
Minimal Fokker-Planck theory for the thermalization of mesoscopic subsystems

Igor Tikhonenkov1, Amichay Vardi1, James R. Anglin2, and Doron Cohen3

1Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
2OPTIMAS Research Center and Fachbereich Physik, Technische Universität Kaiserslautern, D-67653 Kaiserslautern, Germany

3Department of Physics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

We explore a minimal paradigm for thermalization, consisting of two weakly-coupled, low dimen-
sional, non-integrable subsystems. As demonstrated for Bose-Hubbard trimers, chaotic ergodicity
results in a diffusive response of each subsystem, insensitive to the details of the drive exerted on
it by the other. This supports the hypothesis that thermalization can be described by a Fokker
Plank equation. We also observe, however, that Levy-flight type anomalies may arise in mesoscopic
systems, due to the wide range of time scales that characterize ‘sticky’ dynamics.

The emergence of irreversibility from reversible Hamil-
tonian mechanics remains an open fundamental question,
even after a century of effort. Recent advances in com-
putational as well as experimental technique may at last
bring answers within reach. The biggest challenge of this
quest is the sheer technical difficulty of solving the Hamil-
tonian evolution of quantum many-body systems, even
when they are quite small and isolated. In this Letter
we propose to leap over a significant barrier of under-
standing, by using Hamiltonian results from a tractable
but non-trivial system, to support an extension of an es-
tablished phenomenological theory, into a substantially
more challenging regime. The result we thereby derive is
a simple theory that can then both guide, and be tested
by, subsequent numerical investigations, as well as cur-
rently feasible experiments.

We address the thermalization of two nonlinear Hamil-
tonian subsystems that are weakly coupled together,
where the combined system is isolated and undriven.
The equilibration of such subsystems is postulated in
the Zeroth Law of Thermodynamics, reflecting the as-
sumption that microscopic dynamics is unobservably
fast, while slower macroscopic dynamics remains non-
trivial. Accordingly, weakly coupled subsystems, each
having strong internal interactions, provide the mini-
mal paradigm for the emergence of thermodynamics from
closed-system mechanics.

Following the Fermi-Pasta-Ulam numerical experi-
ment, most studies of dynamical equilibration have his-
torically focused on large, extended systems [1, 2], where
the treatment of even one strongly interacting system is
quite impossible in microscopic detail. With experimen-
tal access to controlled mesoscopic systems, attention has
more recently been drawn to thermalization phenomena
in small systems, taking into account dynamical chaos
[3, a] and quantum effects [4–7]. The traditional anal-
ysis of thermalization has nonetheless largely remained
within the assumptions inherited from the macroscopic
problem. It is common to assume that at least one of
the two coupled systems is “big”, and hence can be dras-
tically approximated, either as a phenomenologically de-
scribed reservoir, or as a time-dependent external param-

eter. The present Letter is motivated by the realization
that the study of isolated thermalization of two subsys-
tems is no longer so unthinkably intractable. It is merely
extremely difficult. Our proposal is to leverage our un-
derstanding of driven chaotic systems to overcome this
difficulty, by viewing each subsystem as driving the other.

The statistical approach.– The statistical descrip-
tion of driven chaotic systems by means of a Fokker-
Planck equation (FPE) for their energy distribution [8–
13] is based on the ergodic adiabatic theorem [14]. Quan-
tum and classical systems can be embraced in a unified
notation by writing the energy ε as a function of the
phase space volume n of the constant-energy hypersur-
face. The density of states is g(ε) = dn/dε, and the
micro-canonical inverse temperature is β(ε) = d ln(g)/dε.
Upon quantization, the Wigner-Weyl formalism implies
that n corresponds to the discrete index of the energy
levels εn, and if these levels are dense enough, they
can be approximated as a quasi-continuum. One then
makes a coarse-grained description of the slow evolution
of the system, and derives an FPE to describe the evo-
lution of the time-dependent energy probability distribu-
tion ρ(ε, t).

FPE for a driven system.– If a chaotic system is
driven weakly, its energy changes slowly, and ρ(ε, t) obeys
a probability-conserving FPE, whose diffusion term has
a coefficient D, proportional to the strength of the driv-
ing [8–10, 13]. By Liouville’s theorem, a distribution
ρ(ε) ∝ g(ε) should be a time-independent solution of the
FPE. Hence it is deduced that the drift term in the FPE
is universally related to D, and the complete phenomeno-
logical equation is established.

