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Abstract
We consider the response of a chaotic cavity in d dimensions to periodic driving.
We are motivated by older studies of one-body dissipation in nuclei, and also
by anticipated mesoscopic applications. For calculating the rate of energy
absorption due to time-dependent deformation of the confining potential, we
introduce an improved version of the wall formula. Our formulation takes
into account that a special class of deformations causes no heating in the zero-
frequency limit. We also derive a mesoscopic version of the Drude formula,
and explain that it can be regarded as a special example of our calculations.
Specifically we consider a quantum dot driven by an electro-motive force which
is induced by a time-dependent homogeneous magnetic field.

PACS numbers: 0545, 7323, 8530V

1. Introduction

The dynamics of a particle inside a cavity (billiard) in d = 2 or 3 dimensions is major theme
in studies of classical and quantum chaos. Whereas the physics of time-independent chaotic
systems is extensively explored, less is known about the physics of time-dependent chaotic
systems. The main exceptions are the studies of the kicked rotator and related systems [1].
However, the rotator (with no kicks) is a one-dimensional integrable system, whereas we are
interested in chaotic (two- or three-dimensional) cavities.

Driven cavities were of special interest in the studies of one-body dissipation in
nuclei [2–5]. A renewed interest in this problem is anticipated in the field of mesoscopic
physics. Quantum dots can be regarded as small two-dimensional cavities whose shape is
controlled by electrical gates. Another variation is driving a quantum dot by time-dependent
magnetic field. In section 6 we will explain that the calculation of the system response in the
latter case can be regarded as a special example of the study in this paper. A similar observation
applies to the case of a quantum dot driven by a homogeneous time-dependent electric field.
However, in the latter case it is essential to take screening into account [6], and therefore our
calculations no longer apply.

We consider a system of non-interacting particles inside a cavity whose walls can be
deformed. We define a single parameter x that controls this deformation. We would like to
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consider the case where x(t) = A sin(�t) is being changed periodically in time, whereA is the
amplitude and� is the driving frequency. In particular we are interested in the small-frequency
limit, meaning � � 1/τcol. Here τcol is the typical time between collisions with the moving
walls of the cavity.

We will be interested in general deformations which need not preserve the billiard shape
nor its volume. We can specify any deformation by a function D(s), where s specifies the
location of a wall element on the boundary (surface) of the cavity, and D(s)δx is the normal
displacement of this wall element. There is a restricted class of deformations that are shape
preserving: they involve translations, rotations and dilations of the cavity. We will see that this
class has special properties. Note that translations and rotations are also volume preserving,
in which case the associated time-dependent deformations can be described as ‘shaking’ the
cavity.

What is the rate at which the ‘gas’ inside the cavity is heated up? The answer depends on
the shape of the cavity and the deformation D(s) involved, as well as on the amplitude A and
the driving frequency �. Also the number of particles N and their energy distribution ρ(E)
should be specified.

For non-interacting particles the solution of this problem is reduced to the analysis of
one-particle physics. This observation is self-evident for non-interacting classical particles,
but it is also true for non-interacting fermions (see appendix A). We would like to work within
the framework of linear response theory (LRT). In such a case one can write

d

dt
〈H〉 = µ(�)× 1

2
(A�)2 (1)

where the dissipation coefficient µ(�) is amplitude independent. The small-� version of this
formula can be written as

d

dt
〈H〉 = µV 2 (2)

where µ = µ(� → 0) is known as the friction coefficient, and V = A�/
√

2 is the average
root-mean-square (RMS) deformation velocity. For convenience let us define x as having units
of length, such that V characterizes the velocity of the moving walls.

A necessary classical condition for the validity of LRT is V � vE where vE ≡ (2E/m)1/2

is the velocity of the particle [7, 8]. We also assume that the motion of the particle inside the
cavity is globally chaotic, meaning no mixed phase space [9]. The criteria for having such a
cavity are discussed in [10, 11]. The justification of LRT in the quantum mechanical case is
more subtle [8, 12, 13], and does not constitute a theme in this paper, although we do connect
with the quantum case in section 3. The theory to be presented assumes that LRT is a valid
formulation of the problem.

As explained in appendix A, LRT implies that the dissipation coefficient µ(�) is related
via a fluctuation–dissipation (FD) relation to a spectral function C̃E(�). Namely,

µ(�) = 1

2

∫ ∞

0
ρ(E) dE

1

g(E)

∂

∂E
[g(E)C̃E(�)]. (3)

Here ρ(E) is the energy distribution of the particles, and g(E) is the density of states. The
function C̃E(ω) is the noise power spectrum of the generalized ‘force’ associated with the
parameter x. This function is the main object of the present study, and its precise definition is
in section 2. We shall chiefly explore how C̃E(ω) depends on the type of deformation involved,
but also discuss effects due to the cavity shape.

In particular we are interested in the small-frequency limit where µ is related to the
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fluctuation intensity

νE = C̃E(0) =
∫ ∞

−∞
CE(τ ) dτ. (4)

The simplest estimate for νE, which we are going to call the ‘white-noise approximation’
(WNA), leads (in the case of a 3D cavity) to the well known ‘wall formula’ [2]

µE = N

V
mvE

∮
D(s)2 ds (5)

where the subscript E implies that we are considering a microcanonical ensemble ρ(E), the
number of particles is N and the volume of the cavity is V. The above version of the wall
formula has been derived for the purpose of calculating the so-called one-body dissipation rate
in nuclei. The original derivation of this formula is based on a simplified kinetic picture [2]. For
alternate derivations using the LRT approach see [3]. For the generalization to any dimension d
using the LRT–FD strategy see [8] and further references therein.

Our main purpose is to introduce an improved version of the wall formula, and to analyse
the frequency dependence of µ(�). This will involve a demonstration [14] that for special
types of deformation (namely dilations, translations and rotations) the small-� dissipation rate
is remarkably different from the naive expectation. As an application, the mesoscopic version
of the Drude formula for the conductance of a quantum dot in a uniform time-dependent
magnetic field reduces to the the calculation of C̃E(ω) for one of these special deformations
(namely rotation), and leads to (see section 6)

µ(�) ∼ N

A

(
e2

m
τcol

)
1

1 + (τcol�)2
(6)

where A is the area of the dot.
For our improved wall formula, we show that it is essential to project out the special

components of a general deformation, and only then to estimate νE using the WNA. If
the assumption of strong chaos cannot be justified, further corrections are required due to
correlations between successive bounces.

