PHYSICAL REVIEW E 67, 026206 (2003
Stadium billiard with moving walls
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We study the evolution of the energy distribution for a stadium with moving walls. We consider a one period
driving cycle, which is characterized by an amplittdend a wall velocityV. This evolving energy distribu-
tion has both “parametric” and “stochastic” components. The latter are important for the theory of quantum
irreversibility and dissipation in driven mesoscopic devices. For an extremely slow wall velMcitlye
spreading mechanism is dominated by transitions between neighboring levels, while for(tamgdiabatic
velocities, the spreading mechanism has both perturbative and nonperturbative features. We present a numeri-
cal study which is aimed at identifying the latter features. A procedure is developed for the determination of the
variousV regimes. The possible implications of linear response theory are discussed.
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I. INTRODUCTION box case is actually the most complicated one. As in the case
of the kicked rotatofstandard mayp[6,8,9], there is a com-
Consider the problem of a particle in a box, where someplicated route to chaos and stochasticity.

piece of the wall is deformed periodically in time. As an  Things become much simpler if the motion in the box is
example, one may think of a particle in a cylinder with a chaotic to begin with. Driven chaotic systems exhibit, as a
moving piston. The particle has massand kinetic energgg. ~ result of the driving, stochastic energy spreading of a rela-
The piston is pushed back and forth. The velocity in whichtively simple nature[1]. This is the case that we want to
the piston is displaced iV and the maximum displace- consider in this paper. Hence, we consider the simplest “cha-

ment isA. At the end of each cycle, the piston is back in its ©tic POx,” which is a 2D “billiard” model. Specifically, we
original location are going to introduce a detailed numerical study ofdhe-

In the present paper, we are going to study what happe ulse response o_f a s.tad|um b|II|qrd to a shape deformation
. A . he stadium billiard is a recognized prototype system for
to a quantum-mechanical particle in such a box, during ong

o ST s guantum chaos” studies. Our simulations are feasible,
cycle of the driving. We assume that the particle is m't'a”ythanks to a new powerful technique for finding clusters of
prepared in an energy eigenstate of fonedeformed box.

. L . billiard eigenstated7,10,11. Previous applications of this
We shall explain that it is important to specify whether theyoopnique, to the study of restricted aspects of the present
maximum displacemerf is lesser or greater compared with problem, have been reported in Ref2,13.

the de Broglie wavelength. _ . _ The work that is presented in this paper is a numerical

The problem of a particle in a box with a moving wall is study which is aimed at presenting a systematic analysis of
a prototype example for study of driven systefti$ which  nonperturbative features oftame dependenspreading pro-
are described by a Hamiltoniaf(x(t)), wherex(t) is a  cesg14-16. A procedure is developed for the determination
time dependent parameter. In the case of a piston, the paramf the various time stages in the evolution of the energy
eterx is the position of the piston, and we use the notationdistribution. This allows the identification of the varioi’s
V=|x|. regimes (“adiabatic,” “perturbative,” “nonperturbative,”

There is a lot of interest today in studies of quantum irre-and “sudden’), which were predicted in past theoretical
versibility. This is an issue relevant to the design of quantunrftudies.
computers, where the fidelity of a driving cycle is important.

If at the end of a driving cycle, the system is back in its II. OUTLINE

initial state, then we say that the driving cycle has high fi-

delity. Obviously, the piston model can serve as a prototype In Secs. lll and IV, we define the model system, and
example for studying of quantum irreversibilifg]. briefly describe the classical picture. In particular, we explain

The study of one-cycle driving also constitutes a bridge tahat thetime dependent featureghich we study in this paper
the study of the response to multicydfeeriodig driving. It  are purely quantum mechanical, and not of semiclassical ori-
should be clear that the long time behavior of driven systemgin.
is determined by the short time dynamics. Therefore, it is In Sec. V, we define the main objective of our study,
essential to have a good understanding of the latter. which is the energy spreading kerriel(n|m). See Eq(4).

At first sight, one may think that it is simple to study the Regarded as a function of the level indexit is the energy
one-dimensional(1D) box case, also known as “infinite distribution after timet, while mis the initial level. We also
square well potential with moving wall[3,4]. The case of define the square root of the varianég(t) and the 50%
periodic driving is also known as the “Fermi acceleration probability widthI'(t), which characterize the evolving en-
problem” [5]. At a second sight, one finds out that the 1D- ergy distribution.
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Our three-phase strategy for analysis of energy spreadingcrease of the average energy. For a more detailed presen-
is presented in Sec. VI. The three phases are as follows: tation that takes the box geometry into account, see Ref.
[18].

Do we have a correspondirfgemiclassicalpicture in the
guantum-mechanical case? Again, we remind the reader that
we assume a volume preserving deformation. This implies
The relevant information regarding “phase I” is summarizedthat the energy levels of the system do not have a collective
in Sec. VII. Various approximations fd,(n|m) and, in par-  upward or downward change as a result of the deformation.
ticular, the notion of “parametric evolution” are presented in The physics in which we are interested is related to the tran-
Sec. VIII. The relevant information regarding “phase 11" is Sitions between different levels. The question that we ask is

summarized in Sec. IX. The main concern of this paper igvhether these transitions are “classical-like.”

“phase III.” Let us assume that we start with an eigenstate whose en-
For a givenV, one should be able to characterize the€'9y iSE. Semiclassically, it is as if we start with a microca-
nature of the dynamical scenario. The theoretical considefonical preparation. If the dynamics is of classical nature,
ations regarding this issue have been discussed in Refd1en we expect that after a short time, some of the probabil-

[17,14—18, and for a concise review see REP]. Rather ity Wwill make a transiton E—~E’ such that|E'—E|

than duplicating these discussions, we are going to present irr2MveV. Naturally, such description is meaningful only if
Sec. X a phenomenological definition, and a practical procethe energy scalerBvgV is much larger than the mean-level
dure, for the identification of the regimes. We would like to  spacing. This leads for 1D box to the condition

emphasize that here the different dynamical scenddos

responding to the differen¥ regimes are illustrated in a V>a/mL. @)

numerical simulation. The only other numerical studies :
. : . ."In the general casée.g., 2D bo¥ having 2nvgV much
(mainly Refs.[15,12)) were too restricted in scope, and did larger than the mean-level spacingnist a sufficient condi-

not contain analysis of the stages in the evolution of thetion for getting semiclassical behavior. Still, nontrivial analy-

energydistribution sis [19] reveals that the condition for getting semiclassical

Sections XI and Xl question the applicability of linear L : :
response theor{L RT) to the analysis of the energy spread- ﬁg:ﬁ:g;ngi\l/grfhbeyglzegggal case is the same as in the 1D case,

ing. Further discussion on nonperturbative response and con- The above Eq(l) is a necessary condition for having

clusions are presented in Sec. XIll. semiclassical transitions. In order to actualjtnesssemi-
classical transitions, it is also necessary to have a time period
IIl. THE SEMICLASSICAL PICTURE much larger compared with the ballistic timeA/