FPE for coupled subsystems.– We now extend
the single-system FPE phenomenology [8–10] to the
case of thermalization of two subsystems. Each sub-
system (i = 1, 2) is characterized by its density of states
gi(εi), and by its microcanonical inverse temperature βi.
Thanks to conservation of energy the thermalization is
within subspaces of constant energy ε1(n1)+ε2(n2) = E .
Accordingly we set ε1 = ε, and ε2 = E −ε, and construct
an FPE for the probability density ρ(ε, t) that describes
how the energy is divided between the two subsystems.
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It again follows from Liouville’s theorem that an er-
godic distribution ρ(ε) ∝ g(ε) ≡ g1(ε)g2(E − ε), should
be a stationary solution. This fixes the form of the FPE,
and implies the functional form of the drift term:

∂ρ

∂t
=

∂

∂ε

(
g(ε)D(ε)

∂

∂ε

(
1

g(ε)
ρ

))
(1)

= − ∂

∂ε

(
A(ε)ρ− ∂

∂ε
[D(ε)ρ]

)
(2)

It is important to notice that the diffusion coefficient D
may depend on ε. The optional way Eq.(2) of writing this
FPE demonstrates that the ‘drift velocity’ A is related
to the diffusion as follows:

A(ε) = ∂εD + (β1 − β2)D . (3)

To see more clearly the connection of Eq.(3) with tradi-
tional thermodynamics, assume that each of the subsys-
tems is prepared independently in a canonical state, with
temperature Ti, such that gi(εi) exp(−εi/Ti) describes its
energy distribution. Integrating both sides of Eq.(3) with
this probability measure, and integrating by parts the
first term on the right, one obtains [a] a mesoscopic Ein-
stein relation, like those previously derived [15, 16] using
master-equation or fluctuation-theorem approaches:

d

dt
〈ε〉 = 〈A(ε)〉 =

(
1

T1
− 1

T2

)
〈D〉 , (4)

This result offers insight into the distinct behaviors of
micro-canonical energy fluctuations and canonical aver-
ages. The canonical version Eq.(4) implies that energy
always flows from the higher to the lower canonical tem-
perature, but the more general mesoscopic version Eq.(3)
implies that energy flow is not necessarily from the higher
to the lower micro-canonical temperature, and may de-
pend on the functional form of D(ε). This is not in con-
tradiction with the Zeroth Law of thermodynamics: en-
ergy fluctuates between finite systems in equilibrium, and
so their micro-canonical temperatures need not be equal.
The ergodic solution ρ ∝ g(ε) around which Eq.(1) has
been constructed implies only that the most probable ε
is the one for which β1(ε) = β2(E − ε).

Fluctuation-dissipation phenomenology.– The
derivation of Eq.(1) is phenomenological, but based on
simple assumptions that can be tested. Since these in-
clude weak coupling, it is further consistent to compute
D using the Kubo formula. Writing the interaction as
H = Q(1)Q(2), and defining S̃(i)(ω) as the power spec-
trum of the fluctuating variable Q(i)(t), it reads [17]

D =

∫ ∞

0

dω

2π
ω2 S̃(1)(ω) S̃(2)(ω) (5)

With this addition, the FPE phenomenology provides a
generalized fluctuation-dissipation relation that connects

the systematic energy flow between the subsystems with
the intensity of the fluctuations.

Reasoning.– When two undriven subsystems are
coupled to each other, the effect of one subsystem (call
it ”agent”) on the other (call it ”system”) is like that
of driving. For the purpose of obtaining Eq.(1) we have
assumed that the interaction results in diffusion that can
be calculated using Eq. (5). Future studies of coupled
systems must test this assumption in full, but one key
point remains to be established with regard to the driven
single-subsystem dynamics: The agent-system interac-
tion will typically couple many quantum levels, even if it
is weak in classical terms; In such strongly non-adiabatic
circumstances, energy diffusion, and the applicability of
Eq.(5), have not been demonstrated [a]. Below we com-
plete this paper by a numerical demonstration that high-
lights the role of chaos in obtaining diffusive dynamics
for a driven subsystem, supporting the feasibility of the
above reasoning for experimentally relevant systems.

