANALYSIS OF THE PARAMETRIC EVOLUTION,
dx REGIMES

The parametric evolution ofP(num) is illustrated in Fig.
1 ~upper panel!. For very smalldx, we observe clearly a
standard perturbative profile@Eq. ~D5!#, whose structure is
just a reflection of the band profile. By definition, this hol
in the standard perturbative~parametric! regime dx,dxc .
From the numerics~looking on the lower panel of either Fig
3 or Fig. 6!, we find thatdxc50.006.

For dx.dxc , the initial level starts to mix with neighbor
ing levels. As a result, a nonperturbative core compon
starts to develop. Thus, we obtain a core-tail structure.
tail is the perturbative component. The main componen
the tail is the first-order tail which can be calculated us
first-order perturbation theory. The tails in the vicinity of th
core are growing slower, which can be regarded as a supp
sion of core-to-tail transitions due to the mixing. There a
also higher-order tails@20# which can be neglected.

Having dE@G is an indication thatdE is dominated by
the ~perturbative! tail component of the core-tail structur
Eq. ~10!. The condition G!dE can be rewritten asdx
!dxprt , which constitutes a definition of the extended p
turbative ~parametric! regime. Unfortunately, the strong in
equalityG!dE is nowhere satisfied in our numerics. Ther
fore, the numerical definition ofdxprt becomes ambiguous
One may naively definedxprt by transforming the weak in
equality G,dE into a weak inequalitydx,dxprt . But this
procedure is numerically meaningless: the quantitiesG and
dE are energy scales. As such, their definition is arbitrary
to a prefactor of order unity. After some thinking, one re
izes that the only practical definition fordxprt is as thedx
where thePt

prt based prediction ofdE becomes significantly
less than the actual spreading. From the numerics~Fig. 6!,
we find thatdxprt50.05. This definition is not ambiguou
numerically because we compare ‘‘variance based meas
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(dE) to variance based measure (dEprt), rather than compar-
ing variance based measure (dE) to a ‘‘width measure’’ (G).

For dx@dxprt , the Pt
prt based calculation ofdE gives

saturation. This~nonphysical! saturation is the consequenc
of having a finite bandwidth. It should be regarded as
artifact that reflects the limited validity of perturbatio
theory.

In the nonperturbative~parametric! regime, namely, for
dx.dxprt , the tails are no longer the dominant compone
This is associated with a structural change in the spread
profile. Looking at the upper panel of Fig. 1, we observe
core-tail structure up to the 13th time step. Then, the seco
ary lobe of the band profile is swallowed by the core. Th
happening is reflected in Fig. 6~upper panel! by a boost in
the widthG. @The notion of secondary lobe should be cle

FIG. 6. Parametric evolution: the horizontal axis isdx either in
linear scale~upper panel! or in logarithmic scale~lower panel!. The
dotted line is the widthG from Eq. ~7!. The thick line isdE from
Eq. ~8!, while the dashed line is the LRT estimate Eq.~16!. The thin
line is the perturbative estimate Eq.~8! using Eq.~10!. From these
plots, we can determinedxc50.006 anddxprt50.05.
6-7



.

s

-
re

t t
ing

-

ba
n
ur
nt

he
ns
ti

e
ri
s
th
a

n
d

a

-

o
o

al
si

a

-
e
ul
fil
th

c

i

ape,
e

e
cal

e
e

c-

is

d

nse

r-
ort
a-

at
e-
ee

ere

rtur-
e

is-

st

nt
n
-

ase,
ich
n
ly-
ure.