Consider aclassical particleinside a box. Its kinetic en- >L/ve), and to have an amplitude that is much larger com-

; i TR d with the de Broglie wavelength>7%/(mvg)]. These
ergy isE and the corresponding velocityds= \2E/m. The ~ Parec » e Mue) ] .
shape of the box is externally controlled. The control param@dditional conditions can be satisfied only in s&miclassi-
eter is denoted by. We assume that has units of length, C@ '€gime which is defined by Eq(1), else they are not

such thatv=|x| is the typical wall velocity. Obviously, dif- CPatble:
ferent parts of the wall may have different velocities. In case

of the “piston model,” only one piece of the wall is moving

(either inward or outwand However, we are notinterested in  As a specific example for chaotic box, we consider the
the trivial conservativevork which is being done, but only in - quarter stadium billiard. We define as the length of the

the irreversible work. Therefore, rather than analyzing an straight edge, and adjust the radius parameter such that the
actual piston model configuration, it is wiser to consider aital area is kept constant. For numerical reasons, we do not
volume preservingleformation. In such a case, the conser-analyze this model “literally” but rather consider, as in pre-
vative work is zero, and the major issue is the irreversibleyious study[12], a linearized version of the quarter stadium

effect that is explained below. _ _ billiard Hamiltonian. Namely, we study a model Hamiltonian
As a result of the collisions of the partlcle with the de- that has the matrix representation

forming walls, there is a stochasticlike diffusion in energy

space. The explanation is as follows: Each time that the par- HX(t))—E+ ox(t)F. 2
ticle collides with the moving wall, it either gains or loses

energy. To simplify the presentation, let us assume head-oHere, E is an ordered diagonal matrix that consists of the
collisions. The change in energy is2mv gV depending on eigenenergieg, of the quarter stadium billiard with straight
whether the wall is moving inward or outward at the point of edgex=1. The eigenenergies were determined numerically.
the collision. For volume preserving deformation, the er-The perturbation due téx deformation is represented by the
godic average ovebE gives zero. Thus, we have random matrix F. Also this matrix has been determined numerically
walk in energy space where the steps ar@mvgV. This  as explained in Ref12]. We note that the fingerprints of the
leads to diffusion in energy space. As explained in [RE], classical chaos are present in the statistical properties of the
this diffusion is biasedthe diffusion is stronger for larger matriceskE (level statisticsandF (band structure The latter
E). This leads, in the long run, to a systemdticteversiblg  is discussed in Sec. VILI.

(I) Study of the band profile.
(Il Study of parametric evolution.
(II1) Study of the actual time evolution.

IV. THE NUMERICAL MODEL
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Thelinearization[Eq. (2)] of the billiard Hamiltonian can
be regarded as a validpproximationif the wall displace-
ment parametedx is small as compared with the de Broglie _gg
wavelength. This automatically excludes the possibility of
addressing the semiclassical regime, which has been dis -40
cussed in the preceding section. In our simulation, the de
Broglie wavelength is roughly 0.1. This implies tHat best
the maximum driving amplitude that can be allowedAs -
=0.2, so as to havesx(t)|<0.1. [Note that for presentation
purposes, we later redefing(t) as ox(t)—6x(0)]. In the 20
simulations we indeed have=0.2, meaning that we allow a
deformation that is comparable or possibly somewhat larget
than that “allowed” by the linearization. 60

However, in spite of the fact that E€R) may be a “bad”

or even an “inadequate” approximation to real-world phys- &0 —— —

ics, it is still a totally “legitimate” Hamiltonian from math- 5 10 15 20 25 30 35 40 45
ematical point of view. Moreover, the numerical model Eq. @ time step

(2) contains all thephysicalingredients that are relevant for

the aim of the present study. _80

To summarize, in this paper we consider, as far as formu-
lation is concerned, a chaotic billiard driven by volume pre- -60
serving shape deformation. On the other hand, as far as nt
merics is concerned, we analyze a specific quantum-
mechanical model defined by E®). The numerical model —20
is motivated by the quarter stadium billiard system Hamil-
tonian, but still it is not literally the same model. In particu-
lar, Eq.(2) does not possess the semiclassical regime whict
has been discussed in the preceding section.

201

401

V. THE EVOLVING ENERGY DISTRIBUTION 60

In the case of the time independent Hamiltonian, the en- I
ergy distribution does not change with time. In order to have ‘ s s ; i
an “evolving” energy distribution, we have to makax(t) 5 10 15 Qt?me st2e5 30 35 40 45
time dependent. One possibility is to assume linear driving.(b) B
In such a case, we writéx(t) =Vt. But more generally, for FIG. 1. Images of time evolution within one-pulse period for

a cycle, we writesx(t)=Af(t), with the conventionf(0) .
. / V=1 | forv=1 (I . Each col
=f(T)=0. In some equations below, whenever a linear 00 (upper pansland for (lower panel. Each column is

driving i A b | d b hich a profile of the probability distributior,(r) for a different time

rnving '$ Concem? ! Can_ e replace _y’ whic assur_nes stept. The first seven time steps are log spaced, while the rest are
the particular choice (t)=t. For practical purpose, given jiheary spaced. Thy'=100 evolution is predominantly parametric.
f(t), it is convenient to associate with it the spectral function

5 wherep,, can be interpreted as either the probability matrix
3 or as the corresponding Wigner function that represents the
eigenstatgn). In the latter case, the trace operation should
be interpreted asdiPdQ/(2##)? integration over phase
Some useful cases are summarized in Appendix A. In thispace, where@,P) are the canonical coordinates of the par-
paper, we are primarily interested in the case of triangulaticle, andd=2 is the dimensionality.
pulse[Eqg. (A10)]. We shall use the notatioR,(r)=P;(n—m)=P,(n|m),
Given the model HamiltoniafEg. (2)], and the driving with implicit average over the reference state We shall
schemesx(t), we can calculate the unitary evolution opera-refer toP,(r) as the “average spreading profile.” Whenever
tor U(t). This kernel propagates “wave functions” in time. we have a wide distribution, we disregard the distinction
Equivalently, we can describe the quantum-mechanical stateetween “energy difference” and “level difference,” and
using a probability density matrix. The propagator of themake the identification
latter is denoted by (t). In order to describe the evolution

~ t- . ’
Ft(w):Uof(t’)éw‘ dt’

of the energy distribution, we define the kernel En—Em=honm~AXT, ®)
P.(nlm)=trl o A(t where A is the mean-level spacing arrd=n—m. (In our
(nfm) =t paA (D] numericsA~7.22.)
=|(n(x(t))|U(t)|m(x(0)))[?, (4) Figure 1 displays the evolution as a function of time. Each
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10°

