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We explore a minimal paradigm for thermalization, consisting of two weakly coupled, low dimensional,

nonintegrable subsystems. As demonstrated for Bose-Hubbard trimers, chaotic ergodicity results in a

diffusive response of each subsystem, insensitive to the details of the drive exerted on it by the other.

This supports the hypothesis that thermalization can be described by a Fokker-Planck equation. We also

observe, however, that Levy-flight type anomalies may arise in mesoscopic systems, due to the wide range

of time scales that characterize ‘sticky’ dynamics.
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The emergence of irreversibility from reversible
Hamiltonian mechanics remains an open fundamental
question, even after a century of effort. Recent advances
in computational as well as experimental technique may at
last bring answers within reach. The biggest challenge of
this quest is the sheer technical difficulty of solving the
Hamiltonian evolution of quantum many-body systems,
even when they are quite small and isolated. In this
Letter, we propose to leap over a significant barrier of
understanding, by using Hamiltonian results from a trac-
table but nontrivial system, to support an extension of an
established phenomenological theory, into a substantially
more challenging regime. The result we thereby derive is a
simple theory that can then both guide, and be tested by,
subsequent numerical investigations, as well as currently
feasible experiments.

We address the thermalization of two nonlinear
Hamiltonian subsystems that are weakly coupled together,
where the combined system is isolated and undriven. The
equilibration of such subsystems is postulated in the zeroth
law of thermodynamics, reflecting the assumption that
microscopic dynamics is unobservably fast, while slower
macroscopic dynamics remains nontrivial. Accordingly,
weakly coupled subsystems, each having strong internal
interactions, provide the minimal paradigm for the emer-
gence of thermodynamics from closed-system mechanics.

Following the Fermi-Pasta-Ulam numerical experiment,
most studies of dynamical equilibration have historically
focused on large, extended systems [1,2], where the treat-
ment of even one strongly interacting system is quite
impossible in microscopic detail. With experimental
access to controlled mesoscopic systems, attention has
more recently been drawn to thermalization phenomena
in small systems, taking into account dynamical chaos
[3,4] and quantum effects [5–8]. The traditional analysis
of thermalization has nonetheless largely remained within
the assumptions inherited from the macroscopic problem.
It is common to assume that at least one of the two coupled

systems is ‘‘big’’, and hence, can be drastically approxi-
mated, either as a phenomenologically described reservoir,
or as a time-dependent external parameter. The present
Letter is motivated by the realization that the study of
isolated thermalization of two subsystems is no longer so
unthinkably intractable. It is merely extremely difficult.
Our proposal is to leverage our understanding of driven
chaotic systems to overcome this difficulty, by viewing
each subsystem as driving the other.
The statistical approach.—The statistical description of

driven chaotic systems by means of a Fokker-Planck equa-
tion (FPE) for their energy distribution [9–14] is based on
the ergodic adiabatic theorem [15]. Quantum and classical
systems can be embraced in a unified notation by writing
the energy " as a function of the phase space volume n of
the constant-energy hypersurface. The density of states is
gð"Þ ¼ dn=d" and the microcanonical inverse temperature
is �ð"Þ ¼ d lnðgÞ=d". Upon quantization, the Wigner-
Weyl formalism implies that n corresponds to the discrete
index of the energy levels "n, and if these levels are dense
enough, they can be approximated as a quasicontinuum.
One then makes a coarse-grained description of the slow
evolution of the system, and derives an FPE to describe
the evolution of the time-dependent energy probability
distribution �ð"; tÞ.
FPE for a driven system.—If a chaotic system is driven

weakly, its energy changes slowly, and �ð"; tÞ obeys a
probability-conserving FPE, whose diffusion term has a
coefficient D, proportional to the strength of the driving
[9–11,14]. By Liouville’s theorem, a distribution �ð"Þ /
gð�Þ should be a time-independent solution of the FPE.
Hence, it is deduced that the drift term in the FPE is
universally related toD, and the complete phenomenologi-
cal equation is established.
FPE for coupled subsystems.—We now extend the

single-system FPE phenomenology [9–11] to the case
of thermalization of two subsystems. Each subsystem
(i ¼ 1, 2) is characterized by its density of states gið"iÞ
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and by its microcanonical inverse temperature �i. Thanks
to conservation of energy the thermalization is within
subspaces of constant energy "1ðn1Þ þ "2ðn2Þ ¼ E.
Accordingly, we set "1 ¼ ", and "2 ¼ E � ", and con-
struct an FPE for the probability density �ð"; tÞ that
describes how the energy is divided between the two
subsystems.

