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We employ a minimal model of a bi-partite N -boson system, where ~ = 1/N plays the role of the
Planck constant, to study the thermalization of the constituent subsystems. We find that the rate of
relaxation towards equilibrium violates the standard linear-response (Kubo) formulation, even when
the underlying dynamics is highly chaotic. This anomaly originates from an ~-dependent sparsity
of the underlying quantum network of transitions. Consequently the relaxation rate acquires an
anomalous ~ dependence that reflects percolation-like dynamics in energy space. This dynamical
anomaly is distinct from lack of quantum ergodicity due to classical or quantum localization.

Over a century since the formulation of the Loschmidt
paradox, the emergence of thermodynamic irreversibility
from microscopic reversible quantum mechanics is still
not fully resolved. A connection between thermaliza-
tion and chaotic ergodicity is well-established for classical
systems [1]. However, strict dynamical chaos is absent
in isolated many-body quantum systems, which are lin-
ear and quasi-periodic. In contrast to nearly-integrable
quantized systems in which thermalization is slow and
intricate [2–4], it is generally accepted that if the un-
derlying classical dynamics is chaotic, there will be good
quantum-classical correspondence (QCC) in the energy
distribution between the constituent subsystems of an
isolated bi-partite quantum system [5–18]. Nevertheless,
for finite values of the (dimensionless) Planck constant ~,
anomalies may occur in which QCC is violated. One such
anomaly is due to a many-body localization effect, as dis-
cussed by Anderson and followers [19–21]. In this Letter
we consider a generic minimal model of a bi-partite N -
boson system, where ~ = 1/N plays the role of the Planck
constant. We highlight a different type of anomaly which
does not originate from the lack of quantum ergodicity,
but from the ~-dependent sparsity of the quantum net-
work of transitions. The implication is that the relax-
ation of a low-dimensional bosonic system towards equi-
librium cannot be calculated using the traditional for-
mulation, even when the underlying dynamics is highly
chaotic. Instead, it acquires an anomalous ~ dependence
that reflects percolation-like dynamics.

Thermalization in bi-partite mesoscopic systems, as-
suming generic conditions, is attained via diffusive energy
spreading in each of the constituent subsystems, in re-
sponse to its coupling to the other. This diffusive process,
described by a Fokker-Planck-Equation (FPE) [14–17],
eventually leads to ergodization of the composite system
over all accessible states within the initial microcanonical
energy shell. The traditional Kubo estimate [22, 23] for
the diffusion coefficient D of the pertinent FPE is based
on a Fermi-golden-rule (FGR) picture in which the rates
of transitions between the energy eigenstates of either
subsystem are given by first-order-perturbation-like ma-
trix elements, but over long timescales that involve many

perturbative orders. The Kubo estimate automatically
implies ’restricted QCC’ [24] because for short times the
variance (unlike higher moments) features a robust QCC,
while for long times the central limit theorem makes all
the higher moments irrelevant. Consequently the FGR
approximation in a chaotic system becomes accurate far
beyond the naive perturbative expectation.

The Kubo-FGR picture relies critically on the exis-
tence of a dense, connected network of transitions be-
tween all the available states, so that all transitions con-
tribute to the diffusive energy spreading process. Below
we demonstrate, using a concrete generic example, that
such dense networks do not always exist. The quantum
network of transitions is generally sparse, resulting in a
percolation-like process of energy spreading, that is domi-
nated by bottlenecks and preferred pathways. This leads
to the failure of the Kubo estimate and the breakdown
of QCC in a novel way, not related to the loss of quan-
tum ergodicity. We show that while the thermalization
process is still described by the FGR picture, resulting in
a FPE, it involves an anomalous ~-dependent diffusion-
coefficient D whose estimate requires a resistor-network
calculation. Thus, while the approach to equilibrium still
relies on diffusive energy flow with the same long-time
stationary energy distributions, the unique mechanism
of quantum thermalization can be much slower than its
classical counterpart.

While the existence of dynamical quantum anomalies
have been previously postulated for driven systems [25],
it was neither demonstrated for a physically appealing
system, nor considered in the context of thermalization of
isolated, non-driven systems. Below we demonstrate the
mechanism of “quantum thermalization via percolation”
using a four-mode Bose-Hubbard model.