100
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(b) Vit

FIG. 2. Spreading profile at the end of one pulse periodvor
=100 (upper panéland for V=10 (lower panel. The thin solid FIG. 3. The widthI'(t) as a function of time. The numerical
lines are from standard first-order perturbation theory, which meangetermination of" is explained after Eq(7). The horizontal axis is
PP" of Eq. (10) with T=0. The dashed lines are for the Gaussianthe scaled timé/t. The different curves correspond to the different

velocities V=100,80,40,20,10,7,5,3,1,0.5,0.2,0.1,0.07,0.05. The
solid lines highlight the velocitie¥ =100 (uppermost, 10, 1, and
0.1. The lower panel is the same as in the upper figure, but in
r{(_)g-log scale, and only half period is displayed.

with the same variance.

column is a profile of the probability distributid®,(r). The
first seven time steps are log spaced, while the rest are li
early spaced. Th& =100 evolution is predominantly para- The first measure is the survival probabilig(t). It is men-
metric. AsV becomes smaller and smaller, the deviationtioned here just for completeness of presentation. The second
from parametric evolution becomes larger and larger. Someneasurd’(t) is the energy width of the centralregion that
representative spreading profiles are presented in Fig. 2. contains 50% of the probability. It is calculated E$t)
There are various practical possibilities available for the= (r,50,—r250) A, Wherer s, and rss, are the values for
characterization of the distributid®(r). It turns out that the which the cumulative energy distribution equals 25% and
major features of this distribution are captured by the follow-75%, respectively. Finally, the energy spreadifig(t) is
ing three measures: defined above as the square root of the variance.
P(t)=P,(r=0) ©) Figure 3 shows hoyv the _vvidtﬁ(t) of the profile evolves.
t ' The lower panel of Fig. 3 is a log-log plot. We see clearly
T'(t)=50% probability width, 7) _tha.t up toéxC:O.OOG,. the. yvidth is one Ie\(el, which is an
indication for the applicability of standard first-order pertur-
12 bation theory. For largedx, several levels are mixed non-
SE(t)= ( D rth(r)) A (8) pherturlbatively and, therefore, the width becomes larger
r than 1.
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357 Obviously, its dependence dnis exclusively viadx=x(t)
AN 5 —X(0), irrespective ofV. The parametric evolution d?(r)
30r versuséx for a deforming billiard has been studied in Ref.

[13]. The numerics in this paper can be regarded as an ex-
tension of the numerics of Ref13] to the case of finité/.

VI. THREE-PHASE STRATEGY

In the future we want to have a theory that allows the
prediction of thelnumerically simulatedtime evolution. The
minimum input that is required for such theory is the band
profile of the F matrix. For precise definition of the band
profile, see Appendix B. Note the existence of a very effi-
cient semiclassical recipe to find the band profile. This can
save the need for tedious quantum-mechanical calculations.

Using the band profile, one hopes to be able, in the “sec-
ond phase’{20], to calculate the parametric kerrié(n|m).

The band profile does not contain information about the cor-
relations between the off-diagonal elements. Therefore, one
has to make the so-called random matrix the@¥T) con-
jecture, namely, to assume that the off-diagonal elements are
effectively uncorrelated. It turns out that, upon using such
conjecture, the nonuniversal features of the parametric evo-
lution are lost. Still, the obtained results are qualitatively
correct and, therefore, such an approach is legitimate as an
approximation.

However, finding the parametric kerrfé{n|m), using the
band profile as an input, is not the subject of this paper.
Therefore, as a matter of strategy, we would like to take the
numerically determined parametric evolution as an input.
Given the parametric kern®(n|m), the question is whether
we can calculate the actual evoluti®p(n|m) for any finite
V.

In previous works(see review in Ref[2]), we gave a

10 vt 10 negative answer to the above question. We have claimed that

®) nonperturbative features of the dynamics cannot be deduced
FIG. 4. The spreadingE(t) of Eq. (8) as a function of time, for from the parametric analysis. To explain this observation, let

differentV simulations. The upper panel is in one to one correspontS @ssume that we have two model Hamiltonians, say
dence with the upper panel of the previous figure. In the lower/Tphysica(X) @nd Harisicia(X). Let us assume further that the
panel, the data of the upper panel are presented in a different wajv© models have the same band profile and the same para-
the vertical axis is the relative spreading, the horizontal axis is lognetric kernelP(n|m). Still we claim that for finiteV, the
scale, and only the half period is displayed. The locationsxyf;, WO Hamiltonians may generatifferent temporal kernels
=0.05 is indicated by vertical line. See the text for more details. Py(n|m). In particular, it has been argued that this is in fact
the case ifHqicia(X) iS an effective RMT model which is

Figure 4 shows how the spreadidf(t) of the profile associated Withppysioa().

. . . In past publications, the manifestation of nonperturbative
evolves. The lower panel displays the relative Spreadmggeatugs inpcase of driven physicaion-RMT) moﬁels has

which is defined as the ratio between the actual spreadin . ) . ) ; .
and the parametric one. The notion of parametric evolution i ot been mveit]gat?d nfumr:a rically. ngéhe_rtl?eoretlcal S'dfe ) 1t
defined in the next paragraph. As becomes smaller, the ":‘] a? ﬁpe'." subject for further reseafds]. The ]E)urpos? 0 ¢
departure from the parametric behavior happens earlier. the following sections Is to present a strategy for analysis o
numerical simulations that paves the way towards a theory

The sudden limit Y —«) of P,(n|m) will be denoted by . .
P(n|m). We shall refer to it as the parametric kernel. It is for the nonperturbative aspects of the energy spreading.

formally obtained by the replacement(t)—1, or equiva-
lently U(t)—1 in Eq. (4), namely, VIl. THE BAND PROFILE

The band profile of is described by the spectral function

P(n|m)=tr(pppm) C(w), which is a Fourier transform of a correlation function
nem C(7). See Appendix B. If the collisions are uncorrelated, as
=|(n(x(t))|m(x(0)))[?. (9)  in the case where the deformation involves only a small sur-

-2
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10° - ously, the kernels listed above are very different. Our aim is
to clarify in what regime V), in what time staget{, and in
what energy regionr(), which of them is the valid approxi-
10° | mation.