Testing ground.– Few-mode Bose-Hubbard systems
are a promising testing ground, since they are experimen-
tally accessible and highly tunable [18], and also theo-
retically tractable by a wide range of techniques. Since
boson number is conserved, their Hilbert spaces are of
finite dimension, and yet their classical dynamics can be
non-integrable. The smallest Bose-Hubbard system ad-
mitting chaos without external driving is the three-mode
trimer [19–25], described by the Bose-Hubbard Hamilto-
nian (BHH):

H =
K

2

∑
i=1,2

(
a†ia0 + a†0ai

)
+
U

2

∑
i=0,1,2

a†ia
†
iaiai , (6)

Here i = 0, 1, 2 label the three modes, ai and a†i are
canonical destruction and creation operators in second
quantization, K is the hopping frequency, and U is the
on-site interaction. The Hamiltonian H commutes with
the total particle number N =

∑
i a

†
iai, and hence, with-

out loss of generality, we regard N as having a defi-
nite value N . Driving is then implemented by setting
K = K0 +Kd sin(Ωt). Consequently the total Hamilto-
nian has the structure H0 + f(t)W , where the perturba-
tion operator W is identified as the first sum in Eq.(6),
and the driving field is f(t) = (Kd/2) sin(Ωt).

Chaoticity.– The underlying classical dynamics is
defined [a] by replacing the operators ai in the Heisen-
berg equations of motion [26] with complex c-numbers√
nie

iϕi . In the absence of driving, up to trivial rescal-
ing, the classical equations depend only on the single di-
mensionless parameter u = NU/K0. The chaoticity of
the motion that is generated by H0 is reflected in the
local level statistics, and can be quantified by the Brody
parameter 0<q<1 [27], such that q=0 indicates a Pois-
sonian level-spacing distribution (characteristic of inte-
grable dynamics), while higher values indicate the ap-
proach to Wigner level-spacing distribution (indicating
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FIG. 1: The energy spectrum of the unperturbed BHH. In
panel (a) the scaled eigen-energies εn of H0 are plotted versus
the scaled interaction parameter u, for N = 35 particles. The
level spacing statistics is characterized by the Brody param-
eter (0 < q < 1), which is displayed in Panel (b) for a system
with N = 120 particles. In the energy range where the motion
is chaotic q ∼ 1. Square symbols indicate the preparations
that were used for the simulations in Fig.2.

chaotic dynamics).
Fig.1a displays the spectrum εn, obtained by numerical

diagonalization of H0, as a function of u. For graphical
presentation we shift and scale the energy spectrum, for
each u, into the same range ε ∈ [0, 1], such that ε = 0 and
ε = 1 are the ground energy E0 and the highest energy
Emax respectively. By plotting q vs (u, ε), as in Fig.1b,
we can identify the ε range within which the motion is
chaotic at any given value of u. See [a] for technical de-
tails. We have verified the implied chaoticity by plotting
representative classical Poincare cross-sections.

In the numerical simulations we consider an N = 50
particle system with two representative values of u. The
case u = 5, for which there is a wide chaotic range
0.2 < ε < 0.6, is contrasted with u = 50, for which the
motion is globally quasi-integrable due to self-trapping.

Energy diffusion.– In the absence of driving the en-
ergy is a constant of motion. Driving induces transitions
between energy eigenstates, leading to a time-dependent
spread in energy ∆ε(t). This dispersion is defined as
the square root of the variance Var(εn) that is associated
with the probability distribution

pn(t) =
∣∣∣〈εn|Ψ(t)〉

∣∣∣2 . (7)

In Fig.2 we plot the time evolution of the quantum energy
distribution pn(t) in response to driving that is quantum
mechanically large (many levels are mixed) but classi-
cally small (Kd � K0). We contrast the response in the
chaotic (u = 5) and in the quasi-integrable (u = 50)
regimes. Dramatic differences are observed. In both
cases, the energy distribution in the very early stages
of the evolution reflects the band profile of the pertur-
bation matrix Wn,n0 , where n0 is the initial level, as ex-
pected from time-dependent first-order perturbation the-
ory. Later in the evolution higher orders of perturbation
theory dominate. This leads in the quasi-integrable case
to Rabi-like oscillations that have no relation to the clas-