Model system.– Consider an isolated system of
N bosons in four second quantized modes. The oper-
ators âj , â

†
j and n̂j = â†j âj annihilate, create and count

particles in site j. The dynamics is generated by the
Bose-Hubbard Hamiltonian

H =
U

2

3∑
j=0

n̂2j −
Ω

2
(â†1â2 + â†1â3 + h.c.) +HP , (1)
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FIG. 1: Quantum network of transitions. The trimer-
monomer model system is schematically illustrated in the
lower left inset. In the absence of trimer-monomer coupling
the energy eigenstates can be classified by the trimer popula-
tion x. The parameters are N = 60, NU = 20, and Ω = 3.17.
The dark points mark eigenstates lying in chaotic phase-space
regions. The blue band marks the accessible states within the
energy window Em ± 1/τ , where |m〉 is the central state at the
x = 30 band, and τ is obtained from Eq.(5) with ω = 0.1Ω.
The diamond marker denotes the chaotic preparation for the
simulation of Fig.2, whereas other markers denote the addi-
tional preparations used in Fig.5 of [a]. The upper inset zooms
over a segment of the energy shell, and illustrates the network
of transitions formed by the perturbation. The width of each
connecting line is proportional to the strength of the coupling
matrix element.

where U is the on-site interaction, and Ω couples a chain
of three sites j = 1, 2, 3. The perturbation HP generates
transitions to an additional j = 0 site, namely,

HP = −ω
2

3∑
j=1

(â†0âj + h.c.) . (2)

The Hamiltonian H thus describes a bi-partite sys-
tem constituting a Bose-Hubbard trimer coupled to a
monomer (see schematic illustration in Fig. 1). Weak
coupling between the two subsystems is assumed, i.e.
ω � Ω, NU . This partition is chosen because a trimer,
having two classical degrees of freedom (e.g. two pop-
ulation differences and two relative phases, given that
conservation of N renders the absolute phase insignifi-
cant), is the minimal Bose-Hubbard model which allows
chaos. The interaction within the trimer is quantified by
the dimensionless interaction parameter u = NU/Ω.

Quantum network of transitions.– The trimer
population x̂ ≡ n̂1 + n̂2 + n̂3 commutes with the unper-
turbed (ω = 0) Hamiltonian H0, and therefore consti-
tutes a good quantum number in the absence of coupling.
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FIG. 2: Diffusive quantum thermalization. (a) The
population distribution Pt(x), imaged as a function of time;
(b) Corresponding growth of variance: The variance of the
distribution in (a) (thick black line) is compared with stochas-
tic approximations. The FGR simulation (dashed red) and
the corresponding FPE simulation with a resistor-network es-
timate Dqm(x) for the diffusion coefficient (dot-dashed blue)
agree with the quantum simulation, unlike the traditional
FPE simulation (thin solid gray) with a Kubo-type estimate
Dcl(x) for the diffusion. Parameters are the same as in Fig.1.

The unperturbed spectrum as defined by the eigenstate
equation H0 |m〉 = Em |m〉 is plotted in Fig.1. Each un-
perturbed eigenstate is associated with a ’position’ xm on
the trimer occupation grid. Thus, Fig.1 should be inter-
preted as specifying the unperturbed trimer spectrum for
all possible trimer occupations from x = 1 to x = N . We
identify the region of chaotic dynamics by a Brody pa-
rameter map [26, a], verified by classical Poincare sections
(not shown). Eigenstates supported by chaotic phase-
space regions are marked in black in Fig.1.

The perturbation due to coupling with the additional
mode allows transfer of particles and energy and thus
generates transitions along the occupation axis x. The
transition strengths are given as 〈n|HP |m〉. The upper
inset of Fig.1 depicts the coupling network within a nar-
row [x,E] window. Due to the wide distribution of tran-
sition strengths, the obtained network is glassy. This
glassiness is reminiscent of the sparsity that arises in in-
tegrable systems due to selection rules [25].