The semiclassical kerndPS(n|m) is defined and ob-
tained by assuming in E@4), that the Wigner functions can

N/\10 r be approximated by smeared microcanonical distributions.
“E See Refs[17,13,2Q for further details and numerical ex-
%100 I amples. WheneveP,(n|m)~P(n|m), we say that the

spreading profile is “semiclassical.” In order to have a valid
semiclassical approximation in case of billiard systems, the

102 displacemen®x of the walls should be much larger than the
de Broglie wavelengtil3]. Thus, for reasons that were ex-
plained in Sec. lll, the semiclassical approximation is not

107 . . . | applicable for the numerical model that we consider in this

-100 -50 0 50 100 paper
r = (n-m) ’

The perturbative kerneP?"(n|m) is obtained from per-
FIG. 5. The band profile, as defined in Appendix B. The two turbation theonf17,16. The defining expression is
curves are the outcome of two different numerical procedures: the

thin line is based on direct evaluation of matrix elements, while the ort o= [En—Em
thick line is deduced from the evolution over an infinitesimal time P (n|m)=A%F, 7
step (see Sec. XII for further detailsA third possible procedure
(not displayedl is to use the semiclassical recipe, EB3). A F( E,— Em) 1
>< ~ 1
2mh =\ b ] T?+(Ey—Ep)?

face element, the@(7) is a 6 function, and the band profile

is flat. This is not the case in the present model. The corre- (10)

lations between collisions cannot be neglected and, therefore,

C(7) equalsé function plus a smooth compondlit8]. Due  whereI" is determined bynormalization If we make the

to the smooth component, the band profile has a very proreplacement’—0, we get the standard result of first-order

nounced nonuniversal structure. See Fig. 5. perturbation theorysee Eq(D5)]. The presence df in the
For large enougtw, the contribution of the nonuniversal denominator reflects corrections to infinite order. We note

component vanishes. Thus, the band profile should possegsat P!"(n|m) constitutes a generalization of Wigner Lorent-

flat tails. These tails reflect the presence of théunction  zian. We indeed would get from it a Lorentzian if the band

component inC(7). For numerical reasons, due to trunca- profile were flat with no finite bandwidth.

tion, the band profile of our system is multiplied by a Gauss- WheneverP (n|m)~ PP"(n|m), we say that the spread-

ian envelope. Therefore, the tails of the effective band profileng profile is “perturbative.” The perturbative structure is

are not flat, but rather vanishingly small. The lack of flat tailscharacterized by having separation of scales

in the numerical model can be loosely interpreted as having

“soft” rather than “hard” walls. I'(t)<SE(1). (17
Thus, our system is characterized by a finite bandwidth.

This is actually the generic case. Namely, for genericWe say that,(n|m) has a “standard” perturbative structure

(“smooth”) Hamiltonian, the correlation functio€(7) is  [Eq.(D5)], which is given by first-order perturbation theory,

nonsingular, which implies finite bandwidth. if I'<A. This means that more than 50% probability is con-
centrated in the initial level. We use the term “core-tail”
VIIl. APPROXIMATIONS structure if we want to emphasize the existence of a finite

nonperturbative core regidn|<I'/A. The core widthl", as
A major issue in the studies of energy spreading is theletermined by perturbation theory by imposing normaliza-
knowledge of how to combine tools or approximations intion on Eq.(10), constitutes a rough estimate for the width
order to understand or calculate the kerRgln|m). In par-  T'(t) of the energy distributiofEq. (7)].

ticular, we have the following approximations: The spreadingSE(t) for the core-tail structure is deter-
mined by the tail region, which is defined [a$>T/A. If Eq.
(1) The perturbative kerng®f"(n|m). (10) were a Lorentzian, it would implyE(t)=. This is of
(2) The semiclassical kern@°(n|m). course not the case because the spectral functions provide a
(3) The Gaussian kernd?*%(n|m). physical cutoff. Thus, the core-tail structure which is de-
(4) The parametric kerné?(n|m). scribed by Eq(10) is characterized by a tail component that

contains a vanishingly small probability but still dominates
The parametric kerndP(n|m) that corresponds to the sud- the variance.
den limit (V—«) has already been defined in E§). The If we do not have the separation of energy scales(El),
other kernels will be defined in the present section. Obvithen perturbation theory becomes useldss16. In such a
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case,P;(n|m) becomes purely nonperturbative. In order to 60
determineP,(n|m), we have to use tools that go beyond
perturbation theory. In particular, for long times, one can
justify [17,16 a stochastic approximation leading to the
Gaussian kernel

<o _ 1 A 1
Pt (n|m)—\/T_Wmex _E

Note that for very long times, this Gaussian should be re-
placed by an appropriate solution of a diffusion equation. But 20
this is not relevant to our simulations. For a critical discus-
sion that incorporates estimates for the relevant time scales
see Refs[17,16.

A final remark is that for a Gaussian profile, the 50% . . . .
width isT"(t) = 1.35 SE(t). However, whenever a nonpertur- () 0.05 0.1 0.15 0.2
bative structure is concerned, it is better, in order to avoid (a) dx
confusion, not to use the notatidi(t). The notationl’ has
been adopted in the common diagrammatic formulation of  ,
the perturbation theory. In case of nonperturbative structure ]
this formulation becomes useless and, therefore, the signifi
cance ofl’, as a distinct energy scale, is lost.

40.

En_ Em) 2
. (12

o(E(1))

w
2aof

IX. ANALYSIS OF THE PARAMETRIC EVOLUTION,

10 |
ox REGIMES

The parametric evolution d?(n|m) is illustrated in Fig.
1 (upper panel For very smalléx, we observe clearly a
standard perturbative profilgEq. (D5)], whose structure is
just a reflection of the band profile. By definition, this holds 10
in the standard perturbativigparametri¢ regime 6xX<<ox..
From the numericglooking on the lower panel of either Fig.
3 or Fig. 6, we find thatéx.= 0.006.
For 6x> 6X., the initial level starts to mix with neighbor- . .
ing levels. As a result, a nonperturbative core component .3 10°2 10
starts to develop. Thus, we obtain a core-tail structure. Theg, 8x
tail is the perturbative component. The main component of
the tail is the first-order tail which can be calculated using FIG. 6. Parametric evolution: the horizontal axissis either in
first-order perturbation theory. The tails in the vicinity of the linear scalgupper panélor in logarithmic scalélower pane). The
core are growing slower, which can be regarded as a suppredetted line is the widtd™ from Eq. (7). The thick line is6E from
sion of core-to-tail transitions due to the mixing. There areEd.(8), while the dashed line is the LRT estimate Etf). The thin
also higher-order tailg20] which can be neglected. line is the perturbative estimate E@) using Eq.(10). From these
Having SE>T is an indication that’E is dominated by Plots, we can determinéx.=0.006 andéx,=0.05.
the (perturbativg tail component of the core-tail structure
Eqg. (10). The conditionI'<SE can be rewritten asdx (SE) to variance based measudgP"), rather than compar-
<Xy, Which constitutes a definition of the extended per-ing variance based measurég) to a “width measure” ().
turbative (parametri¢ regime. Unfortunately, the strong in- For 8x> 6Xpq, the pf“ based calculation oBE gives
equalityl’ < 5E is nowhere satisfied in our numerics. There- saturation. Thignonphysical saturation is the consequence
fore, the numerical definition o0bx,; becomes ambiguous. of having a finite bandwidth. It should be regarded as an
One may naively definéx, by transforming the weak in- artifact that reflects the limited validity of perturbation
equality I'< 6E into a weak inequalitydx< X But this  theory.
procedure is numerically meaningless: the quantitiesnd In the nonperturbativéparametri¢ regime, namely, for
oE are energy scales. As such, their definition is arbitrary upsx> 8x,, the tails are no longer the dominant component.
to a prefactor of order unity. After some thinking, one real-This is associated with a structural change in the spreading
izes that the only practical definition fa#x, is as theéx  profile. Looking at the upper panel of Fig. 1, we observe a
where thePP" based prediction 06E becomes significantly ~core-tail structure up to the 13th time step. Then, the second-
less than the actual spreading. From the numefag. 6),  ary lobe of the band profile is swallowed by the core. This
we find that 6x,,=0.05. This definition is not ambiguous happening is reflected in Fig. @pper panglby a boost in
numerically because we compare “variance based measurghe widthI'. [The notion of secondary lobe should be clear