D. COHEN AND D. A. WISNIACKI PHYSICAL REVIEW E67, 026206 ~2003!
by looking at theur u;20 region in the upper panel of Fig. 2
Unfortunately, its visibility in the corresponding image~up-
per panel of Fig. 1! is quite poor. Still it is possible to follow
the evolution of ther;20 tail region, and to realize that it i
swallowed by the core.#

To have a weak inequality,dx.dxprt is not quite the same
as to be in the~deep! nonperturbative regime wheredx
@dxprt . For dx.dxprt , we do not get a purely nonperturba
tive structure. In spite of the failure of the core-tail pictu
Eq. ~10!, we still can make aphenomenologicaldistinction
between core and tail regions. One clearly observes tha
tail region is ‘‘pushed’’ outside because of the expand
core. This nonperturbative effect is not captured by Eq.~10!.
In a previous study@13#, the crossover from a core-tail struc
ture to a purely nonperturbative~semiclassical! structure was
quite abrupt. In the present study, the ‘‘deep’’ nonpertur
tive regime, where all the tail components disappear, is
accessible due to numerical limitations. A purely nonpert
bative structure would be obtained if all the tail compone
were swallowed by the expanding core.

X. ANALYSIS OF ACTUAL EVOLUTION, V REGIMES

We start this section with a qualitative description of t
actual evolution, which is based on looking in illustratio
such as in Figs. 1 and 2. Later, we present the quantita
analysis. In general, one observes that for finiteV the evolu-
tion acquires stochasticlike features. At intermediate tim
(0,t,T), the spreading profile contains both paramet
and stochastic components. The parametric component i
versible. In contrast to that, the stochastic component of
spreading is not affected by the velocity reversal, and m
lead to a final Gaussian distribution.

Let us describe what happens to the evolution, as a fu
tion of dx5Vt, as we make simulations with smaller an
smallerV. On the basis of Eq.~10!, we expect to observe
modulation of the tails ofPt(r ) in a way that is implied by
the presence of envelopeF̃ t(v). This modulation is charac
terized by the energy scale\/t5\V/dx. If we makeV fur-
ther and further smaller, the secondary lobes of the tails@see
preceding section for definition# do not have a chance t
become visible because they are suppressed by the narr
envelopeF̃ t(v). For small enoughV, only the main core
component of the band profile is left visible. For very sm
V, the spreading profile becomes very close to a Gaus
shape in a very early stage of the evolution.

The spreading at the end of the pulse period is very sm
both in the sudden limit~very largeV, corresponding to mul-
tiperiod driving with large frequency!, and also in the adia
batic limit ~very smallV). Figure 2 illustrates representativ
spreading profiles, which are observed in the end of the p
period. Also displayed are the first-order perturbative pro
@Eq. ~D5!# and a Gaussian with the same width. Note that
first-order perturbative profile Eq.~D5!, unlike Eq.~10!, does
not have a proper normalization. We can define a ‘‘differen
measure’’ in order to quantify the deviation of the~actual!
line shape from Gaussian shape. One possible definition
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Psto~r !$ log@Pt~r !#2 log@Pt
sto~r !#%2. ~13!

The lower panel of Fig. 8 shows that forV,20, the spread-
ing profile at the end of the pulse is close to Gaussian sh
while for V.20 this profile is predominantly of perturbativ
nature.

We should address now the issue ofV regimes. Namely,
for a givenV, we would like to characterize the nature of th
dynamical scenario. Below, we shall introduce a practi
procedure for the identification of the various regimes. W
are going to explain that in the numerical simulation, w
observe following four differentV regimes:

~1! Adiabatic regime (V,3).
~2! Perturbative regime (3,V,7).
~3! Nonperturbative regime (7,V,20).
~4! Sudden regime (20,V).

Before we get into details, we would like to make a conne
tion with the theoretical discussion of regimes in Ref.@15#.
There we have considered a~sinusoidal! periodic driving that
is characterized by amplitudeA and frequencyV52p/T.
For sinusoidal driving, the root-mean-square ‘‘velocity’’
V5AV/A2. So fixingA and changingV in the present pa-
per, is completely analogous to fixingA and changingV in
Ref. @15#. Thus, the fourV regimes listed above correspon
to a horizontal cut (A5const.Aprt) in the (V,A) regime
diagram of Ref.@15# ~see Fig. 1 there!. One should realize
that the perturbative regime is in fact the linear respo
~Kubo! regime as defined in Ref.@15#, and that the sudden
regime corresponds to the regime of vanishing~high fre-
quency! response.