Energy spreading.– Due to the conservation of the
total particle number N and the total energy H, and
because the coupling is weak, the trimer’s occupation x
determines its energy. We thus focus our attention on
the time evolution of the probability distribution Pt(x),
starting with a initial state |m〉. This preparation is an
eigenstate of the unperturbed Hamiltonian, but a far
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from equilibrium initial state for the combined system.
The system’s parameters are chosen such that the en-
ergy of this state (diamond blue marker in Fig. 1) lies
within a broad chaotic phase-space window.

A representative example for the evolution of the x
probability distribution in the chaotic regime is plotted
in Fig.2 with the growth of variance Var(x) depicted in
the lower panel. Similarly to the results of Refs. [15, 16],
the hallmark of chaos is stochastic-like spreading. This
diffusive behavior persists until the distribution saturates
the accessible energy window, thus leading to thermaliza-
tion.

However, the rate in which the equilibrium distribution
is approached is very far from the conventional Kubo esti-
mate and is therefore highly non-classical. The thin solid
gray line in the lower panel of Fig.2 corresponds to the
traditional FPE description of the dynamics, with a dif-
fusion coefficient Dcl(x) that corresponds to the classical
result. It is evident that the standard classical prediction
greatly overestimates the equilibration rate and that in-
deed quantum thermalization is slower due to the sparsity
of the transition network. By contrast, the dot-dashed
blue line also depicts an FPE description, but with a
percolation-theory resistor network estimate Dqm(x) for
the diffusion coefficient, that, as described below, takes
into account the ~ dependent transition network spar-
sity. We thus observe a novel anomalous process of quan-
tum thermalization, which is stochastic and adheres to an
FPE description, albeit with an underlying percolation-
like spreading process which does not correspond to the
classical dynamics.

Lineshape.– Several snapshots of Pt(x) during the
thermalization process are plotted in Fig.3, showing good
agreement between the percolation-FPE and the full nu-
merical simulation of the four-mode dynamics. By con-
trast, the conventional classical FPE thermalization gives
far broader distributions at the same times.

An additional observation concerns the long time equi-
librium distributions, plotted in Fig.3c. The saturation
profile P∞(x) of the FPE is proportional, as expected,
to the density of states g̃(x). By contrast the exact equi-
librium distribution is somewhat non-ergodic. The lack
of ergodicity in the low x region of the saturation pro-
file, is due to residual integrability within islands of the
underlying mixed phase-space. It therefore disappears
when the simulation is started deeper within the chaotic
sea. In addition, there are deviations from ergodicity
in the high x region due to Anderson-type localization.
The former semiclassical effect and the latter quantum
anomaly are both distinct from the dynamical anomaly
which constitutes our main theme. For further detail on
these deviations see [a].

Stochastic FGR rate equations.– The transition
rates between two chaotic sub-systems are non-zero pro-
vided |En − Em| < 1/τ , where the bandwidth 1/τ is de-
termined by the width of the power-spectrum of the per-
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FIG. 3: Snapshots of the spreading profile. The en-
ergy probability distribution Pt(x) of Fig. 2 is plotted at:
(a) Ωt = 2.5, (b) Ωt = 10, (c) Ωt = 1000. Line types are
as in Fig.2b with dashed line corresponding to FGR, dash-
dotted line depicting the FPE propagation with Dqm(x), and
gray solid line depicting the FPE propagation with Dcl(x).
Circles in panel (c) mark the saturation profile calculated us-
ing the convolution Eq.(23), while squares mark the ergodic
micro-canonical profile ∝ g̃(x).

turbation [16]. The FGR estimate for the non-zero rates
is accordingly,

Γmn = 2πτ |〈n|Hp|m〉|2 . (3)

With these rates, the master equation for the occupation
probabilities is

d

dt
pn = −

∑
m

Γmn(pn − pm). (4)

Our model is sub-minimal in the sense that the monomer
is not a chaotic sub-system. Still, the dynamics is the
same as for two chaotic sub-systems with 1/τ determined
by the width of the energy shell. Namely,

1

τ
=

√
〈m|H2|m〉 − 〈m|H|m〉2 . (5)