I and SE
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by looking at thelr|~ 20 region in the upper panel of Fig. 2. .
Unfortunately, its visibility in the corresponding imagep- \/E PS(r){log[ Py(r)]—log[ P{Ar)1}%. (13
per panel of Fig. Lis quite poor. Still it is possible to follow '

the evolution of the ~ 20 tail region, and to realize that itis 1pq |ower panel of Fig. 8 shows that for< 20, the spread-

swallowed by the corg. . . ing profile at the end of the pulse is close to Gaussian shape,
To have a weak inequalityix> X, is not quite the same \yhjle for V> 20 this profile is predominantly of perturbative

as to be in the(deep nonperturbative regime wheréx nature.

> OXprt- FOr 6X> 68Xy, we do not get a purely nonperturba-  We should address now the issue\bfegimes. Namely,

tive structure. In spite of the failure of the core-tail picture for a givenV, we would like to characterize the nature of the

Eqg. (10), we still can make ghenomenologicatlistinction  dynamical scenario. Below, we shall introduce a practical

between core and tail regions. One clearly observes that therocedure for the identification of the various regimes. We

tail region is “pushed” outside because of the expandingare going to explain that in the numerical simulation, we

core. This nonperturbative effect is not captured by @€).  observe following four differenV regimes:

In a previous study13], the crossover from a core-tail struc- ) ) )

ture to a purely nonperturbatifeemiclassicalstructure was (1) Adiabatic regime Y'<3).

quite abrupt. In the present study, the “deep” nonperturba- (2 Perturbative regime (8V<7).

tive regime, where all the tail components disappear, is not (3) Nonperturba_tlve regime (7V<20).

accessible due to numerical limitations. A purely nonpertur- (4) Sudden regime (20V).

bative structure would be obtained if all the tail componentsgfore we get into details, we would like to make a connec-
were swallowed by the expanding core. tion with the theoretical discussion of regimes in Rdf].
There we have consideredsinusoidal periodic driving that
is characterized by amplitud& and frequency)=27/T.

X. ANALYSIS OF ACTUAL EVOLUTION, V REGIMES For sinusoidal driving, the root-mean-square “velocity” is
V=AQ/\2. So fixingA and changing/ in the present pa-
per, is completely analogous to fixirigand changind? in
Ref.[15]. Thus, the fouV regimes listed above correspond
0 a horizontal cut A=const-A,) in the ((2,A) regime

We start this section with a qualitative description of the
actual evolution, which is based on looking in illustrations
such as in Figs. 1 and 2. Later, we present the quantitativ

e s oot e smedlagam of Ref15] see i 1hereone s rele
q ) hat the perturbative regime is in fact the linear response

o o mbenant o JKUB0 egime 35 defted i Ref15, and trt he ucer
: P : p ! P ! egime corresponds to the regime of vanishiggh fre-

versible. In contrast to that, the stochastic component of th

o ) auency response.
spreading is not affected by the velocity reversal, and may In the adiabaticV/ regime, the spreading is due to near-
lead to a final Gaussian distribution. '

Let us describe what happens to the evolution, as a fun Qeighbor Ievgl transitions, and disregard_ing extremely short
tion of Sx=Vi. as we make simulations with srr;aller and%mes (for which we can apply standard first-order perturba-

' X tion theory[Eq. (D5)], it looks stochastic. This means that
smaller\_/. On the ba_S|s of Eq(.l_O), we expect_ tq ob;erve a Eq. (12) is a quite satisfying approximation. For further de-
modulation of the tails c,),PI(r) in a way that is implied by tails regarding the identification of the adiabatic regime, see
the presence of envelopg(w). This modulation is charac- sgec. XIL.
terized by the energy scalgt=7%V/ox. If we makeV fur- Outside the adiabatic regime, there is a time stage where
ther and further smaller, the secondary lobes of the faée  perturbation theoryEq. (10)] is valid. But after this time, we
preceding section for definitigndo not have a chance to have to use theoretical considerations that go beyond pertur-
become visible because they are suppressed by the narrowgition theory. In the following paragraph, we divide the
envelopeF,(w). For small enoughV, only the main core nonadiabatic regime into perturbati%regime, nonpertur-
component of the band profile is left visible. For very smallbative V regime, and sudden regime. The basis for this dis-
V, the spreading profile becomes very close to a Gaussiamction is the timing of thedeparturefrom parametric evo-

shape in a very early stage of the evolution. lution. The departure from parametric evolution is best
The spreading at the end of the pulse period is very smalllustrated by the lower panel of Fig. 4.
both in the sudden limitvery largeV, corresponding to mul- The perturbativeV regime is defined by the requirement

tiperiod driving with large frequengyand also in the adia- of having thedeparturefrom parametric evolution happen
batic limit (very smallV). Figure 2 illustrates representative beforethe breakdown of Eq(10). Consequently, in this re-
spreading profiles, which are observed in the end of the pulsgime, the departure time can be deduced from (EQ).. For
period. Also displayed are the first-order perturbative profileexample, let us assume a simple band profile. In such a case,
[Eq.(D5)] and a Gaussian with the same width. Note that thedeparture time is just the inverse of the bandwidth, which
first-order perturbative profile EGD5), unlike Eq.(10), does implies via Eq.(B3) that it is simply the classical correlation
not have a proper normalization. We can define a “differenceaime 7., of the chaotic motion. In the actual numerical analy-
measure” in order to quantify the deviation of tiiectua)  sis, the band profile is not simple, but has some structure.
line shape from Gaussian shape. One possible definition isRather than debating over the definition &, it is more
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practical to determine the departure time by inspection ofmetric stage, a perturbative stochastic stage, and a genuine
Fig. 4. For convenience, we have indicated the location obtochastic stage. In contrast to that, in the nonperturbative
OXg by a vertical line. Fov<7, the departure from para- regime, we do not have an intermediate perturbative stochas-
metric evolution happens before this line. This way one cariic stage because the departure from parametric behavior
determine the upper bordeV E&7) of the perturbative re- happensfter the breakdown of perturbation theory.
gime.