The effect of interaction between the particles is not discussed in this paper. If the mean
free path for inter-particle collisions is large compared with the size of the cavity, then we
expect that our analysis still applies. If the mean free path is much smaller, then we get into
the hydrodynamic regime. In the latter case we have a drag effect, and the dissipation rate is
determined by the viscosity of the gas via Stokes’ law.

2. The model system

Consider a particle whose canonical coordinates are (r,p) moving inside a cavity. The
Hamiltonian is

H(r,p; x) = p2/2m + U(r − xD(r)) (7)

where U(r) is the confining potential. We have introduced a (unitless) deformation ‘field’
D(r), and x is the controlling parameter. In this paper we assume that U(r) = 0 inside
the cavity. The volume of the cavity is V. Outside the cavity the potential U(r) becomes
very large. To be specific, one may assume that the walls exert a normal force f , and we
take the hard-wall limit f → ∞. With the above assumptions about U(r) it is clear that the
deformation is completely specified by the boundary function D(s) ≡ n̂(s) · D(s), where
n̂(s) is an outwards unit normal vector at the boundary point s.
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Figure 1. (a) The generalized two-dimensional Sinai billiard which has been used for our numerical
studies. (b) Three example deformations are illustrated. Note that they are shown exaggerated in
strength.

Table 1. Key to deformation types used for numerical two-dimensional billiard experiments in this
paper. L is the billiard perimeter. The deformation is described by a function D(s), where s is
measured anticlockwise along the perimeter with s = 0 at the upper left corner. In the ‘fracture’
and ‘shift-x’ cases we use the horizontal Cartesian coordinate x(s).

Key Description Surface deformation function D(s)

CO Constant 1
Wn n periods cos (2πns/L)
DF Diffuse random[−1, 1] (equivalent to W∞)
FR Fracture sgn(x(s)) if on top or bottom, else 0
SX Shift-x sgn(x(s)) if on left or right, else 0
P1 Piston 1 10 exp (− 1

2α
2), α = (s/L− 0.3)/0.01

P2 Piston 2 10 exp (− 1
2α

2), α = (s/L− 0.6)/0.005
WG Wiggle 5α exp (− 1

2α
2), α = (s/L− 0.25)/0.02

Table 2. Key to the four ‘special’ deformations in two dimensions. The unit vectors ex and ey
are in the plane (see figure 1), and ez is in the perpendicular direction. In the case of dilation and
rotation D could be made unitless by dividing by a constant length.

Key Description Deformation field

DI Dilation about origin D(r) = r

TX x-translation D(r) = ex
TY y-translation D(r) = ey
RO Rotation about origin D(r) = ez × r

Most of our numerical tests will refer to the two-dimensional cavity illustrated in
figure 1(a). It is a generalized two-dimensional Sinai billiard formed from concave arcs
of circles with two different radii. Typical parameters used are a = 2, b = 1, θ1 = 0.2 and
θ2 = 0.5, for which the average collision rate with the wall is (1/τbl) ≈ 0.63. This billiard
has been chosen because it has ‘hard chaos’: there is no mixed phase space, and there are no
marginally stable orbits (see section 7). In figure 1(b) we show three example deformations.
For illustration purposes we have selected three ‘localized’ deformations. See tables 1 and 2
for a full list of deformations that have been tested in our numerical work.

Associated with the parameter x is the fluctuating quantity

F(t) = − ∂H(r,p; x)
∂x

∣∣∣∣
x=0

(8)

where the time dependence arises from that of the trajectory (r(t),p(t)). This quantity can be
thought of as the generalized time-dependent ‘force’ associated with the parameter x. For the
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Hamiltonian (7) we can write

F(t) = D(r) · ∇U(r) = −D(r) · ṗ. (9)

Recognizing ṗ as the force on the gas particle, we see that F(t) is a train of spikes (see
figure 2(a)). Namely, the fluctuating force F(t) consists of impulses whose maximum duration
is τ0 = 2mvE/f . In the hard-wall limit τ0 → 0, and we can write

F(t) =
∑
i

2mvE cos(θi)Diδ(t − ti) (10)

where i labels collisions: ti is the time of a collision, Di stands forD(si ) at the location si of a
collision and vE cos(θi) is the normal component of the particle’s collision velocity. The above
sequence of impulses is characterized by an average rate of collisions 1/τcol. The quantitative
definition of τcol is postponed to section 4. Note however that τcol may be much larger that the
ballistic time τbl. The ballistic time is the average time between collisions with the boundary.
We have τcol � τbl whenever a deformation involves only a small piece of the boundary.
Finally we note that if the deformation is volume preserving then 〈F(t)〉 = 0. Otherwise it
is convenient to subtract the (constant) average value F(x) from the above definition of F(t).
This convention is reflected in our illustration (figure 2(a)).

We define the auto-correlation function of F(t) as follows:

CE(τ ) ≡ 〈F(t)F(t + τ)〉E. (11)

The subscript E, whenever used, suggests that the average over initial conditions is of
microcanonical type, with energy E. Note that CE(τ ) is defined using the time-independent
(‘frozen’) Hamiltonian, and therefore is independent of t . The auto-correlation functionCE(τ )

can be handled as a time average rather than an ensemble average (by ergodicity). The resulting
construction is illustrated in figure 2(b), where we illustrate the projection of F(t1)F(t2) onto
the τ ≡ t2 − t1 axis. The contribution for the self-correlation is shaded. The forms of
the resultant CE(τ ) and its Fourier transform C̃E(ω) ≡ ∫

CE(τ ) exp(iωτ) dτ are illustrated
schematically in figures 2(c) and (d). Note that the ω → 0 limit of C̃(ω) is equal to the area
under C(τ).

The auto-correlation function CE(τ ) consists of a τ = 0 (‘self’) peak due to the
self-correlation of the spikes, and of an additional smooth (‘non-self’) component due to
correlations between successive bounces. This implies3 that pronounced correlations are
usually characterized by the time scale τbl, rather than τcol. Consequently the associated
frequency scale for non-universal structures is ω ∼ 1/τbl. Another relevant timescale is the
ergodic time terg, which is the inverse of the average Lyapunov (instability) exponent. Beyond
terg the correlations become vanishingly small. Non-negligible tails may arise only if the
motion has marginally stable orbits.