It again follows from Liouville’s theorem that an ergodic
distribution, �ð"Þ / gð"Þ � g1ð"Þg2ðE � "Þ, should be a
stationary solution. This fixes the form of the FPE, and
implies the functional form of the drift term:
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It is important to notice that the diffusion coefficient D
may depend on ". The optional way, Eq. (2), of writing this
FPE demonstrates that the ‘drift velocity’ A is related to the
diffusion as follows:

Að"Þ ¼ @"Dþ ð�1 � �2ÞD: (3)

To see more clearly the connection of Eq. (3) with tradi-
tional thermodynamics, assume that each of the subsys-
tems is prepared independently in a canonical state, with
temperature Ti, such that gið"iÞ expð�"i=TiÞ describes its
energy distribution. Integrating both sides of Eq. (3) with
this probability measure, and integrating by parts the first
term on the right, one obtains [4] a mesoscopic Einstein
relation, like those previously derived [16,17] using
master-equation or fluctuation-theorem approaches:

d

dt
h"i ¼ hAð"Þi ¼

�
1

T1

� 1

T2

�
hDi: (4)

This result offers insight into the distinct behaviors of
microcanonical energy fluctuations and canonical aver-
ages. The canonical version Eq. (4) implies that energy
always flows from the higher to the lower canonical tem-
perature, but the more general mesoscopic version Eq. (3)
implies that energy flow is not necessarily from the higher
to the lower microcanonical temperature and may depend
on the functional form ofDð"Þ. This is not in contradiction
with the zeroth law of thermodynamics: energy fluctuates
between finite systems in equilibrium such that their aver-
age microcanonical temperatures need not be equal. The
ergodic solution � / gð"Þ around which Eq. (1) has been
constructed implies only that the most probable " is the one
for which �1ð"Þ ¼ �2ðE � "Þ.

Fluctuation-dissipation phenomenology.—The deriva-
tion of Eq. (1) is phenomenological but based on simple
assumptions that can be tested. Since these include weak
coupling, it is further consistent to compute D using the

Kubo formula. Writing the interaction as H ¼ Qð1ÞQð2Þ,
and defining ~SðiÞð!Þ as the power spectrum of the fluctuat-

ing variable QðiÞðtÞ, it reads [18]

D ¼
Z 1

0

d!

2�
!2 ~Sð1Þð!Þ~Sð2Þð!Þ: (5)

With this addition, the FPE phenomenology provides a
generalized fluctuation-dissipation relation that connects
the systematic energy flow between the subsystems with
the intensity of the fluctuations.
Reasoning.—When two undriven subsystems are

coupled to each other, the effect of one subsystem (call it
‘‘agent’’) on the other (call it ‘‘system’’) is like that of
driving. For the purpose of obtaining Eq. (1), we have
assumed that the interaction results in diffusion that can
be calculated using Eq. (5). Future studies of coupled
systems must test this assumption in full, but one key point
remains to be established with regard to the driven single-
subsystem dynamics: The agent-system interaction will
typically couple many quantum levels, even if it is weak
in classical terms. In such strongly nonadiabatic circum-
stances, energy diffusion, and the applicability of Eq. (5),
have not been demonstrated [4]. Below, we complete this
Letter by a numerical demonstration that highlights the
role of chaos in obtaining diffusive dynamics for a driven
subsystem, supporting the feasibility of the above reason-
ing for experimentally relevant systems.
Testing ground.—Few-mode Bose-Hubbard systems are

a promising testing ground, since they are experimentally
accessible and highly tunable [19], and theoretically trac-
table by a wide range of techniques. Since boson number is
conserved, their Hilbert spaces are of finite dimension, and
yet their classical dynamics can be nonintegrable. The
smallest Bose-Hubbard system admitting chaos without
external driving is the three-mode trimer [20–26],
described by the Bose-Hubbard Hamiltonian (BHH):

H ¼ K

2

X
i¼1;2

ðayi a0 þ ay0aiÞ þ
U

2

X
i¼0;1;2

ayi a
y
i aiai; (6)