The nonperturbativé/ regime is defined by the require- XI. LRT FORMULA
ment of having theleparturefrom parametric evolution hap- _
penafter the breakdown of Eq0). In other words, it means ' ne general LRT formula for the variance of the spread-
that this departure cannot be captured by perturbation theor{f!9 1S
A more careful definition of the nonperturbative regime
should take into account the driving reversaltatT/2. As 5E(t)2:A2f
explained in the next paragraph, the nonperturbative regime
is further restricted by the requirement of having tepar-
ture from parametric evolution happdyeforethe driving re-
versal.

o

dw- -
S (0)C(w). 15

— oo

The proportionalitySExA reflects having a linear response.
Two spectral functions are involved: One is the the spectral

The distinction between perturbative and nonperturbativé&®ntent of the driving(Appendix A, and the other is the
V regimes is related to the possibility to capture stiechas- POWer spectrum of the fluctuatiotidppendix B. The latter
tic features of the energy spreading by perturbation theory$ the Fourier transform of a correlation functi@{r). -
Nonperturbative features of the energy distribution during A SPecial case |s_the sudden limiv ), for which
intermediate times are of no relevance if they are of paramefFi(w)=1 and accordingly
ric (nonstochasticorigin. Let us see, for example, the upper
panel of Fig. 1. We clearly see that the spreading profile at SE(t)=VC(7=0)A. (16)
the end of the pulséat t=T) is of a standard perturbative : : L
nature. All the nonperturbative features that develop durinﬁﬁnorher spe.mall ca-se- 's the response for per&g(teﬂper
the first half of the driving cycle are completely reversed inlinear or periodig driving, whereF () =t276(w) implies
the second half of the cycle. diffusive behavior:

Conceptually, the simplest way to set a criterion for get- _
ting to the end of the pulse, a perturbative structure is to use OB = V2Dgt.
fixed basis perturbation theorisee Appendix C of Ref.
[16]). If we adhere to the presefiinore physical approach

of using x-dependent basis, an equivalent methdd is to Finding the conditions for validity of LRT is of major

?heéeé%gi(mz Sclg(?’cejeTt tilgtg(g]fe:—rg;ielz t:se t?]rgetirtr?er(\jvsr?eh:]ethimportanc?' This should be regardgd as an important step in
following inequality i.s violated: rﬁwe_ana_llyss of the response of_ a driven system. The classical

' derivation of Eq.(15) is quite simple, and for completeness
we present it in Appendix C. For the sake of the following
discussion, one can assume that the classical “slowness”
) N o ] conditions for the validity of classical LRT are satisfied.

The regime, where the conditioiy,<T is violated, is The quantum-mechanical derivation of this formula is
defined as the sudden regime. In the sudden regime, all th@uch more subtld17,14—16 and leads to the distinction
nonperturbative features are of parametric nature, and thergetween adiabatic, andextendedl perturbative and non-
fore the validity of perturbation theory survives at the end ofpertyrbative regimes. The semiclassical limit is contained in
the pulse. In the sudden regime, tieparturefrom paramet-  the |atter regime. It is known that the LRT formula does not
ric evolution becomes visible onlgfter the driving reversal. nhold in the adiabatic regimg21], but it is valid in the(ex-

One can determine the sudden regime simply by looking afended perturbative regimg14,16). It is not necessarily
the lower panel of Fig. 8. The departure of the energy distriya|id in the nonperturbative reginié4,15, but if the system
bution (att=T) from Gaussian shape is correlated with get-nas a classical limit, it must be valid again in the semiclas-

17)

In such a case, the expression g is known as Kubo
formula, leading to a fluctuation-dissipation relation.

T(t)<hlt. (14)

ting into the sudden regime. ~ sical regime. See further discussion in the following sections.
The discussion above &f regimes was based on looking
for the breaktimeof perturbation theoryEq. (10)], on one XI1. ANALYSIS: COMPARISON WITH LRT

hand, and looking for theeparturefrom parametric behav-

ior on the other hand. The departure from parametric behav- Using the band profile as an input, we can calculate the
ior is an indication for the appearance of a predominant stospreading using Eq.15). In Fig. 6, the calculation is done
chastic component in the spreading profile. This departuréor the parametric evolutiofdashed line given by Eq16)],
does not imply that we get a Gaussian line shape. In th&hile in Fig. 7, the calculation is done with E@.5) for finite
perturbative regime, we get the Gaussian line stedf@the  V values. The latter figure should be compared with the up-
breaktime of perturbation theory, which happeafter the  per panel of Fig. 4. The agreement is very good unless the
departure from parametric behavior. Therefore, in the perturvelocity V is small. See later discussion of the quantum-
bative regime, there are three stages in the evolution: a paraechanicalQM)—adiabatic regime. The spreadifg at the
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35r 105

FIG. 7. LRT calculation of the spreading versus time, using Eq.
(15) with the band profile as an input. The horizontal axisVis
This figure is in one to one correspondence with the upper panel ol 2
Fig. 4. One observes that for smélllthe calculation underestimates 5
3

. . T Difference from Gaussian shape
the observed spreading. See discussion in Sec. XII.

o

S 1

end of the pulse is better illustrated in Fig. 8. 0.5
There are three possible strategies for evaluating the ban 0 : : : :

profile. The first is to use the semiclassical strategy with Eq. 10 10 v 10 10

(B3). The second is to make a careful numerical evaluation(®

of _the_matrlx elgmgnts_, ar}d to use the definition Bﬂ)', FIG. 8. Upper panel: response for one-pulse veksughe thick

This gives th? thin line in F'Q- 5: However, the most pr""Ct'c"’llline is 6E at the end of the pulse. The thisolid and dotteglines

and economical procedure is simply to deduce the band prosrrespond to the LRT calculation EQL5). For the calculation of

file from the spreading profil®(r) that corresponds to the the Jower thin lines, we have set the near-level coupting0. The

smallestox value. This is the thick line in Fig. 5, which we dashed line is the spreading at the end of half pulse period. The

regard as the most appropriate estimate. dash-dot line is the slope that corresponds to the Landau-Zener
We found out that the LRT formulgEq. (15)] is notsen-  spreading mechanism. The lower panel is the difference(Eg).

sitive to the way in which the band profile is evaluated, un-from Gaussian line shape.

less thegn—m|=1 elements of th&,,, matrix dominate the

result. Let us denote by the root-mean-square magnitude

of these matrix elements. The sensitivitya¢chappens in the

V regime, which is determined by the conditiow

sitions can be neglectegdTherefore, it is only in the adia-

batic regime, where the quantum-mechanical calculdtisn

ing Eqg.(15)] gives results that are different from the classical

5 S : - ” . _ expectatiorf22]. Is it possible to witness a regime where the

<'t(A') /(fw%)’ wh|c2 is the ad'?balt'f'tyl ?On?r']t'og' t‘l’hls_sep quantum-mechanicdfather than the classigalRT predic-

ilf '\t/r']tg (;?jnabeelt'lésfe gns]ea Tr:afhlga Ogr O;nele ofe E_rmga IOgtion is observed? Apparently, the answer is positive, but not
: ! : gime. upper p 9. ©, W&, 5 typical numerical experiment. The reason is that almost

display the result of the LRT calculation upon setting always the Landau-Zenénon-LRT) mechanism for energy