FIG. 2: The quantum probability distribution pn(t) for rep-
resentative simulations is imaged as a function of time (right).
The short-time energy-spreading profile is determined by the
perturbation matrix |Wn,n0 |2 (left). The number of particles
is N = 50. The upper set is for u = 50, and the lower is for
u = 5. The strength of the driving is Kd/K0 = 0.1. For the
time axis we use dimensionless units τ = (Emax − E0)t/~, and
the scaled driving frequency in both simulations is Ω ≈ 0.03.
The image of the initial level is vertically zoomed, and it has
the energy ε ≈ 0.5. The boundaries of the chaotic sea in the
lower image are indicated by the horizontal dashed lines.

sical dynamics. But in the chaotic regime one observes
that the driving is capable of inducing diffusive-like en-
ergy spreading. This diffusive spreading is restricted to
the chaotic energy window, and features remarkable cor-
respondence with the classical simulation.

Linear response.– The diffusive energy spreading
in the chaotic regime can be quantified with the time
evolution of the energy variance. In Fig.3 we plot the
time evolution of ∆ε for both the chaotic and the in-
tegrable cases. In both we compare the dispersion ob-
tained under the classical equations of motion for the
driven system, starting from a micro-canonical ensem-
ble, to that obtained from quantum evolution from an
eigenstate with the same energy. As anticipated for dif-
fusive energy spreading, we observe that in the chaotic
regime (∆ε)2 ≈ 2Dt with diffusion coefficient D ∝ K2

d ,
as assumed in the Kubo linear response formula Eq.(5).

In Fig.4 we compare the diffusive energy distribution
that is observed in Fig.2, with the solution of the FPE
Eq.(1), using the diffusion coefficient from Eq.(5), see [a]
for technical details. The agreement is good, confirming
that weakly driven chaotic quantum systems can indeed
exhibit energy diffusion in regimes realistic for experi-
mental Bose-Hubbard systems, and solidifying the basis
of our phenomenological argument for the FPE descrip-
tion of inter-subsystem equilibration.

Multiple timescales.– Having established quite
good quantum-to-classical correspondence in the chaotic
regime, one wonders whether classical dynamics may in-
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FIG. 3: The scaled variance as a function of the scaled time
in the classical (left) and in the quantum (right) simulations.
The value of the scaled interaction parameter is u = 5 (up-
per panels) and u = 50 (lower panels). Note the different
scale of the vertical axis for the quantum vs classical simu-
lations in panels (c) and (d). Clearly quantum-to-classical
correspondence fails in the quasi-integrable regime. The val-
ues of Kd/K0 are 0.025 (blue), 0.05 (green), 0.075 (red), and
0.1 (cyan). The driving frequency is as in Fig.2.

0  0.5 1

1  

2  

ε

g(
ε)

,  
 D

(ε
)

0  0.5

0.005

0.01

ε

ρ(
ε)

 [s
ca

le
d 

un
its

]

(a) (b)

FIG. 4: (a) The evolving spreading profile ρ(E), referring
to the simulation that has been imaged in the lower panel of
Fig.2. The solid lines (calculation) and the associated symbols
(simulation) are for τ = 149 (narrower), and τ = 299 (wider),
and τ = 448 (widest). The lines are based on the numerical
solution of Eq.(1). (b) The density of states g(E) (dotted line)
and the diffusion coefficient D(E) (solid line) were deduced
from the diagonalization of the BHH and Eq.(5), see [a] for
technical details.

dicate features that go beyond simple energy diffusion.
Fig. 5 illustrates the classical time dependence of ε(t),
and characterizes it by its average value and dispersion.
Since the phase space has dimension greater than two,
the possibility of Arnold diffusion guarantees that the
motion is ergodic within the chaotic sea. This means
that we can regard different trajectory segments as un-
correlated pieces of the same infinite time trajectory. If
we had ergodic motion with a well defined characteristic
time, all the segments would have the same average and
dispersion. But this is not what we see: the segments
have large variation in their dispersion, since they do not
uniformly fill the whole chaotic region. Rather, the tra-

