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ABSTRACT: We study the time evolution of a bipartite Bose−Hubbard model
prepared far from equilibrium. When the classical dynamics is chaotic, we observe
ergodization of the number distribution and a constant increase of the
entanglement entropy between the constituent subsystems until it saturates to
thermal equilibrium values. No thermalization is obtained when the system is
launched in quasi-integrable phase space regions.

I. INTRODUCTION
The study of thermalization in isolated systems with a finite
number of degrees of freedom1 goes back to the pioneering
work of Fermi, Pasta, and Ulam (FPU) on 1D oscillator chains
with interactions.2−4 While FPU were not able to demonstrate
thermalization and observed long time recurrences, it was later
understood that the ergodization of the system depends on its
degree of nonlinearity and is linked to the onset of hard
dynamical chaos.5 Thus, beyond a certain interaction strength
threshold, at which the Kolmogorov−Arnold−Moser (KAM)
phase-space surfaces6 break down, thermalization-like behavior
is observed. Dynamical chaos and KAM physics apply also to
classical mechanical systems with very few degrees of freedom;
hence, contrary to the traditional perception of statistical
physics as describing large systems with numerous degrees of
freedom, equilibration, and statistical behavior are relevant even
for small chaotic systems.7−9

Trying to extend this understanding to the quantum realm is
not straightforward because strict dynamical chaos is absent in
quantum mechanics, which is linear and quasi-periodic by
construction. Consequently, many open issues pertaining to the
long time dynamics of isolated quantum systems and their
ergodization are still under active experimental and theoretical
investigation.10−28 These include the existence of universal
criteria for equilibration and thermalization, the mechanism by
which thermal equilibrium may be attained and the role of
quantum signatures of chaos in it, the nature of the equilibrated
quantum state, and unique quantum features such as many-
body Anderson localization.29−31 In the context of physical
chemistry, similar quantum ergodicity and localization issues
arise in relation to the quantum flow of vibrational energy in
molecules and its description via local random matrix theory
models.32,33

When a system is dynamically chaotic, classical trajectories
uniformly cover the microcanonical energy shell. The semi-

classical outcome of this ergodicity is that phase-space
distributions associated with any quantum eigenstate with the
same energy are smeared throughout this shell. As a result,
expectation values calculated for arbitrary individual energy
eigenstates coincide with microcanonical averages taken over
the appropriate energy surface. This observation is known as
the eigenstate thermalization hypothesis (ETH)13,14 wherein
thermalization occurs “within individual eigenstates”. By
contrast, when the system is classically integrable, different
eigenstates sample different phase-space regions corresponding
to different periodic orbits within an energy shell and thus give
different nonthermal expectation values.
Starting from a nonequilibrium initial state, the paradigm for

attaining thermalization between coupled quantum subsystems
is linear response theory (LRT). If the underlying classical
dynamics is chaotic, thermalization is attained via diffusive
energy spreading in each of the constituent subsystems, in
response to its coupling to the others, resulting in a linear
growth of the subsystem energy variance. This diffusive process,
described by a Fokker−Planck equation (FPE),22−28 eventually
leads to the desired ergodization of the composite system over
all accessible states within the initial microcanonical energy
shell.
Linear response theory is quantitatively based on a Fermi-

golden-rule (FGR) picture in which the rates of transitions
between the energy eigenstates of either subsystem are given by
first-order-perturbation-like matrix elements, but over long time
scales that involve many perturbative orders. The diffusion
coefficient D of the FPE is estimated from these rates by a
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Kubo formula,34,35 which implies quantum-classical corre-
spondence in the evolution of the spreading subsystem energy
distribution.36

In previous works we have studied the equilibration of Bose−
Hubbard models with three24 or four25 bosonic modes. The
viability of LRT was tested, and effective FPEs describing the
evolution of the pertinent energy distributions were derived.
The degree of thermalization was evaluated from the agreement
between the long time subsystem energy distribution and an
ergodic distribution proportional to the density of states. Here,
we expand and complement these studies by a direct calculation
of the von Neumann entanglement entropy between the
constituent subsystems of a bipartite N-boson system,
demonstrating nearly complete thermalization when the
corresponding classical motion is chaotic.
In Section II we review the model system, its quantum

Hilbert space and the determination of classically chaotic
regions. The dynamics of the intersystem particle number
distribution and its long time stationary form are described in
Section III, while the time evolution of the reduced subsystem
entropies is presented in Section IV. Conclusions are provided
in Section V.