In the adiabaticV regime, the spreading is due to nea
neighbor level transitions, and disregarding extremely sh
times„for which we can apply standard first-order perturb
tion theory @Eq. ~D5…‡, it looks stochastic. This means th
Eq. ~12! is a quite satisfying approximation. For further d
tails regarding the identification of the adiabatic regime, s
Sec. XII.

Outside the adiabatic regime, there is a time stage wh
perturbation theory@Eq. ~10!# is valid. But after this time, we
have to use theoretical considerations that go beyond pe
bation theory. In the following paragraph, we divide th
nonadiabatic regime into perturbativeV regime, nonpertur-
bativeV regime, and sudden regime. The basis for this d
tinction is the timing of thedeparturefrom parametric evo-
lution. The departure from parametric evolution is be
illustrated by the lower panel of Fig. 4.

The perturbativeV regime is defined by the requireme
of having thedeparture from parametric evolution happe
before the breakdown of Eq.~10!. Consequently, in this re
gime, the departure time can be deduced from Eq.~10!. For
example, let us assume a simple band profile. In such a c
departure time is just the inverse of the bandwidth, wh
implies via Eq.~B3! that it is simply the classical correlatio
time tcl of the chaotic motion. In the actual numerical ana
sis, the band profile is not simple, but has some struct
Rather than debating over the definition oftcl , it is more
6-8
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STADIUM BILLIARD WITH MOVING WALLS PHYSICAL REVIEW E 67, 026206 ~2003!
practical to determine the departure time by inspection
Fig. 4. For convenience, we have indicated the location
dxprt by a vertical line. ForV,7, the departure from para
metric evolution happens before this line. This way one c
determine the upper border (V57) of the perturbative re-
gime.

The nonperturbativeV regime is defined by the require
ment of having thedeparturefrom parametric evolution hap
penafter the breakdown of Eq.~10!. In other words, it means
that this departure cannot be captured by perturbation the
A more careful definition of the nonperturbative regim
should take into account the driving reversal att5T/2. As
explained in the next paragraph, the nonperturbative reg
is further restricted by the requirement of having thedepar-
ture from parametric evolution happenbeforethe driving re-
versal.

The distinction between perturbative and nonperturba
V regimes is related to the possibility to capture thestochas-
tic features of the energy spreading by perturbation the
Nonperturbative features of the energy distribution dur
intermediate times are of no relevance if they are of param
ric ~nonstochastic! origin. Let us see, for example, the upp
panel of Fig. 1. We clearly see that the spreading profile
the end of the pulse~at t5T) is of a standard perturbativ
nature. All the nonperturbative features that develop dur
the first half of the driving cycle are completely reversed
the second half of the cycle.

Conceptually, the simplest way to set a criterion for g
ting to the end of the pulse, a perturbative structure is to
fixed basis perturbation theory~see Appendix C of Ref.
@16#!. If we adhere to the present~more physical! approach
of usingx-dependent basis, an equivalent method@16# is to
determine the sudden timetsdn. This is the time to resolve
the expanding core. It is determined as the time when
following inequality is violated:

G~ t !!\/t. ~14!

The regime, where the conditiontsdn!T is violated, is
defined as the sudden regime. In the sudden regime, al
nonperturbative features are of parametric nature, and th
fore the validity of perturbation theory survives at the end
the pulse. In the sudden regime, thedeparturefrom paramet-
ric evolution becomes visible onlyafter the driving reversal.
One can determine the sudden regime simply by looking
the lower panel of Fig. 8. The departure of the energy dis
bution ~at t5T) from Gaussian shape is correlated with g
ting into the sudden regime.