Here, i ¼ 0, 1, 2 label the three modes, ai and ayi are
canonical destruction and creation operators in second
quantization, K is the hopping frequency, and U is the on
site interaction. The Hamiltonian H commutes with the

total particle number N ¼ P
ia

y
i ai, and hence, without

loss of generality, we regard N as having a definite
value N. Driving is then implemented by setting K ¼
K0 þ Kd sinð�tÞ. Consequently, the total Hamiltonian
has the structure H 0 þ fðtÞW, where the perturbation
operator W is identified as the first sum in Eq. (6) and
the driving field is fðtÞ ¼ ðKd=2Þ sinð�tÞ.
Chaoticity.—The underlying classical dynamics is

defined [4] by replacing the operators ai in the
Heisenberg equations of motion [27] with complex c num-
bers

ffiffiffiffiffi
ni

p
ei’i . In the absence of driving, up to trivial rescal-

ing, the classical equations depend only on the single
dimensionless parameter u ¼ NU=K0. The chaoticity of
the motion that is generated by H 0 is reflected in the
local level statistics and can be quantified by the Brody
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parameter 0< q< 1 [28], such that q ¼ 0 indicates a
Poissonian level-spacing distribution (characteristic of
integrable dynamics), while higher values indicate the
approach to Wigner level-spacing distribution (indicating
chaotic dynamics).

Figure 1(a) displays the spectrum "n, obtained by
numerical diagonalization of H 0, as a function of u. For
graphical presentation, we shift and scale the energy spec-
trum, for each u, into the same range " 2 ½0; 1�, such that
" ¼ 0 and " ¼ 1 are the ground energy E0 and the highest
energy Emax, respectively. By plotting q vs (u, "), as in
Fig. 1(b), we can identify the " range within which the
motion is chaotic at any given value of u. See Ref. [4] for
technical details. We have verified the implied chaoticity
by plotting representative classical Poincaré cross sections.

In the numerical simulations, we consider an N ¼ 50
particle system with two representative values of u. The
case u ¼ 5, for which there is a wide chaotic range 0:2<
"< 0:6, is contrasted with u ¼ 50, for which the motion is
globally quasi-integrable due to self-trapping.

Energy diffusion.—In the absence of driving, the energy
is a constant of motion. Driving induces transitions
between energy eigenstates, leading to a time-dependent
spread in energy �"ðtÞ. This dispersion is defined as the
square root of the variance Varð�nÞ that is associated with
the probability distribution

pnðtÞ ¼ jh"nj�ðtÞij2: (7)

In Fig. 2, we plot the time evolution of the quantum energy
distribution pnðtÞ in response to driving that is quantum
mechanically large (many levels are mixed) but classically
small (Kd � K0). We contrast the response in the chaotic
(u ¼ 5) and in the quasi-integrable (u ¼ 50) regimes.
Dramatic differences are observed. In both cases, the
energy distribution in the very early stages of the evolution
reflects the band profile of the perturbation matrix
Wn;n0 , where n0 is the initial level, as expected from

time-dependent first-order perturbation theory. Later in

the evolution, higher orders of perturbation theory domi-
nate. This leads in the quasi-integrable case to Rabi-like
oscillations that have no relation to the classical dynamics.
But in the chaotic regime, one observes that the driving is
capable of inducing diffusive-like energy spreading. This
diffusive spreading is restricted to the chaotic energy win-
dow and features remarkable correspondence with the
classical simulation.
Linear response.—The diffusive energy spreading in the

chaotic regime can be quantified by the time evolution of
the energy variance. In Fig. 3, we plot the time evolution of
�" for both the chaotic and the integrable cases. In both
cases, we compare the dispersion obtained under the clas-
sical equations of motion for the driven system, starting
from a microcanonical ensemble, to that obtained from
quantum evolution from an eigenstate with the same en-
ergy. As anticipated for diffusive energy spreading, we
observe that in the chaotic regime ð�"Þ2 � 2Dt with dif-
fusion coefficient D / K2

d, as assumed in the Kubo linear

response formula Eq. (5).
In Fig. 4, we compare the diffusive energy distribution

that is observed in Fig. 2, with the solution of the FPE
Eq. (1), using the diffusion coefficient from Eq. (5), see
Ref. [4] for technical details. The agreement is good,
confirming that weakly driven chaotic quantum systems
can indeed exhibit energy diffusion in regimes realistic for
experimental Bose-Hubbard systems and solidifying the
basis of our phenomenological argument for the FPE
description of intersubsystem equilibration.
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FIG. 1 (color online). The energy spectrum of the unperturbed
BHH. In panel (a), the scaled eigenenergies "n ofH 0 are plotted
vs the scaled interaction parameter, u, for N ¼ 35 particles. The
level spacing statistics is characterized by the Brody parameter
(0< q< 1), which is displayed in panel (b) for a system with
N ¼ 120 particles. In the energy range where the motion is
chaotic, q� 1. Square symbols indicate the preparations that
were used for the simulations in Fig. 2. FIG. 2 (color online). The quantum probability distribution