Only states within this energy shell, marked by blue lines
in Fig.1, contribute to the thermalization process. States
outside it do not participate in the dynamics. The red
dashed lines in Fig.2 and Fig.3 correspond to the propaga-
tion of Eq.(4) [a]. The agreement with the full quantum
simulation validates the stochastic FGR picture.
The FPE description.– Coarse graining of the ki-

netic equations (4) results in the FPE, which is merely a
diffusion equation in x space

∂

∂t
P (x) =

∂

∂x

[
g̃(x)D(x)

∂

∂x

(
g̃(x)−1P (x)

)]
. (6)
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FIG. 4: Diffusion coefficient. The resistor-network esti-
mate of the diffusion coefficient (blue solid line) is compared
to the standard Kubo-type estimate (gray dots for each m in
Eq.(7), and dashed black line for the m-averaged result).

Here g̃(x) is the density of states within the allowed en-
ergy shell. Unlike the textbook version of the diffusion
equation, which assumes uniform g̃(x) and D(x), the
form of the FPE (6) reflects the simple observation that
an ergodic distribution occupies uniformly all accessible
eigenstates, so that the FPE ergodic saturation profile
must satisfy P∞(x) ∝ g̃(x). The standard linear response
estimate for the diffusion coefficient, i.e. the Kubo for-
mula [22, 23], is based on a second moment calculation:

Dcl(x) =

〈
1

2

∑
n

(xn − xm)2 Γnm

〉
, (7)

where the brackets correspond to averaging over all the
in-band states m in the vicinity of x. The result of the
Dcl(x) calculation is illustrated in Fig.4. We have verified
that the obtained values of Dcl(x) are robust, i.e. are
not sensitive to the exact value of the micro-canonical
width 1/τ .
Resistor-network calculation.– As mentioned

above, the FPE simulation with the standard diffusion
coefficient Dcl(x) fails to reproduce the true dynamics as
illustrated in Fig.2. This striking breakdown of QCC is
due to the percolation-like nature of energy spreading.
As appropriate for a percolation process, D(x) should be
estimated from the conductivity of the ’resistor network’
that is formed by the quantum transitions [25]. Such
evaluation gives the proper weight to low-resistance, well-
connected links, as opposed to the over-estimated demo-
cratic weighing of Eq.(7). Thus, in steady state Eq.(4) is
formally the same as Kirchhoff’s equation∑

m

Gmn (Vn − Vm) = In (8)

where the conductances Gmn, and the voltages Vn, are
analogous to Γnm and pn respectively. In order to calcu-
late the conductance of a small x segment [x1, x2], we set

In = 0 for all internal nodes, and In = ±Isource at the
endpoints. The detailed numerical procedure is provided
in [a]. Solving for the voltage we deduce that the con-
ductance of the x segment is G(x) = Isource/(V2 − V1),
and hence the conductivity is Dqm(x) = (x2−x1)G(x).

As shown in Fig.4, the resistor-network calculated dif-
fusion coefficient Dqm(x) is substantially smaller than the
Kubo result Dcl(x). As previously stated, the FPE sim-
ulation [a] with Dqm(x), presented in Fig.2, agrees well
with the quantum simulation. The agreement persists as
long as the spreading is within the chaotic region of the
energy shell, confirming our expectations.

Discussion.– Does an isolated many-body quantum
system prepared far from equilibrium thermalize? The
short answer remains that it does, as long as the underly-
ing classical dynamics is chaotic. As shown above, ther-
malization and its relation to chaos are clearly demon-
strated even for an embarrassingly simple four-mode
Bose-Hubbard model.

However, as shown for the same model, thermalization
of a quantum system with finite ~ is quite different from
the thermalization of the corresponding ‘~ = 0’ classical
system. Whereas classical thermalization is captured well
by linear response theory, leading to a FPE with a Kubo
estimate for the energy diffusion coefficient, this approxi-
mation fails badly upon quantization. The reason for this
dynamical anomaly is the sparsity of the network of cou-
plings between the energy eigenstates of the constituent
subsystems which leads to percolation-like dynamics of
the energy distribution. As a result, while an FPE de-
scription still holds, the rate of quantum thermalization,
properly estimated by a resistor-network calculation, can
be strikingly different from that of the classical process.