FIG. 5: On the left the scaled energy ε(t) as a function
of time is plotted for a few representative trajectories. The
right panel displays the average value and the dispersion of ε
within the time interval 0 < τ < 40000, for the representative
trajectories (symbols), as well as for many other trajectories
(points). Low dispersion values reflect the finite probability
to encounter sticky motion. The parameters are the same as
in the lower panel of Fig.2, with initial points that have the
energy ε = 0.3.

jectories contain episodes with long dwell times within
some sticky regions in phase space, whose existence has
been confirmed with a Poincaré section, see [a]. If we had
an unlimited computation power, obviously the expecta-
tion is to have coincidence of all the points in the right
panel of Fig.5. But in practice we can address only finite
time intervals, and therefore the points are scattered over
a large range.

Discussion.– We have considered few-mode Bose-
Hubbard systems as tunably chaotic systems, which in
chaotic regimes respond generically to weak driving with
energy diffusion at a rate proportional to the square of
the driving strength, K2

d . Consequently we deduce that
the thermalization of coupled Bose-Hubbard sub-systems
can plausibly be described by a phenomenological FPE,
namely Eq.(1).

We have also obtained some insight on how detailed
studies of Bose-Hubbard systems may usefully be com-
pared to such phenomenological theories. A small sub-
system can exhibit multiple time scales in its equili-
bration, because its phase spaces contain sticky regions
with long dwell times. In principle this may give rise
to non-Gaussian features, and Lévy flight-like deviations
from strict diffusive behavior. Even if these possibilities
do not manifest strongly in energy spreading of small,
driven systems, because the explored phase space vol-
ume is small, they may perhaps become important in
multi-component composite systems. It would be impor-
tant to recognize, then, in interpreting experiments or
simulations intended to test Eq.(1), that some deviations
from its diffusive assumptions may not represent errors
in its depiction of the mesoscopic onset of irreversibility,
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but only the fading traces of microscopic behavior.
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Supplementary material

The role of chaos.– The key obstacle for ther-
malization can be appreciated by considering the com-
mon paradigm for driven integrable system: the so called
“kicked rotor” as described by the “standard map” [S1].
In the absence of driving the system is integrable. The
driving amplitude is K. Below a critical value Kc ≈
0.97 there is no diffusion in energy due to Kolmogorov-
Arnold-Moser blocking. For somewhat larger values
D ∝ (K −Kc)

3. Only for strong driving amplitude one
observes a quasi-linear dependence D ∝ K2

d .
The dependence of D on the driving amplitude K is

strikingly different in the case of a driven chaotic system:
Following the ergodic adiabatic theorem of [14], it has
been realized [8–10] that a linear response dependence
D ∝ K2 shows up for arbitrarily small driving amplitude
with arbitrarily small driving frequency (“DC limit”).

In the quantum domain the applicability of linear
response has been first challenged [11] and later re-

analyzed and established [12] using a random matrix
theory (RMT) and semi-classical perspectives. The ex-
istence of the underlying classical dynamics is essential
in order to avoid RMT anomalies that arise beyond the
regime of 1st order perturbation theory [S2].

Strangely enough the semi-classical implied robustness
of the quantum diffusive behavior has never been verified,
to the best of our knowledge, for a realistic quantized
system. More precisely - there are numerous simulations
in the quantum adiabatic regime where the transitions
are mainly between neighboring levels. But the regime
of our interest is different: our interest is in driving in-
tensities that can be regarded as quantum mechanically
large, but still semi-classically small. This is the regime
where the energy landscape can be regarded as a quasi-
continuum and quantum-to-classical correspondence can
be expected.