The discussion above ofV regimes was based on lookin
for the breaktimeof perturbation theory@Eq. ~10!#, on one
hand, and looking for thedeparturefrom parametric behav
ior on the other hand. The departure from parametric beh
ior is an indication for the appearance of a predominant
chastic component in the spreading profile. This depar
does not imply that we get a Gaussian line shape. In
perturbative regime, we get the Gaussian line shapeafter the
breaktime of perturbation theory, which happensafter the
departure from parametric behavior. Therefore, in the per
bative regime, there are three stages in the evolution: a p
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metric stage, a perturbative stochastic stage, and a gen
stochastic stage. In contrast to that, in the nonperturba
regime, we do not have an intermediate perturbative stoc
tic stage because the departure from parametric beha
happensafter the breakdown of perturbation theory.

XI. LRT FORMULA

The general LRT formula for the variance of the sprea
ing is

dE~ t !25A2E
2`

` dv

2p
F̃ t~v!C̃~v!. ~15!

The proportionalitydE}A reflects having a linear respons
Two spectral functions are involved: One is the the spec
content of the driving~Appendix A!, and the other is the
power spectrum of the fluctuations~Appendix B!. The latter
is the Fourier transform of a correlation functionC(t).

A special case is the sudden limit (V5`), for which
F̃ t(v)51 and accordingly

dE~ t !5AC~t50!A. ~16!

Another special case is the response for persistent~either
linear or periodic! driving, whereF̃ t(v)5t2pd(v) implies
diffusive behavior:

dE5A2DEt. ~17!

In such a case, the expression forDE is known as Kubo
formula, leading to a fluctuation-dissipation relation.

Finding the conditions for validity of LRT is of majo
importance. This should be regarded as an important ste
the analysis of the response of a driven system. The clas
derivation of Eq.~15! is quite simple, and for completenes
we present it in Appendix C. For the sake of the followin
discussion, one can assume that the classical ‘‘slowne
conditions for the validity of classical LRT are satisfied.

The quantum-mechanical derivation of this formula
much more subtle@17,14–16# and leads to the distinction
between adiabatic, and~extended! perturbative and non-
perturbative regimes. The semiclassical limit is contained
the latter regime. It is known that the LRT formula does n
hold in the adiabatic regime@21#, but it is valid in the~ex-
tended! perturbative regime@14,16#. It is not necessarily
valid in the nonperturbative regime@14,15#, but if the system
has a classical limit, it must be valid again in the semicl
sical regime. See further discussion in the following sectio

XII. ANALYSIS: COMPARISON WITH LRT

Using the band profile as an input, we can calculate
spreading using Eq.~15!. In Fig. 6, the calculation is done
for the parametric evolution@dashed line given by Eq.~16!#,
while in Fig. 7, the calculation is done with Eq.~15! for finite
V values. The latter figure should be compared with the
per panel of Fig. 4. The agreement is very good unless
velocity V is small. See later discussion of the quantu
mechanical~QM!–adiabatic regime. The spreadingdE at the
6-9
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D. COHEN AND D. A. WISNIACKI PHYSICAL REVIEW E67, 026206 ~2003!
end of the pulse is better illustrated in Fig. 8.
There are three possible strategies for evaluating the b

profile. The first is to use the semiclassical strategy with
~B3!. The second is to make a careful numerical evaluat
of the matrix elements, and to use the definition Eq.~B1!.
This gives the thin line in Fig. 5. However, the most practic
and economical procedure is simply to deduce the band
file from the spreading profileP(r ) that corresponds to th
smallestdx value. This is the thick line in Fig. 5, which w
regard as the most appropriate estimate.

We found out that the LRT formula@Eq. ~15!# is not sen-
sitive to the way in which the band profile is evaluated, u
less theun2mu51 elements of theFnm matrix dominate the
result. Let us denote bys the root-mean-square magnitud
of these matrix elements. The sensitivity tos happens in the
V regime, which is determined by the conditionV
,(D)2/(\s), which is the adiabaticity condition. This sen
sitivity can be used as a practical tool for the determinat
of the adiabatic regime. In the upper panel of Fig. 8,
display the result of the LRT calculation upon settings
50. We see that the LRT calculation implies QM-adiaba
behavior forV,3.

