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The fluctuation-diffusion-dissipation relation

Rate of energy absorption (work):
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Derivation:
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M. Wilkinson (1988), based on the diffusion picture of Ott (1979)
C. Jarzynski (1995) - adding FPE perspective.

D. Cohen (1999) - adding FDT perspective + addressing the quantum case.

G. Bunin, L. D’Alessio, Y. Kafri, A. Polkovnikov (2011) - adding NFT based derivation.




Thermalization of two subsystems

Rate of energy transfer [FPE version]:
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Derivation:

The diffusion is along constant energy lines: &1 +e5,=¢&

The proper Liouville measure is:  g(g) = g1(£)g2(E — €)

Note: After canonincal preparation of the two subsystems:

MEQ version: Hurowitz, Cohen (EPL 2011)

NFT version: Bunin, Kafri (arXiv 2012)




The minimal model for a subsystem

The FPE description makes sense if each subsystem is chaotic and hence ergodic.

Minimal models: Billiard; 2deg oscillator; 3site Bose-Hubbard model.
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Note on linear response: Driven integrable system (e.g. "kicked rotor”) -

quasi-linear behavior shows up only for large driving amplitude € > e..




Demonstration of diffusion: driven Bose-Hubbard trimer

Quantum Vs Classical

Quantum chaos ~ QCC
[Cohen (PRL 1999)]

p(€) [scaled units]

Originally demonstrated for RM'T model
[Cohen, Kottos (PRL 2000)]




Complexity of phase space - stickiness - beyond FPE

The minimal Fokker-Planck description of thermalization:
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Complexity of phase space might affect the thermalization.

BEC trimer: long dwell times in sticky regions are reflected in &(t)
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Complexity of phase space - sparsity - beyond LRT
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[not a Gaussian matrix...] median < mean)
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The NESS of a “sparse” system
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Cold bath: wgm

wmn

Hot source: Jnm

w” by themselves - induces diffusion / ergodization

w?® by themselves - leads to equilibrium

Combined - leads to NESS

Linear response and traditional FD: vx {g} < {wP}

Glassy response and Sinai physics: [within a wide crossover regime]

Semi-linear response and Saturation: vx{g} > {w’}




FD phenomenology for a “sparse” system
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Hence at the NESS:
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Experimental way to extract response:
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D(v) exhibits LRT to SLRT crossover
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Expressions above assume n.n. transitions only.




Conclusions

. BEC trimers are the minimal building blocks for thermalization
. The generic package deal: diffusion, LRT and QCC.

. FPE based FD phenomenology for mesoscopic thermalization

. Beyond FPE - statistics of dwell times due to sticky dynamics

. Beyond LRT - sparsity - resistor network picture - semilinear response

. FD phenomenology for sparse (glassy) systems