=0. We see that the LRT calculation implies QM—adiabaticSpreading takes ovéR1]

behavior forv<3. We can verify the dominance of Landau-Zener mecha-

Ly o e bt e, e o' o Th el preciton ) (O
9 g9 ' ith Dg=xV®2 In the upper panel of Fig. 8, we plot the

such a case, the LRT calculation is not sgnsmve to the e.xa(\gpreading at the end of half pulse peride(T/2=A/V) and
value of 0. As V becomes smaller, there is a larger relative

weight to the near-neighbor matrix elements. at the end of full pulse periodt&€T=2A/V). Hence, we

1/4 i i ion i
Deep in the QM-adiabatic regime, the mean-level energ)?XpeCt OExV. The agreement with this expectation is

difference is resolved mudbeforethe levels are mixed, and q_uite good if we consider the spreading after half pulse pe-
therefore, as a result of recurrences, the probability stayQOd' At the end of full pulse period, we see that the spread-

concentrated in the initial level. This is, of course, a Ieadindrrrllg IS .Iarge'r than expected. This IS apparently due to the
order description. In fact, we cannot neglect higher-orde onadiabatic nature of thé——V switching.
corrections.

In the adiabatic regime, the spreading is dominated by
transition between neighboring levélghereas outside of the The numerical study that we have presented should be
adiabatic regime, the contribution of neighboring level tran-regarded as an application of a general procedure for the

XlIl. DISCUSSION AND CONCLUSIONS
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analysis of energy spreading. In the summary below, we referentV regime$ are illustrated in a numerical simulation.
order the stages in this analysis in the way which is impliedThe only other numerical studiésainly Refs[15,12)) were

by the results of the earlier sections. too restricted in scope, and did not contain analysis of the
The first step in the analysis is to find the band profile.stages in the evolution of the enerdistribution
This can be done using the semiclassical rec¢iyependix The only nonperturbative effect on the response that we

B) without any need to make heavy numerical simulationshave discussed so far is the Landau-Zener correction to the
Then it is possible to determin8E(t) by using the LRT spreading in the adiabatic regime. Are there any other non-
formula[Eg. (15)]. perturbative effects that affect the response? The immediate

The second step in the analysis is to determine the adidendency is to regard LRT as the outcome of standard first-
batic V regime. This is done by checking whether the LRTorder perturbation theoryAppendix D). Then the question
calculation of SE(t) is sensitive tas. In order to get in the that arises is what happens if E@5) does not apply?
adiabatic regime LRT-based quantum corrections to the clas- Let us recall the answer in case of the parametric evolu-
sical result, we have to take the level spacing statistics intdion of P(n|m). As 6x becomes larger, we should be worried
account[22,23. We have pointed out the difficulty in ob- regarding the implications of having the effects that are listed
serving such corrections. Rather we can improve over that the end of Sec. IX. Having expanding core that pushes out
LRT prediction by taking into account either higher-order orthe tails, and having growing higher-order tail components,
Landau-Zener corrections to perturbation theory. may suggest that the first-order calculation of the variance

The third step in the analysis is to calculate the parametritEq. (D7)] should be “corrected,” and should include higher-
perturbative profilePP"(r). This is associated with getting a order terms. Does it mean that E4.6) underestimates the
rough estimatefor the core widthI'. Also the parametric spreading? Or maybe we should assume that(Eg). pro-
scalesdx, and 8x,, can be determined on the basis of this vides the correct “trend” of higher-order corrections? The
analysis. The former is determined from inspectihgwhile tails in the vicinity of the core are growing slower, which can
the latter is determined by compari@ of the LRT calcu- be regarded as a suppression of core-to-tail transitions due to
lation to thePP" based prediction. the mixing. Consequently, we would conclude that Eld)

The fourth step in the analysis is to distinguish betweeriS an overestimation of spreading. Moreover, if we take Eq.
the perturbative and the nonperturbative regime. For this purL0) too seriously, beyond its regime of validity, we would
pose, we have to look for the timing of departure from para-conclude that the spreading has saturation for labge
metric behavior, as in the lower panel of Fig. 4. B, one For the parametric evolution, these possible speculations
can use the LRT based calculation of E#5). turn out to bewrong The above effects are exactly balanced

The fifth step in the analysis is to identify the suddenand the LRT formulgEq. (16)] remains exact beyond any
regime. For this purpose, we have to eliminate the suddefrder of perturbation theory, which means that it is exact
time from Eq.(14). The problem is to estimatB(t) in the ~ €ven in the nonperturbative regime where perturbation
nonperturbative regime. If we have only the band profile agheory is not applicable. This claim has a simple derivation
an input, then we can use the rough estinfage)~ sE(t).  [20]. Note also that if the system has a classical limit, then
This is based on the assumption that in the nonperturbativée validity of Eq.(16) can be established deep in the non-

regime, the energy distribution is characterized by a singld€rturbative regime, where the semiclassical approximation
energy scale. becomes reliable.

The sixth Step in the ana|ysis is to make a simulation of The question is whether this delicate balance is violated in
the parametric evolution. This is a relatively heavy task, buase of finiteV. For example, it may be that due to incom-
it is still much easier than making finit¢ simulation. (it ~ Plete core-tail recurrences, we shall have enhanced spreading
requires merely diagonalizations, while a temporal simula{compared with LRT. Unlike the parametric case, we do not
tion requires an iterative procedur@he main nontrivial ef- have a theoretical proof that excludes such a possibility. In
fects that we have found in the analysis of the parametriéaCt, contrary is the case. We have demonstrated that for an

evolution were the following: artificial (random matrix theory model, the LRT formula
cannot be trustedn the nonperturbative regime. Whether
(i) Higher-order tails grow up. such an effect is possible also f_or_a “quantized” system that
(i) A non-perturbative core region develops. possesses a good classical limit has been left an open
(iii) The core-to-tail transitions are suppressed. question. _ o _
(iv) The tails are “pushed out.” The possibility of having deviation from LRT in the non-

(v) Tail components are swallowed by the expanding coreberturbative regime was one important_ motivation for the
present research. Clearly, we did not witness such an effect

in our simulationgFig. 8). This reflects that there is a clash

The last two items are in the spirit of the core-tail theory, but ) - 2 =
P Y between the semiclassical limit and the RMT limit.