If V is well away from the adiabatic regime, then ne
neighbor level transitions have negligible contribution.
such a case, the LRT calculation is not sensitive to the e
value ofs. As V becomes smaller, there is a larger relati
weight to the near-neighbor matrix elements.

Deep in the QM-adiabatic regime, the mean-level ene
difference is resolved muchbeforethe levels are mixed, and
therefore, as a result of recurrences, the probability s
concentrated in the initial level. This is, of course, a lead
order description. In fact, we cannot neglect higher-or
corrections.

In the adiabatic regime, the spreading is dominated
transition between neighboring levels~whereas outside of the
adiabatic regime, the contribution of neighboring level tra

FIG. 7. LRT calculation of the spreading versus time, using
~15! with the band profile as an input. The horizontal axis isVt.
This figure is in one to one correspondence with the upper pan
Fig. 4. One observes that for smallV, the calculation underestimate
the observed spreading. See discussion in Sec. XII.
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sitions can be neglected!. Therefore, it is only in the adia
batic regime, where the quantum-mechanical calculation@us-
ing Eq.~15!# gives results that are different from the classic
expectation@22#. Is it possible to witness a regime where th
quantum-mechanical~rather than the classical! LRT predic-
tion is observed? Apparently, the answer is positive, but
in a typical numerical experiment. The reason is that alm
always the Landau-Zener~non-LRT! mechanism for energy
spreading takes over@21#.

We can verify the dominance of Landau-Zener mec
nism as follows. The theoretical prediction isdE(t)}ADEt
with DE}V3/2. In the upper panel of Fig. 8, we plot th
spreading at the end of half pulse period (t5T/25A/V) and
at the end of full pulse period (t5T52A/V). Hence, we
expect dE}V1/4. The agreement with this expectation
quite good if we consider the spreading after half pulse
riod. At the end of full pulse period, we see that the spre
ing is larger than expected. This is apparently due to
nonadiabatic nature of theV°2V switching.

XIII. DISCUSSION AND CONCLUSIONS

The numerical study that we have presented should
regarded as an application of a general procedure for

.

of

FIG. 8. Upper panel: response for one-pulse versusV. The thick
line is dE at the end of the pulse. The thin~solid and dotted! lines
correspond to the LRT calculation Eq.~15!. For the calculation of
the lower thin lines, we have set the near-level couplings50. The
dashed line is the spreading at the end of half pulse period.
dash-dot line is the slope that corresponds to the Landau-Z
spreading mechanism. The lower panel is the difference Eq.~13!
from Gaussian line shape.
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STADIUM BILLIARD WITH MOVING WALLS PHYSICAL REVIEW E 67, 026206 ~2003!
analysis of energy spreading. In the summary below, we
order the stages in this analysis in the way which is impl
by the results of the earlier sections.

The first step in the analysis is to find the band profi
This can be done using the semiclassical recipe~Appendix
B! without any need to make heavy numerical simulatio
Then it is possible to determinedE(t) by using the LRT
formula @Eq. ~15!#.

The second step in the analysis is to determine the a
batic V regime. This is done by checking whether the LR
calculation ofdE(t) is sensitive tos. In order to get in the
adiabatic regime LRT-based quantum corrections to the c
sical result, we have to take the level spacing statistics
account@22,23#. We have pointed out the difficulty in ob
serving such corrections. Rather we can improve over
LRT prediction by taking into account either higher-order
Landau-Zener corrections to perturbation theory.

The third step in the analysis is to calculate the parame
perturbative profilePprt(r ). This is associated with getting
rough estimatefor the core widthG. Also the parametric
scalesdxc and dxprt can be determined on the basis of th
analysis. The former is determined from inspectingG, while
the latter is determined by comparingdE of the LRT calcu-
lation to thePprt based prediction.