II. MODEL SYSTEM
Four-Mode Bose−Hubbard Hamiltonian. We employ

the same model as that in ref 25: a system of N bosons in four
second quantized modes. The dynamics is generated by the
Bose−Hubbard Hamiltonian (BHH)

∑= ̂ − ̂ ̂ + ̂ ̂ + +
=

† †U
n

K
a a a a

2 2
( h. c. )

j
j P

0

3
2

1 2 1 3
(1)

where the operators aĵ, aĵ
†, and n̂j = aĵ

†aĵ annihilate, create, and
count particles in site j, U is the on-site interaction, and K
couples a chain of three sites j = 1, 2, 3. The perturbation P
generates transitions to an additional j = 0 site, namely,
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Thus, describes a bipartite system: a BHH trimer coupled to
a monomer (see schematic illustration in Figure 1). Weak
coupling between the two subsystems is assumed (ω ≪ K,
NU), and the interaction within the trimer is quantified by the
dimensionless interaction parameter u = NU/K. In the classical
description each site is described by conjugate action angle
variables (nj, φj) . The standard procedure37 is to work with
dimensionless variables. In particular, the scaled occupations
are nj/N; hence, upon quantization the scaled Planck constant
is ℏ = 1/N. The classical limit is attained by taking the limit N
→ ∞ while keeping NU constant. In this limit quantum
fluctuations diminish and the bosonic operators can be replaced
by c-numbers. The semiclassical description becomes valid if ℏ
≪ 1.
The above trimer plus monomer model is the minimal Bose−

Hubbard configuration, which allows chaos and thermalization
because the trimer subsystem is classically chaotic38 while a
dimer is not. Furthermore, this type of minimal configuration
serves as the building block for progressive thermalization of
large arrays.39,40

Hilbert Space of the Unperturbed System. The trimer
population x ̂ ≡ n1̂ + n2̂ + n3̂ commutes with the unperturbed (ω
= 0) Hamiltonian 0 and therefore constitutes a good

quantum number in the absence of coupling. The unperturbed
spectrum is defined by the eigenstate equation

ν ν| ⟩ = | ⟩νx E x, ,x x x0 , x (3)

where the tetramer states

ν ν| ⟩ = | ⟩ | − ⟩x x N x, ,x x T M (4)

are products of trimer states |x,νx⟩T and monomer states |N −
x⟩M. The index νx counts the possible trimer states within a
manifold that has x trimer particles. Thus, for any integer x ∈
[0, N] we have νx ∈ [1,(x + 1)(x + 2)/2]. Due to total particle
number conservation, the monomer occupation is uniquely
determined by x to be N − x.
In practice, since the model system is symmetric under

exchange of trimer sites j = 2 and j = 3, the Hilbert space
separates into two uncoupled subspaces spanned by the
symmetric and antisymmetric superpositions of the four-site
Fock states. Hence we can reduce the dimensionality of the
many-body system with no change in its dynamics by selecting
only the eigenstates belonging to a single symmetry subspace.
Such separation is also a necessary condition for the validity of
the level-spacing analysis described in the next section. The
resulting spectrum, classified into the different x manifolds, is
plotted in Figure 1.

Classically Chaotic Region. The region where the trimer
dynamics is classically chaotic is identified from the level-
spacing statistics.41 The adjacent spacings ratio

Figure 1. Top left: The energy eigenstates of the unperturbed (ω = 0)
trimer−monomer model (lower inset), classified by the trimer
population x. The parameters are N = 60, NU = 20, and K = 3.17.
The number of states in each x column x( ) is plotted in the upper
inset. The spectrum is scaled by assigning a zero value to the lowest
energy. Top right: Chaoticity map, showing the value of ⟨r⟩
throughout the allowed E,x range. Chaotic regions are yellow, while
integrable regions are blue. Lower panels: sections through the
chaoticity map, along the lines marked in the top right panel.
Horizontal dotted lines mark the expected values for Poissonian level
spacing statistics (quasi-integrability) and for the level spacing statistics
of the eigenstates of a Gaussian orthogonal ensemble of matrices
(chaos). Symbols denote the four preparations used throughout the
article, two of which are chaotic (unfilled markers) and two lie in
quasi-integrable or mixed regions (filled markers).
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= ∈ν ν ν ν ν− −r s s s smin{ , }/max{ , } [0, 1]1 1x x x x x (5)

where sνx = Ex,νx+1 − Ex,νx is averaged over a small energy
window. When the motion is regular the energy levels are
uncorrelated, resulting in Poissonian spacing statistics with ⟨r⟩
= ⟨r⟩P = 2 ln(2−1) ≈ 0.39. By contrast, in regions of chaotic
motion there is strong level repulsion, yielding Wigner−Dyson
spacing statistics, with ⟨r⟩ = ⟨r⟩GOE = 0.53. Intermediate ⟨r⟩
values indicate a mixed phase space, containing both chaotic
and quasi-integrable regions.
The obtained chaoticity map is plotted in Figure 1. It is in

excellent agreement with previously obtained results of a Brody
parameter map.25,42 Comparison with representative classical
Poincare sections (see Figure 2) confirms that the classical
motion is indeed chaotic in the high ⟨r⟩ regions and becomes
quasi-integrable in low ⟨r⟩ regions.