pnðtÞ for representative simulations is imaged as a function of
time (right). The short-time energy-spreading profile is deter-
mined by the perturbation matrix jWn;n0 j2 (left). The number of

particles is N ¼ 50. The upper set is for u ¼ 50 and the lower is
for u ¼ 5. The strength of the driving is Kd=K0 ¼ 0:1. For the
time axis, we use dimensionless units, � ¼ ðEmax � E0Þt=@, and
the scaled driving frequency in both simulations is � � 0:03.
The image of the initial level is vertically zoomed and it has the
energy " � 0:5. The boundaries of the chaotic sea in the lower
image are indicated by the horizontal dashed lines.
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Multiple time scales.—Having established quite good
quantum-to-classical correspondence in the chaotic
regime, one wonders whether classical dynamics may
indicate features that go beyond simple energy diffusion.
Figure 5 illustrates the classical time dependence of "ðtÞ
and characterizes it by its average value and dispersion.
Since the phase space has dimension greater than two, the
possibility of Arnold diffusion guarantees that the motion
is ergodic within the chaotic sea. This means that we can
regard different trajectory segments as uncorrelated pieces
of the same infinite time trajectory. If we had ergodic
motion with a well-defined characteristic time, all the seg-
ments would have the same average and dispersion. But
this is not what we see: the segments have large variation in
their dispersion, since they do not uniformly fill the whole

chaotic region. Rather, the trajectories contain episodes
with long dwell times within some sticky regions in phase
space, whose existence has been confirmed with a Poincaré
section, see Ref. [4]. If we had an unlimited computation
power, obviously the expectation is to have coincidence of
all the points in the right panel of Fig. 5. But in practice, we
can address only finite time intervals, and therefore, the
points are scattered over a large range.
Discussion.—We have considered few-mode Bose-

Hubbard systems as tunably chaotic systems, which in
chaotic regimes respond generically to weak driving with
energy diffusion at a rate proportional to the square of the
driving strength, K2

d. Consequently, we deduce that the

thermalization of coupled Bose-Hubbard subsystems can
plausibly be described by a phenomenological FPE,
namely Eq. (1).
We have also obtained some insight on how such phe-

nomenological theories are affected by taking into account
specific semiclassical features of the dynamics. A small
subsystem can exhibit multiple time scales in its equilibra-
tion, because its phase space contains sticky regions with
long dwell times. In principle, this may give rise to non-
Gaussian features, and Lévy-flight related deviations from
strict diffusive behavior. Even if these possibilities do not
manifest strongly in energy spreading of small, driven
systems because the explored phase space volume is small,
they may perhaps become important in multicomponent
composite systems. It would be important to recognize,
then, in interpreting experiments or simulations intended to
test Eq. (1), that some deviations from its diffusive as-
sumptions may not represent errors in its depiction of the
mesoscopic onset of irreversibility, but only the fading
traces of microscopic behavior.
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FIG. 4 (color online). (a) The evolving spreading profile �ðEÞ,
referring to the simulation that has been imaged in the lower
panel of Fig. 2. The solid lines (calculation) and the associated
symbols (simulation) are for � ¼ 149 (narrower), and � ¼ 299
(wider), and � ¼ 448 (widest). The lines are based on the
numerical solution of Eq. (1). (b) The density of states gðEÞ
(dotted line) and the diffusion coefficient DðEÞ (solid line) were
deduced from the diagonalization of the BHH and Eq. (5), see
Ref. [4] for technical details.
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FIG. 3 (color online). The scaled variance as a function of the
scaled time in the classical (left) and in the quantum (right)
simulations. The value of the scaled interaction parameter is
u ¼ 5 (upper panels) and u ¼ 50 (lower panels). Note the
different scale of the vertical axis for the quantum vs classical
simulations in panels (c) and (d). Clearly quantum-to-classical
correspondence fails in the quasi-integrable regime. The values
of Kd=K0 are 0.025 (blue), 0.05 (green), 0.075 (red), and 0.1
(cyan). The driving frequency is as in Fig. 2.

FIG. 5 (color online). On the left, the scaled energy "ðtÞ as a
function of time is plotted for a few representative trajectories.
The right panel displays the average value and the dispersion of
" within the time interval 0< �< 40000, for the representative
trajectories (symbols), as well as for many other trajectories
(points). Low dispersion values reflect the finite probability to
encounter sticky motion. The parameters are the same as in the
lower panel of Fig. 2, with initial points that have the energy
" ¼ 0:3.
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