The fourth step in the analysis is to distinguish betwe
the perturbative and the nonperturbative regime. For this
pose, we have to look for the timing of departure from pa
metric behavior, as in the lower panel of Fig. 4. FordE, one
can use the LRT based calculation of Eq.~15!.

The fifth step in the analysis is to identify the sudd
regime. For this purpose, we have to eliminate the sud
time from Eq.~14!. The problem is to estimateG(t) in the
nonperturbative regime. If we have only the band profile
an input, then we can use the rough estimateG(t);dE(t).
This is based on the assumption that in the nonperturba
regime, the energy distribution is characterized by a sin
energy scale.

The sixth step in the analysis is to make a simulation
the parametric evolution. This is a relatively heavy task,
it is still much easier than making finiteV simulation. ~It
requires merely diagonalizations, while a temporal simu
tion requires an iterative procedure.! The main nontrivial ef-
fects that we have found in the analysis of the parame
evolution were the following:

~i! Higher-order tails grow up.
~ii ! A non-perturbative core region develops.
~iii ! The core-to-tail transitions are suppressed.
~iv! The tails are ‘‘pushed out.’’
~v! Tail components are swallowed by the expanding co

The last two items are in the spirit of the core-tail theory, b
go beyond the perturbative approximation@Eq. ~10!#. Knowl-
edge of the parametric evolution allows accurate determ
tion of G, leading to a refined determination of theV re-
gimes.

The seventh step in the analysis is to make simulation
the actual evolution. We would like to emphasize that h
the different dynamical scenarios~corresponding to the dif-
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ferent V regimes! are illustrated in a numerical simulation
The only other numerical studies~mainly Refs.@15,12#! were
too restricted in scope, and did not contain analysis of
stages in the evolution of the energydistribution.

The only nonperturbative effect on the response that
have discussed so far is the Landau-Zener correction to
spreading in the adiabatic regime. Are there any other n
perturbative effects that affect the response? The immed
tendency is to regard LRT as the outcome of standard fi
order perturbation theory~Appendix D!. Then the question
that arises is what happens if Eq.~D5! does not apply?

Let us recall the answer in case of the parametric evo
tion of P(num). As dx becomes larger, we should be worrie
regarding the implications of having the effects that are lis
at the end of Sec. IX. Having expanding core that pushes
the tails, and having growing higher-order tail componen
may suggest that the first-order calculation of the varia
@Eq. ~D7!# should be ‘‘corrected,’’ and should include highe
order terms. Does it mean that Eq.~16! underestimates the
spreading? Or maybe we should assume that Eq.~10! pro-
vides the correct ‘‘trend’’ of higher-order corrections? Th
tails in the vicinity of the core are growing slower, which ca
be regarded as a suppression of core-to-tail transitions du
the mixing. Consequently, we would conclude that Eq.~16!
is an overestimation of spreading. Moreover, if we take E
~10! too seriously, beyond its regime of validity, we wou
conclude that the spreading has saturation for largedx.

For the parametric evolution, these possible speculati
turn out to bewrong. The above effects are exactly balanc
and the LRT formula@Eq. ~16!# remains exact beyond an
order of perturbation theory, which means that it is ex
even in the nonperturbative regime where perturbat
theory is not applicable. This claim has a simple derivat
@20#. Note also that if the system has a classical limit, th
the validity of Eq.~16! can be established deep in the no
perturbative regime, where the semiclassical approxima
becomes reliable.

The question is whether this delicate balance is violated
case of finiteV. For example, it may be that due to incom
plete core-tail recurrences, we shall have enhanced sprea
~compared with LRT!. Unlike the parametric case, we do n
have a theoretical proof that excludes such a possibility
fact, contrary is the case. We have demonstrated that fo
artificial ~random matrix theory! model, the LRT formula
cannot be trustedin the nonperturbative regime. Whethe
such an effect is possible also for a ‘‘quantized’’ system t
possesses a good classical limit has been left an o
question.