As explained in the introduction, we shall be most interested in the noise intensity νE

defined by (4). Observing that F(t) is linear in D(s), it follows that the noise intensity is a
quadratic functional

νE =
∮ ∮

ds1 ds2 D(s1)γE(s1, s2)D(s2) (12)

where the kernel γE depends on both the cavity shape and the particle energy E [3].
Furthermore, billiards are scaling systems in the sense that a change inE leaves the trajectories
unchanged. From this and (10) we have the scaling relation γE(s1, s2) = m2v3

E · γ̂ (s1, s2),

3 Consider the case of a deformation which involves only a small piece of the boundary. Typically, the time between
collisions with the deforming piece is τcol. However, correlations are dominated by the rare events when the time
between collisions is ∼τbl.
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Figure 2. The fluctuating force F(t) looks like a train of impulses (a). Due to ergodicity the
autocorrelation function C(τ) can be regarded as a time average (b). The resultant autocorrelation
function (c) and the associated power spectrum (d) may be characterized by non-universal features.
See the text for further explanations.

where the scaled kernel depends entirely on the geometrical shape of the cavity. However,
the reason for being interested in approximations for νE is that the exact result for the kernel
γ̂ is very complicated to evaluate, and involves a sum over all classical paths from s1 to s2

(see [3]).

3. Quantum–classical correspondence

This paper applies classical physics in order to analyse the response of a wide class of systems,
including mesoscopic systems where quantum mechanics may play a role. How much of
a compromise is a classical analysis of the dissipation? This question has been addressed
in [8, 12]. At the level of one-particle physics the answer is as follows: within the framework
of LRT the only difference between the classical formulation and the quantal one is involved in
replacing the classical definition ofCE(τ )by the corresponding quantum mechanical definition.
In the level of many (non-interacting) particles the only further modification is associated with
the application of the FD relation, as discussed in appendix A (see equation (A.6)). We would
like to re-emphasize that we assume in this paper that we are in an (A,�) regime where
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Figure 3. Agreement between quantum and classical C̃E(ω) in the two-dimensional quarter-
stadium billiard for three example deformations (see text). In each case classical is shown as a
thick line, and quantum a thin line. The y-axis has been displaced to clearly show the ω → 0
behaviour. The singular peak at ω = π is due to the ‘bouncing ball’ orbit.

LRT is a valid formulation. The quantum adiabatic regime (extremely small �), and the
non-perturbative regime (see discussion in [13]) are excluded from our considerations.

Thus the only remaining question is whether a classical calculation of C̃E(ω) is a
good approximation quantum mechanically. The answer is that the quantum–classical
correspondence here is remarkable. It has been tested for a few example systems [14–16]. In
figure 3 we demonstrate correspondence for the stadium billiard for three types of deformation:
DI (dilation), W2 (periodic oscillation around the perimeter) and P (wide ‘piston’ existing only
on the top edge). The RMS estimation error is 3% for the classical calculation and 10% for
the quantum calculation. The quantum estimate of C̃E(ω) amounts to computing boundary
overlap integrals of the eigenfunctions (see [14]). We have used all 451 states lying in the range
of wavenumbers 398 < k < 402, where the mean level spacing is , ≈ 8.8 × 10−3 in ω units.
Note that there are ∼102 de Broglie wavelengths across the system. The stadium was chosen
because it enables efficient quantization using the method of Vergini and Saraceno [17, 18].
An especially good basis set is known for this shape [19].

4. The white-noise approximation

The most naive estimate of the fluctuation intensity is based on the WNA. Namely, one assumes
that the correlation between bounces can be neglected. This corresponds [3] to the local part of
the kernel (12). In such case only the self-correlation of the spikes is taken into consideration
and one obtains [8]

νE ≈ (2mvE)
2

〈 ∑
i

cos2(θi)D
2
i δ(t − ti)

〉
E

(13)
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Figure 4. The white-noise approximation estimate (WNA is the horizontal dotted line) compared
to actual C̃E(ω) power spectra for some example deformations of the two-dimensional generalized
Sinai billiard, with m = v = 1. (The RMS estimation error of 3% can be seen as multiplicative
noise with short correlation length inω.) Deformation functions are defined in table 1, and discussed
further in the text.

and from here (see [8]) using ergodicity,

νE ≈ 2m2v3
E〈| cos θ |3〉 1

V

∮
[D(s)]2 ds (14)

where the geometric factor for d = 2, 3, . . . is 〈| cos(θ)|3〉 = 4/(3π), 1/4, . . . . If we can use
the convention |D(s)| ∼ 1 over the deformed region (and zero otherwise), then we can write
the WNA as νE = (2mvE)

2 × (1/τcol) where (1/τcol) defines the effective collision rate. For
a more careful discussion see appendix F of [8]. Note again that τcol can be much larger than
the ballistic time τbl in the case where only a small piece of the boundary is being deformed.

The use of the WNA can be justified whenever successive collisions are effectively
uncorrelated. The applicability of such an assumption depends on the shape of the cavity
(which will determine the decay of correlations via the typical Lyapunov exponent) as well as
on the type of deformation involved. If we have the cavity of figure 1(a), and the deformation
involves only a small piece of the boundary (e.g. see figure 1(b)), then successive collisions
with the deformed part of the boundary are effectively uncorrelated. This is so because there
are many collisions with static pieces of the boundary before the next effective collision (with
non-zero Di) takes place. If the deformation involves a large piece (or all) of the boundary,
we can still argue that successive collisions are effectively uncorrelated provided D(s) is
‘oscillatory’ enough (i.e. changes sign many times along the boundary). These expectations
are qualitatively confirmed by the numerical results of figure 4. Here we show a sequence of
deformation types for which the WNA performs increasingly well: FR (for which sensitivity
to the vertical least unstable periodic orbit causes large correlation effects and large deviations
from WNA), W8 (oscillatory deformation changes sign many times around the perimeter,
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giving better agreement with WNA), P1 (localized ‘piston’ type deformation, for which WNA
is good) and DF (random function of zero correlation-length along the perimeter, showing
complete WNA agreement).

The numerical evaluation of C̃E(ω) throughout this paper is performed by squaring the
Fourier transform of a single long sample of F(t) (∼106 consecutive collisions). Ergodicity
ensures that the properties of a single trajectory reproduce the desired ensemble average 〈· · ·〉E.
In practice the power spectrum of a single sample is a stochastic quantity with no correlations
in ω-space. To estimate the underlying noise spectrum C̃E(ω) a smoothing convolution in
ω-space is performed. In the figures a smoothing width of 10−2 is typical, giving 3% RMS
estimation error. The δ-function nature of F(t) is handled by convolving in the time-domain
with a suitably narrow Gaussian. This enables the signal to be sampled uniformly in time, and
hence we can benefit from use of the fast Fourier transform procedure.