It is important to distinguish between quantum anoma-
lies such as the Anderson-localization effect and the
quantum percolation-effect, and integrability effects such
as prethermalization [2–4] and semiclassical-localization.
The former are directly related to quantization and are
important for a dynamical view of Quantum Thermody-
namics [27], whereas the latter are related to incomplete
chaoticity and residual quasi-integrability regions in the
classical mixed phase-space.
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SUPPLEMENTARY MATERIAL

SYMMETRY SUBSPACES IN THE TETRAMER

The full dimension of the Hilbert space in a tetramer
with population N is N = (N+1)(N+2)(N+3)/6. The
Hamiltonian of the system can be separated into blocks of
smaller dimensions by considering the permutation sym-
metry between the external trimer sites (sites 2 and 3, in
the schematic illustration inset of Fig.1). Denoting the
population basis by |n0〉 |n1, n2, n3〉, the totally symmet-
ric and the totally anti-symmetric sub-spaces are spanned
by the following symmetrized and antisymmetrized su-
perpositions:

1√
2

(
|n0〉 |n1, n2, n3〉 ± |n0〉 |n1, n3, n2〉

)
(9)

|n0〉 |n1, n, n〉 . (10)

The former is for n2 6= n3. We restrict the simulations
to the antisymmetric subspace which includes less states
and therefore allows us to use a higher number of parti-
cles. The antisymmetric subspace excluded the possibil-
ity of having zero trimer population x = 0.

IDENTIFICATION OF CHAOS BY LEVEL
STATISTICS AND THE BRODY PARAMETER.–

Given the parameters N ,Ω,ω,U , we find the eigen-
energies of the Hamiltonian Eq.(1) (e.g., Fig.1). Dividing
the spectrum to small energy intervals, we calculate the
mean level spacing and the distribution P (S) of level-
spacings in each of them. We then fit it to the Brody
distribution [26]

Pq(S) = αSq exp(−βS1+q) (11)

with α = (1+ q)β, and β = Γ1+q [(2 + q)/1 + q)]. Here Γ
denotes the Euler gamma function. A Brody parameter
value of q = 0 indicates a Poissonian level-spacing dis-
tribution characteristic of the uncorrelated levels of inte-
grable system. By contrast for q = 1 we have the Wigner
level-spacing distribution, that reflects the level repul-
sion in the case of a quantized chaotic system. Thus, by
plotting q as a function of energy we map the domain of
chaotic motion, marked in black in Fig.1. The result was
then ascertained by inspecting classical Poincare sections
in the various regions of the map.

In order to illustrate the connection between the devi-
ation from ergodicity of the saturation profiles and the
quasi-integrability islands in the mixed phase-space, we
employ the initial states marked in Fig.1. Some lie well
within the chaotic sea, while others reside in an integrable
island. The saturation profiles for these states are shown
in Fig.5, showing a clear connection between integrability
and localization.

THE RESISTOR-NETWORK CALCULATION

In order to find the diffusion coefficient for a sparse
resistor network we rewrite Kirchhoff’s law Eq.(8) in a
matrix form,

G~V = ~I, (12)

where G is the discrete Laplacian matrix of the network,
whose diagonal elements are defined as follows:

Gm,m ≡ −
∑
n′

Gn′,m. (13)

In order to find the conductance of a segment [x1, x2]
we shortcut the bonds to the left of the segments, hence
defining a left lead. Likewise we define a right lead. Then
we place a source I1 = 1 and a sink I2 = −1 at two nodes
on the left and right leads, and solve Kirchhoff’s equation
using a psaudo-inverse routine.

FGR AND FPE SIMULATIONS

The master equation Eq.(4) can be written in a matrix
form as (d/dt)~p = W ~p and has the solution

~p(t) = eW t ~p(0) . (14)

In order to perform a simulation with the FPE Eq.(6)
we have to discritize the continuous x variable. There
are two possible strategies. One possibility is to define
formally a variable n, such that dn/dx = g̃(x). In this
variable the FPE becomes an unbiased diffusion equa-
tion:

∂

∂t
Pn =

∂

∂x

[
Dn

∂

∂x

(
Pn

)]
, (15)

where

Dn = g̃(x)2D(x). (16)

The discrete version of Eq.(15) is a master equation with
near-neighbor hopping. The rates Dn are the same in
both directions, and the solution is straightforward.