The possibility of having deviation from LRT in the non
perturbative regime was one important motivation for t
present research. Clearly, we did not witness such an e
in our simulations~Fig. 8!. This reflects that there is a clas
between the semiclassical limit and the RMT limit.
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APPENDIX A: THE SPECTRAL FUNCTION F̃ T„v…

Given a function f (t8) that describes the shape of th
driving pulse during the time interval 0,t8,t, we define a
spectral functionF̃ t(v) by Eq. ~3!. This spectral function
describes the spectral content of the driving pulse. Below
list some useful driving schemes. We use the notationQ(),
which is defined byQ(false)50 andQ(true)51.

For the step function, we have

f ~ t8!5Q~0,t8!, ~A1!

F̃ t~v!51. ~A2!

For the rectangular pulse, we have

f ~ t8!5Q~0,t8,t !, ~A3!

F̃ t~v!5u12eivtu2. ~A4!

If it is followed by a negative pulse, we get

f ~ t8!5Q~0,t8,t !2QS T

2
,t8,t D , ~A5!

F̃ t~v!5u122eiv(T/2)1eivtu2 for t.
T

2
. ~A6!

For linear driving, we have

f ~ t8!5t8, ~A7!

F̃ t~v!5t2@sinc~ 1
2 vt !#2, ~A8!

where sinc(•••)5sin(•••)/(•••). Note that for very larget,
we have

F̃ t~v!;t2pd~v!. ~A9!

Finally, for the triangular pulse

f ~ t8!52
t8

T
QS 0,t8,

T

2D12S 12
t8

T DQS T

2
,t8,TD ,

~A10!

we get

F̃ t~v!5F2

TG2

t2@sinc„1
2 vt…#2) for 0,t,

T

2
,

F̃ t~v!5F2

TG2U122eiv ~T/2!1eivt

v U2

for
T

2
,t,T.

APPENDIX B: THE SPECTRAL FUNCTION C̃„v…

Let us denote byFmn the matrix representation of som
quantized observableF(Q,P), in the basis which is deter
02620
-

e

mined by some quantized chaotic HamiltonianH(Q,P). The
band profile ofFmn is conveniently characterized by th
spectral function

C̃~v!5 (
n(Þm)

uFnmu22pdS v2
En2Em

\ D , ~B1!

with an implicit average over the reference statem. This is
the power spectrum of the fluctuating quantityF(t), whose
classical definition isF(t)5F„Q(t),P(t)…, with a corre-
sponding quantum-mechanical definition within the Heise
berg picture. The power spectrum of a fluctuating quan
F(t) is defined as the Fourier transform of the correspond
correlation functionC(t).

Chaotic systems are characterized by fast decay of
namical correlations. We assume a separation of time sc
between the~short! classical correlation time, and the~long!
quantum-mechanical Heisenberg time. Thus, for times d
ing which we can ignore the recurrences, we expect the
lowing quantum-classical correspondence:

C~t!'Ccl~t!. ~B2!

This correspondence implies that the envelope ofC̃(v) is
given byC̃cl(v), and the following semiclassical expressio
for the matrix elements follows@24#:

^uFnmu2&'
D

2p\
C̃clS En2Em

\ D . ~B3!

Taking into account the level spacing statistics, we ded
the following relation@22#:

C̃~v!'R̂~v!C̃cl~v!, ~B4!

whereR̂(v)}^(nd(v2vnm)&m is the two-point correlation
function of the energy spectrum~Fourier transform of the
spectral form factor!. This function behaves asR̂(v);vb

for small v, and asR̂(v);1 for largev. For the Gaussian
unitary ensemble~GUE! b52, and there is a simple expres
sion:

R̂~v!uGUE512@sinc~p\v/D!#2. ~B5!

For the system that we consider in this paper it is appropr
to assumeb51, corresponding to the Gaussian orthogon
ensemble~GOE!.