Obtaining the Einstein relation.– Let us see how Eq.(4) is obtained from Eq.(3). We assume that both systems
are independently in a canonical state. Accordingly the joint probability distribution is

ρ(ε1, ε2) =
1

Z1Z2
g1(ε1)g2(ε2) exp

[
− ε1
T1
− ε2
T2

]
(8)

Averaging over the drift term we get the rate of energy absorption:

〈A(ε)〉 =
1

Z1Z2

∫
dE exp

[
− E
T2

] ∫
dε [∂εD + (β1 − β2)D] g1(ε)g2(E − ε) exp

[
−
(

1

T1
− 1

T2

)
ε

]
(9)

Doing integration by parts on the term that involves ∂εD, and noting that ∂εg1,2 = ±g1,2β1,2 is a contribution that
cancels with the (β1 − β2)D term, one observes that we are left with

〈A(ε)〉 =
1

Z1Z2

∫
dE exp

[
− E
T2

] ∫
dε D g1(ε)g2(E − ε)

(
1

T1
− 1

T2

)
exp

[
−
(

1

T1
− 1

T2

)
ε

]
One identifies that this is, up to the inverse temperature factor, merely the canonical average over D, leading to the
desired result Eq.(4).

Calculating the diffusion coefficient.– The power
spectrum of W due to the evolution that is generated by
H0 can be calculated from its matrix elements as follows:

S̃(ω) = FourierTransform 〈W (t)W (0)〉 (10)

=
∑
n

pn
∑
m

|Wm,n|2 2πδ(ω − (εm−εn))

Here pn are the occupation probabilities of the H0 eigen-
states. In order to calculate S̃(ω) for a given micro-
canonical energy ε the practical procedure is to plot the
smoothed value |W |2 of the squared elements |Wm,n|2 as
a function of ε = En along the diagonal (Em − En) = ω.

Then it follows that

S̃(ω) = 2πg(ε)|W 2| (11)

If multiplied by the strength of the driving |Kd|2, one
obtains the Fermi-golden-rule expression for the rate of
transitions due to a monochromatic driving. As implied
by the Kubo formula Eq.(5) the diffusion coefficient is
given by [S3]:

D(ε) =
π

2
(KdΩ)2 g(ε)|W 2| (12)

where |W |2 has implicit dependence on both ε and Ω as
explained above.
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Semiclassical form of the trimer Hamiltonian.–
In a semi-classical context one substitutes ai =

√
nie

iϕi ,
and defines qi = ϕi − ϕ0. Dropping a constant that de-
pends of the conserved total particle number N , the BHH
takes the form

H = −K0

∑
i=1,2

[n0ni]
1/2 cos qi − U [n0n1+n0n2+n1n2]

Expressing n0 = N−n1−n2 we see that the BHH is the
quantized version of two coupled degrees of freedoms,
where the effect of the interaction term (a quadratic func-
tion of n1 and n2), is characterized by the dimensionless
parameter u = NU/K0.

Level statistics and the Brody parameter.–
Given N and K and U , we find the eigen-energies of the
Hamiltonian Eq.(6). In each small energy range we cal-
culate the mean level spacing, and the distribution P (S)
of the normalized spacings. Then we fit it to the Brody
distribution [27]

Pq(S) = αSq exp(−βS1+q) (13)

with α = (1 + q)β, and β = Γ1+q [(2 + q)/1 + q)]. Here
Γ denotes the Euler gamma function. A Brody param-
eter value of q = 0 indicates a Poissonian level-spacing
distribution characteristic of the uncorrelated levels of
integrable system. By contrast for q = 1 we have the
Wigner level-spacing distribution, that reflects the level
repulsion in the case of a quantized chaotic system. Thus,
by plotting q as a function of ε we can map the domain
of chaotic motion, see Fig.1b.

For large u the dynamics is quasi-integrable due to
self-trapped motion. The dynamics is trivially integrable
also in the other extreme of very small u. While we
have also studied this latter region, the results concerning
the response to driving were similar to the self-trapping
integrability, and this point is not explicitly discussed in
order to avoid redundancy.

Poincare sections.– The left panel of Fig.6 displays
the Poincare section of a representative classical chaotic
trajectory. The right panel use the same coordinates for
plotting a trajectory of the driven system. The sticky
part of the trajectory is highlighted.
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FIG. 6: Left panel: The Poincare section of a representative
classical chaotic trajectory. The parameters are u = 5 and
ε = 0.3. The coordinates qi = ϕi − ϕ0 are conjugate to ni,
with i = 1, 2, and the section is at (q1 − q2) = π/2. Left panel:
The square labeled trajectory of Fig.5. is illustrated using the
same coordinates as in the left panel. The points along the
trajectory that have low energy (ε < 0.2) are highlighted by
dark color: they reside within a sticky region.
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