The second strategy to solve the FPE, which looks
more natural in the present context, is to stay with the
x variable. One should realize that in this variable the
ergodic state is not uniform. At steady state the current
across each x bond is zero, satisfying

wx−1,x P (x) = wx,x−1 P (x− 1) (17)

where wx,x′ are transition rates between nodes. Se-
lection rules forbid transitions between non-neighboring
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nodes, thus the W matrix contains only two diagonals at
x′ = x± 1. But unlike that master equation Eq.(4), here
W is a non-symmetric matrix. At steady state the prob-
ability distribution is identical to the normalized density
of states, hence we deduce the relation

wx−1,x
wx,x−1

=
g(x)

g(x− 1)
≡ eS . (18)

Accordingly the forward and backward transition rates
that we are using in the FPE simulation are

wx−1,x =

[
S

1− exp(−S)

]
D(x) , (19)

wx,x−1 =

[
S

exp(S)− 1

]
D(x) . (20)

Using the above rates we can solve the FPE using Eq.(14).

SATURATION PROFILE

The local density of states (LDOS) for a given initial
state (m) is defined by its overlap with the exact eigen-
states (ν),

P (ν|m) = |〈ν|m〉|2 , (21)

plotted as a function of the exact energy Eν . Evolving
the initial state m in time we define the eigenstate dis-
tribution,

Pt(n|m) =
∣∣〈n∣∣e−iHt∣∣m〉∣∣2 . (22)

The previously discussed x-distribution is related to this
kernel by binning together the probabilities of all the un-
perturbed eigenstates with the same trimer occupation,

namely Pt(x) =
∑(x)
n Pt(n|m) where the summation is

over all unperturbed states n with xn = x. Note that
while P (ν|m) is the fixed probability distribution be-
tween the exact eigenstates of the composite four-mode
system, Pt(n|m) is the time-dependent probability distri-
bution between the eigenstates of an uncoupled trimer-
monomer subsystem.

The long time saturation profile of the evolving
Pt(n|m) distribution, can be obtained directly from the
P (ν|m) of the LDOS, via the convolution formula

P∞(n|m) =
∑
ν

P (ν|n)P (ν|m). (23)

This relation is obtained by expanding the states |n〉 and
|m〉 of Eq.(22) in the |ν〉 basis, noting that only diagonal
terms survive after long time averaging. This gives very
good agreement with the long time limit of the exact
simulation, as seen in Fig.3c.

It thus becomes clear that the deviation from ergod-
icity is related to the localized LDOS P (ν|m) of certain
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FIG. 5: Saturation profiles. Quantum saturation profiles
starting from the initial states marked in Fig. 1, compared
to the micro-canonical (∝ g̃(x)) thermal distribution (square
markers). The quasi-integrable region is marked in gray and
an arrow in the chaotic region marks the initial state used in
Fig.2–Fig.4. Non-ergodicity is due to quasi-integrability at the
low x region (red lines) and due to Anderson-type localization
at the high x region (magenta lines). Quantum thermalization
is obtained for intermediate x preparations, regardless of the
precise initial conditions (blue lines).

unperturbed-eigenstate preparations |m〉. Several prepa-
rations with the same energy but lying in different phase-
space regions are marked in Fig.1, while their associated
saturation profiles are shown in Fig.5. Preparations in
the chaotic region give the micro-canonical ergodic satu-
ration profile P∞(x) ∝ g̃(x), independently of the choice
of initial state (blue lines). In the low x region of the
saturation profile the localization is of semi-classical na-
ture, due to the underlying mixed phase-space which
contains remnant quasi-integrable regions. Preparations
supported by such integrable islands have narrow LDOS
which leads to localized saturation profiles. At the high
x region, the coupling between eigenstates in different x
manifolds, as quantified by the value of the diffusion co-
efficient Dqm, becomes small (see Fig.4). Consequently,
the Anderson localization length ξ = 2πgDqm is only a
few sites, again resulting in localized saturation profiles
(magenta lines). The deviation of the saturation profile
in this region from the ergodic result of the stochastic
FGR calculation (see e.g. Fig.3c) indicates that this is
an Anderson-type interference effect.
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