It might be asked whether the exponential growth in sensitivity to numerical round-off
error invalidates the computation of the properties of a long classical trajectory. The answer is
no: it has been shown that in simple two-dimensional chaotic maps such as ours, a numerically
generated ‘pseudo-trajectory’ shadows (is very close to) a true trajectory with slightly different
initial conditions [20]. However, as we shall see, the differences in ω → 0 behaviour (in the
hard-chaos case) do not in fact rely on correlation properties over times any longer than terg.

5. ‘Special’ deformations

The WNA dramatically fails (see figure 5) for dilation, translations and rotations (see table 2
for their definitions in two dimensions). It is not surprising that the WNA is ‘bad’ for these
deformations because their D(s) are slowly changing delocalized functions of s. However,
what is remarkable is that C̃E(ω) for this type of deformation vanishes in the limit ω → 0.
Such deformations we would like to call ‘special’ [14]. More generally, we would like to say
that a deformation is ‘special’ if the associated fluctuation intensity is νE = 0.

A result that follows from the considerations of appendix B is that a linear combination of
special deformation is also special. Therefore the special deformations constitute a linear space
of functions. We believe that this linear space is spanned by the following basis functions:
one dilation, d translations and d(d − 1)/2 rotations. However we are not able to give a
rigorous mathematical argument that excludes the possibility of having a larger linear space.
In other words, we believe that any special deformation can be written as a linear combination
of dilation, translations and rotations.

We will explain the observed νE = 0, starting with the case of translations and dilations.
For translations we have D = e, where e is a constant vector that defines a direction in space.
We can write F(t) = (d/dt)2G(t) where G(t) = −me ·r. A similar relation holds for dilation
D = r with G(t) = − 1

2mr2. It follows that C̃(ω) = ω4C̃G(ω), where C̃G(ω) is the power
spectrum of G(t). If C̃G(ω) is a bounded function (as it must be when correlations are short
range), it immediately follows that C̃(0) = 0. Moreover since G(t) is a simple function of
the particle position, we can assume it is a fluctuating quantity that looks like white noise on
timescales >terg. It follows that C̃(ω) is generically characterized by ω4 behaviour for either
translations or dilations.

We now turn to consider the case of rotations. This case is of particular interest because of
its relation to the Drude conductance calculation in a uniform driving magnetic field (see the
following section). For rotations we have D = e × r, and we can write F(t) = (d/dt)G(t),
where G(t) = −e · (r × p), is a projection of the particle’s angular momentum vector4.

4 The cross-product form used here for D and G(t) is strictly valid in two and three dimensions only. For d > 3 the
higher-dimensional generalization of a general rotation should be used.
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Figure 5. The WNA estimate compared to actual C̃(ω) noise power spectra for example ‘special’
deformation types: DI (dilation), TX (translation) and RO (rotation). See table 2 for definitions.
The WNA fails to predict the vanishing in the small-ω limit.

Consequently C̃(ω) = ω2C̃G(ω). Assuming the angular momentum is a fluctuating quantity
that looks like white noise on timescales>terg, it follows that C̃(ω) is generically characterized
by ω2 behaviour.

Thus we have predictions for the power laws in the regime ω < 1/terg for special
deformations (assuming hard chaos). These have been verified numerically in our previous
paper [14], with a special emphasis on the case of dilation. The case of dilation plays a vital
role in a highly successful numerical billiard diagonalization method that has been introduced
recently [17].

For special deformations we have C̃(ω) = 0 in the limit ω = 0, and consequently the
dissipation coefficient vanishes (µ = 0). It should be noted that for the case of a general
combination of translations and rotations this result follows from a simpler argument. Taking
� → 0 while keepingA� constant corresponds to constant deformation velocity (ẋ = const).
Transforming the time-dependent Hamiltonian into the reference frame of the cavity (which is
uniformly translating or rotating with constant velocity) gives a time-independent Hamiltonian.
In the new reference frame the energy is a constant of the motion, which implies that the system
cannot absorb energy (no dissipation effect), and hence we must indeed have µ = 0.

6. Drude mesoscopic conductance for two-dimensional dot

Consider a two-dimensional quantum dot in a homogeneous (perpendicular) magnetic field
(see figure 6(b)). The one-particle Hamiltonian is

H(r,p;/(t)) = 1

2m
[p − eA(r;/(t))]2 + U(r). (15)
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Figure 6. Two possible mesoscopic geometries which exhibit conductance when driven by a
magnetic field: (a) conventional ring of perimeter L enclosing the time-dependent flux, (b) ballistic
two-dimensional chaotic dot (cavity) of area A in a uniform time-dependent magnetic field.

The dot is defined by the confining potential U(r), and we choose the magnetic field as
the controlling (driving) parameter. Periodic driving means /(t) = A sin(�t). The vector
potential is given by

A(r;/) = 1

2

(
/

A
ẑ

)
× r (16)

where A is the area of the dot, //A is the magnetic field and ẑ is its (perpendicular) direction.
Referring to equation (2) one should realize that by Faraday’s law V = /̇ is the induced

electromotive force (measured in volts). Hence µ is just the conductance. The fluctuating
quantity that is associated with / has the meaning of electric current:

I(t) = −∂H
∂/

= e

2A
(ẑ × r) · v. (17)

In the conventional ring geometry (figure 6(a)) the current is just I(t) = (e/L)v, where L is
the perimeter, and v is the tangential velocity. In the general cavity case (figure 6(b)) I(t) can
be thought of as the angular momentum of the charge.

The Drude mesoscopic conductance is given by the frequency-dependent version of the
FD relation equation (A.6). With the one-particle density of states corresponding to a two-
dimensional gas equation (A.6) becomes

µ(�) = N

mv2
F

C̃I(�) (18)

where the Fermi velocity is related to the Fermi energy EF = 1
2mv

2
F. The power spectrum of

the electric current C̃I(ω) is the Fourier transform of the current–current correlation function.
In standard derivations of the Drude formula it is assumed that this correlation function is
exponential:

CI(τ ) ∼ e2

A
v2

F exp

(
− |τ |
τcol

)
(19)

leading to the Lorentzian equation (6). However, for a given dot shape CI(τ ) is not really an
exponential, but rather reflects the system-specific geometry. Below we discuss two limits in
which we can obtain approximations forCI(τ ) and hence (via equation (18)) for the frequency-
dependent conductance µ(�).
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The current I(t) is a piecewise constant function of time. It is constant between collisions
with the walls because of conservation of angular momentum. The derivative of this quantity,
F(t) = İ, is a train of spikes. It formally coincides (using (9)) with the F(t) of the deformation
D(r) = (e/(2mA))ẑ × r, corresponding to rotation around the z axis. It follows that the
current–current correlation CI(τ ) is trivially related to the F(t) correlation function C(τ) as
follows:

C̃I(ω) = 1

ω2
C̃(ω). (20)

Thus we see that the calculation of ‘conductance’ is formally equivalent to a special case of
deformation, namely a rotation.