go beyond the perturbative approximatidy. (10)]. Knowl-

edge of the parametric evolution allows accurate determina-

tion of I', leading to a refined determination of there-
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SeTCIP. band profile ofFF,, is conveniently characterized by the
spectral function
APPENDIX A: THE SPECTRAL FUNCTION |~:T(w)

Given a functionf(t') that describes the shape of the
driving pulse during the time interval<0t’ <t, we define a

spectral functionF (@) by Eq. (3). This spectral function \ith an implicit average over the reference stateThis is
describes the spectral content of the driving pulse. Below Wene power spectrum of the fluctuating quantifyt), whose

- E.—E
Clw)= >, |an|22ms(w— ! ’“), (B1)
n(#m) h

list some useful driving schemes. We use the nota@di,
which is defined byo (false)=0 and® (true)=1.
For the step function, we have

f(t')=0(0<t’), (A1)
Fuw)=1. (A2)

For the rectangular pulse, we have
f(t")=0(0<t'<t), (A3)
Fuw)=|1-¢&*!|2. (A4)

If it is followed by a negative pulse, we get

T
f(t’):®(0<t’<t)—®(§<t’<t), (A5)
-~ . . T
Fiw)=|1—2d°(M+de2  for t>5.  (A6)
For linear driving, we have
f(t')=t’, (A7)
F(w)=tsind3ot)]%, (A8)

where sinc(--)=sin(---)/(---). Note that for very largd,
we have

Fuw)~t278(w). (A9)

Finally, for the triangular pulse

+2

1 T 2 )
(‘ ‘10)

f(t)=2- 0| 0<t'<1
(t)—? <t<§

we get

ﬁt(ﬂ)):

212 . T
=| t[sind}wt)]?) for 0<t<=,
T 2
2 2
T}

APPENDIX B: THE SPECTRAL FUNCTION C(w)

1_2éw(T/2)+éwt‘2

Fi(w)= | for §<t<T.

w

Let us denote by, the matrix representation of some
guantized observable(Q,P), in the basis which is deter-

classical definition isF(t)=F(Q(t),P(t)), with a corre-
sponding quantum-mechanical definition within the Heisen-
berg picture. The power spectrum of a fluctuating quantity
F(t) is defined as the Fourier transform of the corresponding
correlation functionC(7).

Chaotic systems are characterized by fast decay of dy-
namical correlations. We assume a separation of time scales
between thdshor) classical correlation time, and ttil®ng)
guantum-mechanical Heisenberg time. Thus, for times dur-
ing which we can ignore the recurrences, we expect the fol-
lowing quantum-classical correspondence:

C(7)~CY7). (B2)

This correspondence implies that the envelopeCéb) is

given byC%w), and the following semiclassical expression
for the matrix elements followg24]:

2 A ~g[En—Em
(IFaml*)~ 5 2C% —— - (B3)

Taking into account the level spacing statistics, we deduce
the following relation[22]:

C(w)~R(w)C%w), (B4)

whereR(w) (2 ,8(w— wam))m i the two-point correlation
function of the energy spectruitiFourier transform of the

spectral form factor This function behaves aR(w)~ w”

for small w, and asR(w)~1 for largew. For the Gaussian
unitary ensembléGUE) =2, and there is a simple expres-
sion:

R(w)|gue=1—[sind 7 w/A)]?. (B5)
For the system that we consider in this paper it is appropriate

to assumeB=1, corresponding to the Gaussian orthogonal
ensemblg GOE).

APPENDIX C: CLASSICAL DERIVATION OF THE LRT
FORMULA

ConsiderH(Q,P;x(t)), and define the following time de-
pendent quantities:

JH
F) == —(Q(1),P(1):x(1)), (CD

E)=H(Q(1),P(t);x(1)), (C2)
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E' () =H(Q(t),P(t);x(0)). C3 IH
(t)=H(Q(t),P(t);x(0)) (C3 an_<n o m>_ 03)
Note that&(t) is the energy in the conventional sense, while
&' (t) is the energy using a “fixed basis.” We have the fol- ) )
lowing relations: The off-diagonal matrix elements oY are
d&(t)  JH : h d h
Tar oo WAL, (€4 wnm=i—<n am>=iﬁam, (D4)
dé’ (t) . ) i _
at =—[H, Ho]~ x(t) F(t). (Ch) and we use the “gauge” conventiow,,=0 for n=m.

(Only one parameter is being changed and therefore Berry's
The latter approximated equality strictly holds if the pertur-Phase is not an issyelhe derivation of Eq(D2) is standard,

: s : : found in Sec. XI of RdfL6].
bation H—H, is linear with respect to the perturbation pa- @nd can be \ .
rameter 6x=x—Xy. From the equations above, it follows Using first-order perturbation theory with E(P2), we
et

that
. ' ’ ' ~ (En—E w 2
S(t)—5(0)=—f0><(t )F(t)dt, (C6) Pt(n|m)=5nm+A2Ft( ”h ”‘) h””‘ (D5)
6’(t)—5’(0)~ftc%((t’)jf(t’)dt’. (c7)  Note that for a cyclg f(t)=f(0)=0], the same result is
0 obtained via first order perturbation theory with EDQ1). As

. ) o a global approximatiofiEq. (D5)] is valid only in the stan-
Obviously, the two latter expressions coincide for a CyClegarg perturbative regime. In the extended perturbative re-
[x(t)=x(0)]. Squaring Eq(C6), and performing a microca-  gime, it is valid only for the first-order tail regiofsee Sec.
nonical average over theimplicit) initial conditions v/1). The expression for the first-order tail region can be
[Q(0),P(0)], one obtains written in a concise way as

5E(t)2=A2ftftf(t')i‘(t")c:(t’—t")dt'dt". (C8) B A
0.0 Pt(nlm):Ath(wnm)ﬁC(a)nm)

1 2
m} . (D6)

This can be written as Eq15).
The corresponding global approximation is given by Eq.
APPENDIX D: FIRST-ORDER PERTURBATION THEORY (10).
AND LRT Assuming that the variance is dominated by the first-order

For convenience, we assume that the perturbation is Iinea{f’"l component, we get the LRT result

in Ox=X—Xq. In complete analogy with the classical analy-
sis, we can work either using fixed basis, or else we can use
the properx-dependent basighe so-called adiabatic repre-
sentation. The respective matrix representations of the

SE(1)2=2] Py(n|m)(E,—Ep)?

Hamiltonian are » do~ o
=A2f s Clw). (D7)
H—E+ 8X(t)F, (D1) o
H—E+X(H)W, (D2)  An implicit average ovem is assumed. Note that the latter

formula does not containk. This restricted quantum-
whereE is a diagonal matrix. Note that in the first equation, classical correspondence holds only for the variance. Higher
E andF are calculated fok=Xx,, while in the second equa- moments of the energy distribution are typically much
tion there is an implicitx(t) dependence. The matrix ele- smaller compared with the classical expectation, and scale
ments ofF are like A to the power of the moment order2.
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