APPENDIX C: CLASSICAL DERIVATION OF THE LRT
FORMULA

ConsiderH„Q,P;x(t)…, and define the following time de
pendent quantities:

F~ t !52
]H
]x

„Q~ t !,P~ t !;x~ t !…, ~C1!

E~ t !5H„Q~ t !,P~ t !;x~ t !…, ~C2!
6-12
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E8~ t !5H„Q~ t !,P~ t !;x~0!…. ~C3!

Note thatE(t) is the energy in the conventional sense, wh
E8(t) is the energy using a ‘‘fixed basis.’’ We have the fo
lowing relations:

dE~ t !

dt
5

]H
]t

52 ẋ~ t !F~ t !, ~C4!

dE8~ t !

dt
52@H,H0#'dx~ t !Ḟ~ t !. ~C5!

The latter approximated equality strictly holds if the pertu
bationH2H0 is linear with respect to the perturbation p
rameterdx5x2x0. From the equations above, it follow
that

E~ t !2E~0!52E
0

t

ẋ~ t8!F~ t8!dt8, ~C6!

E8~ t !2E8~0!'E
0

t

dx~ t8!Ḟ~ t8!dt8. ~C7!

Obviously, the two latter expressions coincide for a cy
@x(t)5x(0)#. Squaring Eq.~C6!, and performing a microca
nonical average over the~implicit! initial conditions
@Q(0),P(0)#, one obtains

dE~ t !25A2E
0

tE
0

t

ḟ ~ t8! ḟ ~ t9!C~ t82t9!dt8dt9. ~C8!

This can be written as Eq.~15!.

APPENDIX D: FIRST-ORDER PERTURBATION THEORY
AND LRT

For convenience, we assume that the perturbation is lin
in dx5x2x0. In complete analogy with the classical anal
sis, we can work either using fixed basis, or else we can
the properx-dependent basis~the so-called adiabatic repre
sentation!. The respective matrix representations of t
Hamiltonian are

H°E1dx~ t !F, ~D1!

H°E1 ẋ~ t !W, ~D2!

whereE is a diagonal matrix. Note that in the first equatio
E andF are calculated forx5x0, while in the second equa
tion there is an implicitx(t) dependence. The matrix ele
ments ofF are
e
//

P

02620
-

e

ar

se

,

Fnm5 K nU ]H
]x UmL . ~D3!

The off-diagonal matrix elements ofW are

Wnm5
\

i K nU d

dt
mL 5 i

\

En2Em
Fnm , ~D4!

and we use the ‘‘gauge’’ conventionWnm50 for n5m.
~Only one parameter is being changed and therefore Ber
phase is not an issue.! The derivation of Eq.~D2! is standard,
and can be found in Sec. XI of Ref.@16#.

Using first-order perturbation theory with Eq.~D2!, we
get

Pt~num!5dnm1A2F̃ tS En2Em

\ D UWnm

\ U2

. ~D5!

Note that for a cycle@ f (t)5 f (0)50#, the same result is
obtained via first order perturbation theory with Eq.~D1!. As
a global approximation@Eq. ~D5!# is valid only in the stan-
dard perturbative regime. In the extended perturbative
gime, it is valid only for the first-order tail region~see Sec.
VIII !. The expression for the first-order tail region can
written in a concise way as

Pt~num!5A2F̃ t~vnm!
D

2p\
C̃~vnm!F 1

\vnm
G2

. ~D6!

The corresponding global approximation is given by E
~10!.

Assuming that the variance is dominated by the first-or
tail component, we get the LRT result

dE~ t !25(
n

Pt~num!~En2Em!2

5A2E
2`

` dv

2p\
F̃ t~v!C̃~v!. ~D7!

An implicit average overm is assumed. Note that the latte
formula does not contain\. This restricted quantum
classical correspondence holds only for the variance. Hig
moments of the energy distribution are typically mu
smaller compared with the classical expectation, and s
like \ to the power of the moment order22.
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