There are two limits in which we can obtain an approximation for C̃I(ω). For small
frequencies ω � (1/τcol) we may use the following simple estimate:

C̃I(ω) = 〈I2〉 × 2τcol = 1

4
e2 〈r2〉

A2
v2

F × τcol. (21)

The first equality can be taken as an operative definition of the correlation time τcol in the context
of this calculation. Obviously, up to a system-specific geometrical factor this result (∼ω0)
agrees with the standard Drude result. For ring geometry one should make the replacements
〈r2〉 �→ (L/(2π))2 and A �→ π(L/(2π))2 where L is the length of the wire (perimeter of the
ring). Thus one obtains C̃I(ω) = ((e/L)vF)

2 leading to the standard-looking Drude formula
for a mesoscopic wire µ = (N/L2)× (e2/m)× τcol.

In the limit ω � (1/τcol) we can get a much more satisfying result. The fluctuating
quantity F(t) = İ(t) is the same as (9) with D(r) = (e/(2mA))ẑ × r, corresponding to
rotation. Using the WNA of equation (14), and dividing by ω2 as in (20) we get

C̃I(ω) =
[

2

3π

e2

A3
v3

F

∮
|n × r|2 ds

]
1

ω2
. (22)

Again, up to a system-specific geometrical factor this result (∼ω−2) agrees with the standard
Drude result. The latter expression should become exact as we go to large frequencies,
where the only significant contribution comes from the self-correlation of the F(t) spikes
(see figure 2(d)).

Equation (21) leads (via (18)) to the small-frequency Drude result, while the WNA of
equation (22) gives the Lorentzian tail of the Drude result. An exact result for the frequency-
dependent conductance can be calculated numerically for a given geometrical shape. In figure 7
we display a plot of µ(�) ∝ C̃I(�), which shows both the constant behaviour at small � and
the convergence to the large-� WNA approximation. System-specific features are expressed
by the deviation from a standard Lorentzian in the intermediate-frequency regime.

Finally we consider driving a quantum dot with homogeneous electric field in the x

direction, in which case the Hamiltonian contains the interaction term −eE(t)x. For calculation
of the response in such a case one should evaluate the dipole–dipole correlation functionCP(τ )
where P(t) = ex. The latter is related to translations, where the deformation field is D = x̂.
Consequently we get CP(τ ) = (1/ω4)C(τ). However, this result is not of great interest,
because the screening effect leads to modification of the effective one-particle Hamiltonian,
such that the actual electric field inside a quantum dot is much smaller than the applied field.

7. The white-noise assumption revisited

In section 4 we have assumed that generic fluctuating quantities such as r2 and e · r and
e · (r × p) have a white-noise power spectrum for ω � 1/τbl. In section 8 we are going
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Figure 7. Calculation of dissipation coefficient µ(�) (arbitrary units) for driving of a chaotic
mesoscopic billiard system with a constant magnetic field at frequency �. The billiard chosen
is the two-dimensional generalized Sinai of figure 1(a). The dotted curve WNA (F) is the high-
frequency estimate assuming F(t) ≡ İ is white noise. The convergence to thisω−2 result is clearly
visible in the log–log inset plot.

to suggest that this white-noise assumption is approximately true for any fluctuating quantity
F(t) that comes from a normal deformation (the term ‘normal’ will be defined there).

Obviously, the goodness of the ‘white-noise assumption’ in the two cases mentioned is
related to the chaoticity of the system, and should be tested for particular examples. This has
been done for the cavity of figure 1 (see [14], and figures 4 and 9). This cavity is an example
of a ‘scattering billiard’ and so exhibits strong chaos [10]. If the motion is not strongly chaotic
we may get a C(τ) that decays like a power law (say 1/τ 1−γ with 0 < γ � 1) rather than an
exponential [10], [21], [22], [23]5, [24]. In such a case the universal behaviour is modified:
we get ω−γ behaviour for C̃E(ω) at small frequencies (νE diverges), signifying faster-than-
diffusive energy spreading in equation (A.2) [24]. The stadium is an example where such a
complication may arise: an ergodic trajectory can remain in the marginally stable ‘bouncing
ball’ orbit (between the top and bottom edges) for long times, with a probability scaling as
t−1 [21–23]. Depending on the choice of D(s) this may manifest itself in C(τ). For example,
in figure 3 the deformation P involves a distortion confined to the upper edge, and the resulting
sensitivity to the bouncing ball orbit leads to large enhancement of the fluctuation intensity
C̃(ω = 0), and is suggestive of singular behaviour for small ω.

If the billiard has a mixed phase space (which is the generic case), then the integrable
component does not contribute to diffusive energy spreading. Proposals have been made to
account for this via a phase-space volume factor [9].

5 The time of crossover to algebraic decay is discussed in [23].
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Figure 8. The failure of the WNA estimate for C̃(ω) for deformation types CO (similar to DI)
and SX (similar to TX). The WNA is clearly a vast overestimate of the small-ω limit. See tables 1
and 2 for an explanation of deformation types.

8. Decomposition of general deformations

The failure of the WNA for ‘special’ deformations also extends to the much wider class of
deformations which are similar to special. This is demonstrated in figure 8. It should be
emphasized that this failure happens even if the cavity is strongly chaotic.

We seek an analytical estimate for C̃(ω), and in particular for its zero-frequency limit
ν. This estimate should apply to any (general) deformation, including the case of ‘close-to-
special’ deformations. It would be useful to regard any general deformation as a combination
of a ‘special’ component and a ‘normal’ component. The formulation of this idea is the theme
of the present section. Supporting numerical evidence is gathered in the next section.

The special deformations (for which we have ν = 0) constitute a linear space, meaning
that any sum of special deformations is also a special one. Now we would like to conjecture that
there is also a linear space of ‘normal’ deformations. By definition, for ‘normal’ deformation
F(t) looks like an uncorrelated random sequence of impulses, and consequently the WNA is a
reasonable approximation. The notion of randomness can be better formulated as in appendix C
leading to equation (C.4). However in practice (C.4) is not useful, because it cannot be applied
as an actual classification tool. (Equation (C.4) is never satisfied exactly.) Still we are going
to demonstrate that there is a unique way to identify the subspace of normal deformations, if
we insist on a maximal (i.e. the most inclusive) definition of this subspace.

It is important to clarify the heuristic reasoning of having a linear space of normal
deformations. The F(t) that corresponds to some normal deformation D(s) looks like white
noise. This means that only self-correlations of its spikes are statistically significant. If we
have two such generic quantities, say F1(t) and F2(t), then we expect F1(t) + F2(t) to share
the same property.
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Figure 9. Addition of two ‘good’ normal deformations (1 = P2, 2 = WG). The two are orthogonal
in the sense of (26). That they are ‘good’ can be seen by their good agreement with their WNA
results (horizontal arrows). The power spectrum of the sum agrees well with the sum of the power
spectra.

The correlation function of F(t) = F1(t) + F2(t) can be written formally as

C1+2(τ ) = C1(τ ) + C2(τ ) + 2C1,2(τ ) (23)

where C1,2(τ ) is the cross-correlation function. In appendix B we argue the following:∫ ∞

−∞
C1,2(τ ) dτ = 0 if 1 = general 2 = special. (24)

This result is exact, and does not involve any approximation. In appendix C we argue the
following:

C1,2(τ ) ≈ c ×
[ ∮

D1(s)D2(s) ds

]
δ(τ ) if 1 = normal 2 = general (25)

where c = 2m2v3
E〈| cos θ |3〉/V. This result is an approximation, which is expected to be as

good as our assumption regarding the ‘normality’ of the deformation D1(s). Consider now
the case where D1(s) is normal and D2(s) is special. Both equations (24) and (25) should
apply. But these equations are consistent if and only if D1(s) is orthogonal to D2(s). We say
that D1(s) and D2(s) are orthogonal (1 ⊥ 2) using the following definition:

orthogonality ⇔
∮
D1(s)D2(s) ds = 0. (26)

Thus we have proved that normal deformations must be orthogonal (in the sense of (26)) to
special deformations. Obviously we have proved here a necessary rather than a sufficient
condition for ‘normality’. However, if we insist on a maximal definition for the subspace of
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Figure 10. Addition of two ‘bad’ normal deformations (1 = FR, 2 = SX). The two are orthogonal
in the sense of (26). That they are ‘bad’ is shown by a lack of agreement with their WNAs. The
power spectrum of the sum is badly approximated by the sum of the power spectra (nonlinear
addition).

normal deformations, then we get a unique identification. Namely, a deformation is classified
as ‘normal’ if it is orthogonal to the subspace of special deformations.

The practical consequences of equations (24) and (25) are as follows:

ν1+2 = ν1 if 1 = general 2 = special (27)

and

ν1+2 ≈ ν1 + ν2 + 2c
∮
D1(s)D2(s) ds if 1 = normal 2 = general. (28)

These results are tested in the next section.

9. Addition of deformations: numerical tests

On the basis of the discussion in the previous section we define normal deformation as those
that are orthogonal to all special deformations, in the sense of equation (26). Obviously there
are ‘good’ normal deformations for which the WNA is an excellent approximation (P1 and
W8 in figure 4, for example), and there are ‘bad’ normal deformations for which the WNA is
not a very good approximation (FR in figure 4, and the normal component in figure 14(b)). In
this section we present numerical evidence that verifies the theoretical results of the previous
section, and investigate how ‘bad’ a normal deformation has to be for them to break down.

From what we have claimed it follows that if D1(s) and D2(s) are orthogonal normal
deformations, then ν1+2 = ν1 + ν2. We could as well write

C̃1+2(ω) ≈ C̃1(ω) + C̃2(ω) if 1 = normal 2 = normal and 1 ⊥ 2 (29)
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Figure 11. Addition of a ‘good’ normal deformation (1 = WG) to a general deformation (2 = SX).
The two are orthogonal in the sense of (26). The power spectrum of the sum agrees well with the
sum of the power spectra.

because by assumption the three correlation functions are approximately flat. We demonstrate
this addition rule in the case of two ‘good’ deformations which are orthogonal in figure 9. We
found that small ‘pistons’ (P2 is significant on only ∼1/50 of the perimeter) were needed to
achieve addition of the accuracy (a few %) shown. However, the restriction on the ‘wiggle’
type of deformation was somewhat more lenient (WG is ∼5 times wider than P2 yet obeys the
WNA better than P2 does).

In general we observe that the quality of the addition rule is limited by the deviation
from the WNA of the better of the two deformations. In figure 10 we see that if both D1(s)

and D2(s) are bad, then also the addition rule (29) becomes quite bad. Figure 11 shows that
the addition rule (29) is reasonably well satisfied also if either D1(s) or D2(s) is a ‘good’
normal deformation. We have chosen D1(s) as WG (good), and D2(s) as SX which is almost
completely dominated by the special x-translation deformation. The addition rule (29) is
obeyed at allω. This proves that our assertions equation (25) about the vanishing ofCnon-self

1,2 (τ )

is indeed correct. It holds here as a non-trivial statement (D2(s) is general and ‘bad’).
Finally, we consider the case whereD1(s) is general andD2(s) is special. This is illustrated

in figure 12. The addition rule (29) becomes exact in the limit of small frequency corresponding
to the vanishing of C̃1,2(ω → 0) as implied by equation (24). In particular this implies that
ν1+2 = ν1. This will be the key to for improving over the WNA, which we are going to discuss
in the next section.

In drawing the above conclusions it is important to note that symmetry effects can play a
deceptive role if the cavity shape has symmetry (our example figure 1 is in the C2v symmetry
group). In figure 13 we demonstrate that the addition rule (29) is very accurately satisfied at
all ω if D1(s) and D2(s) belong to different symmetry classes of the cavity. Orthogonality of
D1(s) andD2(s) is not sufficient to explain this perfect linearity of addition of C̃E(ω). Rather,
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Figure 12. Addition of a general deformation (1 = FR) to ‘special’ deformation (2 = TX). The
power spectrum of the sum coincides with the sum of the power spectra in the limit ω → 0, as
implied by equation (27).

it follows from the symmetry of the kernel γE(s1, s2) of equation (12). The cross-terms in (12)
rigorously vanish when such deformations are added. The consequence is that in order to
non-trivially demonstrate the assertions of this and of the previous section, we had to choose
deformations of the same symmetry class, or which break all symmetries of the cavity.

10. Beyond the WNA

It is possible now to consider the case of general deformation, and to go beyond the WNA.
Given a general deformationD(s)we should project out (subtract) all the special components,
leaving the normal component, and only then apply the WNA. In figure 14 we demonstrate
this decomposition for the deformation (CO + W16) and the deformation SX.

The special deformations constitute a linear space which is spanned by the basis functions:
one dilation, d translations, and d(d − 1)/2 rotations. (For d = 2 they are listed in table 2.)
For a general cavity shape these basis functions are not orthogonal. However, because they
are linearly independent, we can use standard linear algebra to build an orthonormal basis
{Di(s)} of special deformations. The special (‖) and the normal (⊥) components of any given
deformation D(s) are therefore

D‖(s) =
∑
i

αiDi(s)

D⊥(s) = D(s)−D‖(s)
(30)

where the coefficients are

αi =
∮
D(s)Di(s) ds. (31)
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Figure 13. Addition of two ‘bad’ general deformations which come from different symmetry
classes of the cavity (1 = W2, 2 = FR). The two must also be orthogonal, by symmetry. The
deviation from linear addition (solid curve varying about zero) vanishes at all ω.

The improved approximation for ν applies the WNA only to the normal component, giving

νE ≈ 2m2v3
E〈| cos θ |3〉 1

V

∮
ds [D⊥(s)]2 (32)

which we name the IFIF (improved fluctuation intensity formula). In the particular case of
d = 3, substitution of this result into the microcanonical FD relation gives an ‘improved wall
formula’ consisting of the replacement of D(s) by D⊥(s) in equation (5).

In figure 14 we use the IFIF to estimate ν for two examples. The first is a deformation
(CO+W16)whose normal component is ‘good’, due its oscillatory nature. The deviation from
a flat white power spectrum is ∼20% for the normal component. The IFIF result equation (32)
is accurate to a few per cent. It is a much better estimate of the actual ν compared with the naive
WNA equation (14), which overestimates the correct value by a factor of 2.2. In the second
example the deformation is SX. The resulting normal component is ‘bad’. Its power spectrum
fluctuates by a factor of about 10 in the ω range shown. Consequently the IFIF is limited in
its accuracy, and the correct value for ν is underestimated by a factor of 2.5. However, it is
still a great improvement over the naive result equation (14). In this second example we can
extract another prediction about C̃E(ω). The special component is a factor ∼10 larger than
the normal component. Therefore the ω2 behaviour at small ω is almost entirely due to the
‘rotation’ component. The prefactor of the ω2 behaviour need only be found once for each
billiard shape (see section 6). This saves computation and gives extra information about the
dissipation rate at finite driving frequency.

A few concluding remarks regarding the history of the wall formula are in order. It
has been known since its inception that the naive wall formula gives unphysical answers in
the case of constant-velocity translations and rotations. This was first regarded as a kinetic
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Figure 14. Decomposition of general deformations D(s) into orthogonal ‘normal’ and ‘special’
components. The general deformation is CO + W16 in subfigure (a), and SX in subfigure (b). The
naive WNA equation (14) is indicated by a short solid line. The improved (IFIF) result equation (32)
is indicated by a long dashed arrow.

gas ‘drift’ effect [2]. It should be noted that the recipe presented in [2], namely to subtract
this drift component, is equivalent in practice to the recipe (30) that we have presented here,
provided we ignore dilations. It is also important to realize that the argumentation in [2]
for this subtraction appears to be ad hoc, being based on a ‘least-structured drift pattern’
reasoning. A stated condition on this subtraction was that the resulting deformation preserve
the location of the ‘centre of mass’ (centroid) of the cavity, for reasons particular to the nuclear
application [2]. This condition seems to have become standard practice in numerical tests of
the wall formula [9, 25–27]. However, as the system in figure 15(a) illustrates, this condition
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Figure 15. (a) A deformation of the stadium which moves the ‘centre of mass’ (centroid) of
the cavity to the right (from the dot to the crosshairs symbol). This deformation is orthogonal
(in the sense of (26)) to all special deformations, in particular, all translations. (b) An example
volume-preserving deformation of an elongated approximately rectangular cavity (β � 1), which
nevertheless has a large overlap with dilation. It can be shown that this results in an IFIF estimate
of ≈4β times that of the naive WNA. In both diagrams the undeformed shape is shown as a heavy
line, the deformed one as a thin line.

is generally not equivalent to the above subtraction of translation and rotation components6.
This seems to invalidate the theorem presented in section 7.1 of [2]. Where the flaw in their
reasoning lies we are not sure.

The consideration of the special nature of dilations is absent from the literature. Even if we
restrict ourselves to volume-preserving deformations (the case for the nuclear application), then
deformations of certain cavities can be found for which the dilation correction is significant;
we illustrate this in figure 15(b). This correction can only be large if the cavity has a large
variation in radius (i.e. is highly non-spherical). We suggest this as a possible reason why
major discrepancies due to dilation have not emerged in the numerical tests of the wall formula
until now. Such tests have generally been of shapes close to a 3D sphere [2, 9, 25–27].

Hence we believe that the recipe we have presented, along with the associated theory and
in conjunction with the particular power-law dependences, is a significant step in the treatment
of one-body dissipation.
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Appendix A. Linear response theory of dissipation

Given a parametric Hamiltonian H(Q,P ; x(t)), and given initial conditions, one
defines the energy E(t) = H(Q(t), P (t); x(t)) and the fluctuating quantity F(t) =
−∂H/∂x(Q(t), P (t); x(t)). With no approximation we have

E(t)− E(0) =
∫ t

0
F(t ′)ẋ(t ′) dt ′. (A.1)

6 The condition that a deformation D(s) should not move the ‘centre of mass’ (centroid of the cavity volume) is∮
D(s)r(s) ds = 0. This is in general different from the condition for having zero overlap with translations, namely∮
D(s)n̂(s) ds = 0.
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Using the same steps as in [8] one obtains the following result for the variance of the energy
spreading:

δE(t)2 =
∫ t

0

∫ t

0
CE(t

′′ − t ′)F (t ′′ − t ′) dt ′ dt ′′ (A.2)

where CE(τ ) is defined by equation (11). Microcanonical averaging has been taken over the
initial conditions. The function F(τ) = 〈ẋ(t)ẋ(t + τ)〉 is the velocity–velocity correlation of
the driving. For periodic driving x(t) = A sin(�t + phase) it is formally convenient to average
over the initial phase and one obtains F(τ) = 1

2 (A�)
2 cos(�τ).

For a chaotic system CE(τ ) is characterized by some correlation time τcl. For t � τcl one
obtains diffusive spreading δE(t)2 = 2DEt where the diffusion rate is

DE = 1
2 C̃E(�)× 1

2 (A�)
2 (A.3)

which for small frequencies goes to DE = 1
2νEV

2, where νE ≡ C̃(0) as defined in the
introduction. The picture to keep in mind is that of the fluctuating F(t) causing a random walk
in energy space via equation (A.1) for times t � τcl. As explained in [4, 5, 8] the resulting
diffusion in energy space implies systematic growth of the average energy. It is important to
realize that this growth happens even if the random walk is locally unbiased: such is the case
when changing the parameter x preserves the volume of a given energy-shell in phase space.
(For a deforming billiard system this corresponds to preservation of the billiard volume.) The
rate of energy growth is related to the diffusion as follows:

d

dt
〈H〉 = −

∫ ∞

0
dE g(E)DE

∂

∂E

(
ρ(E)

g(E)

)
(A.4)

where ρ(E) is the energy distribution of the particles, and g(E) is the one-particle density of
states. The growth is therefore an effect of the E-dependence of both the diffusion rate and
the density of states.

The rate of dissipation can be written as in equation (1) or as d〈H〉/dt = µV 2 in the
small-frequency limit. Combining this with equation (A.4) implies a relation between the
dissipation coefficient µ and the function C̃E(ω). The most familiar version of this FD
relation is obtained for small frequency under the assumption of a canonical distribution
ρ(E) ∝ g(E) exp (−E/(kBT )), leading to

µ = 1

2kBT
ν (A.5)

where ν should be calculated for a canonical distribution. This result should be multiplied by
the number of non-interacting classical particles.

The use of equation (A.4) can be justified also for non-interacting fermions [28]. This is
because the effect of the Pauli exclusion principle cancels out (in analogy with the Boltzmann
picture with elastic scattering). Substituting ρ(E) = g(E)f (E − EF), where f (E − EF) is
the Fermi occupation function, one obtains

µ = 1
2g(EF)νF (A.6)

where νF should be calculated at the Fermi energy.
Finally, the microcanonical version of the FD relation is

µE = 1

2

1

g(E)

∂

∂E
(g(E)νE). (A.7)

The subscript E indicates that both νE and µE are evaluated locally around some energy E.
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Appendix B. Cross correlations I

In this appendix we introduce two proofs of equation (24). The first is a formal argument,
while the second is a more physically appealing argument. The formal argument is as follows:
equation (12) is an exact result which can be written using obvious abstract matrix notation as
ν = DγED. LetD = D1 +D2. IfD2 is a special deformation then by definitionD2γED2 = 0.
But this can be true only if D2 belongs to the kernel (nullspace) of the matrix γE, hence we
have γED2 = 0. Therefore we have also D1γED2 = 0 for any D1, which is precisely the
statement of equation (24).

Now we present the alternative physically appealing argument. Consider two noisy signals
F(t) and G(t). We assume that 〈F(t)〉 = 〈G(t)〉 = 0. The angular brackets stand for an average
over realizations. The auto-correlations of F(t) and G(t) are described by functionsCF(τ ) and
CG(τ ) respectively. We assume that both auto-correlation functions are short range, meaning
no power-law tails (this corresponds to the hard-chaos assumption of this paper), and that
they are negligible beyond a time τc. We call a signal ‘special’ if the algebraic area under its
auto-correlation is zero. The cross-correlation function is defined as

CF,G(τ ) ≡ 〈F(t ′)G(t ′′)〉 τ ≡ t ′ − t ′′. (B.1)

We assume stationary processes so that the cross-correlation function depends only on the time
difference τ . We also symmetrize this function if it does not have τ �→ −τ symmetry. We
assume that CF,G(τ ) is short range, meaning that it becomes negligibly small for |τ | > τc.
We would like to prove that if either F(t) or G(t) is special then the algebraic area under the
cross-correlation function equals zero.

Consider the case where F(t) is general while G(t) is special. The integral of CF(τ ) will
be denoted by ν. Define the processes

X(t) =
∫ t

0
F(t ′) dt ′ (B.2)

Y (t) =
∫ t

0
G(t ′′) dt ′′. (B.3)

From our assumptions it follows, disregarding a transient, that for t � τc we have diffusive
growth 〈X(t)2〉 ≈ νt . However since Y (t) is a stationary process [29], 〈Y (t)2〉 ≈ const.
Therefore for a typical realization we have |X(t)| � const × √

νt and |Y (t)| � const.
Consequently, without making any claims on the independence of X(t) and Y (t), we get
that 〈X(t)Y (t)〉 cannot grow faster than const × √

νt . Using the definitions (B.1)–(B.3) we
can write ∫ ∞

−∞
CF,G(τ ) dτ = 〈X(t)Y (t)〉

t
≈ const√

t
→ 0 (B.4)

where the limit t → ∞ is taken. Thus we have proved our assertion.

Appendix C. Cross correlations II

In this section we further discuss some features of the cross-correlation function. For the
purpose of presentation we we would like to view the time as an integer variable t = 1, 2, 3, . . . .
One may think of each instant of time as corresponding to a bounce.

Let us assume that we have functions f (s) and g(s), and a time-sequence (s1, s2, s3, . . .).
This gives two stochastic-like processes (F1,F2,F3, . . .) and (G1,G2,G3, . . .). The cross
correlation of these two processes is defined as follows:

CF,G(i − j) = 〈FiGj 〉 = 〈f (si)g(sj )〉. (C.1)
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It is implicit in this definition that we assume that the processes are stationary, so the result
depends only on the difference τ = (i − j). The angular brackets stand for an average over
realizations of s-sequences.

If the sequences are ergodic on the s-domain, then it follows that

〈F〉 =
∫
f (s) ds

〈G〉 =
∫
g(s) ds

CF,G(0) =
∫
f (s)g(s) ds.

(C.2)

The τ �= 0 cross correlation requires information beyond mere ergodicity. In the case where
the s-sequence is completely uncorrelated in time we can factorize the averaging and we get
CF,G(τ �= 0) = 〈F〉 × 〈G〉. If 〈F〉 = 0 then

CF,G(τ �= 0) = 0 (C.3)

irrespective of 〈G〉.
However, we would like to define circumstances in which equation (C.3) is valid, even

if the s-sequence is not uncorrelated. In such a case either the F or the G may possess time
correlations. (Such is the case if G is ‘special’.) So let us consider the case where the F
sequence looks random, while assuming nothing about the G sequence. By the phrase ‘looks
random’ we mean that the conditional probability satisfies

Prob(Fi |sj ) = Prob(Fi ) for any i �= j. (C.4)

Equation (C.3) straightforwardly follows provided 〈F〉 = 0, irrespective of the g(s) involved.
Given f (s), the goodness of assumption (C.4) can be actually tested. However, it is not
convenient to consider (C.4) as a practical definition of a ‘normal’ deformation.
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