III. COUPLING INDUCED DYNAMICS
Dynamics of Subsystem Number Distribution. Cou-

pling the trimer and monomer subsystems allows the transfer of
particles and energy between them, thus inducing transitions
along the occupation axis x. Given the total system’s time-
dependent state

∑ψ ν ν ψ| ⟩ = | ⟩⟨ | ⟩
ν

x x, ,t
x

x x t
, x (6)

we focus our attention on the evolution of the trimer’s number
distribution

∑ ν ψ= |⟨ | ⟩|
ν

P x x( ) ,t x
2

x (7)

starting with an initial state |x0,νx,0⟩. This preparation is an
eigenstate of the unperturbed Hamiltonian, but far from
equilibrium initial state for the combined system.
The weak coupling condition is obeyed by selecting ω =

0.1K. Representative examples for both classical and quantum
mechanical evolution of the Pt(x) distribution with four

different initial states (marked in Figure 1) are shown in
Figures 3 and 4. Two of these preparations lie within the

chaotic region, whereas the other two reside in quasi-integrable
regions. Similarly to the results of refs 23−25, the dynamics in
the chaotic regime is characterized by stochastic-like diffusive
spreading, eventually leading to a thermalized, ergodic x
distribution. By contrast, launching the system in quasi-
integrable regions, we obtain localized, nonergodic distribu-
tions.

Quantitative Description of Pt(x) Dynamics. As outlined
in ref 25, the stochastic-like spreading dynamics of Pt(x) in the
chaotic regime is captured by the master equation

∑′ = − Γ ′ ′ −ν
ν

ν ν ν ν′ ′ ′′ ′ ′t
p p p

d
d
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,
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with rates given by a Fermi golden rule (FGR) prescription

πτ ν νΓ ′ = |⟨ ′ ′ | | ⟩|ν ν′ ′′ x x2 , ,x x x p x, , ,
2

x
x (9)

and restricted to the band |Ex,νx − Ex′,ν′x′| < 1/τ where the
bandwidth 1/τ corresponds to the width of the power-spectrum
of the perturbation, estimated by its variance

Figure 2. Representative Poincare cross sections in the phase-space of
the unperturbed system for the four initial conditions marked in Figure
1. Top panels refer to same-E points (squares), while bottom panels
refer to same-x points (diamonds).

Figure 3. Snapshots of the spreading x-distribution. The energy
probability distribution Pt(x) is plotted at the indicated times for the
regular (left panels) and chaotic (right panels) same-E initial
conditions marked by squares in Figure 1. The quantum (solid
black) and the classical (wide solid gray) simulations are compared to
the propagation of FGR (dashed red) and FPE (dash-dotted blue)
equations. The symbols in lowest panels indicate the saturation
profiles Perg(x) (squares) and P∞(x) (circles).

Figure 4. Same as that of Figure 3, only now for the same-x initial
conditions marked by diamonds in Figure 1.
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The kinetic eq 8 can be coarse grained to give a Fokker−Planck
diffusion equation in x space24,25

∂
∂
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∂
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∂
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⎦⎥t t

P x
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g x P x( ) ( ) ( ) ( ( ) ( ))1

(11)

where g(̃x) is the density of states within the allowed energy
shell. Proper evaluation of the diffusion coefficient D(x)
requires a resistor-network calculation (see refs 25 and 43 for
details).
The red dashed lines in Figures 3 and 4 correspond to the

propagation of eq 8, while blue dash-dotted lines correspond to
the propagation of eq 11. The very good agreement with full
quantum and semiclassical simulation validates these quantita-
tive descriptions.
Equilibrium Distributions. The FPE11 describes a diffusive

spreading process that continues until all accessible eigenstates
are uniformly occupied, i.e., until the x-distribution saturates
into the ergodic profile

= ̃
∑ ̃

P x
g x

g x
( )

( )
( )x

erg
(12)

However, the quantum eigenstate occupation may be expressed
in the basis of exact eigenstates |n⟩ of the full Hamiltonian :
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so that at sufficiently long times oscillating terms are averaged
out and the x-distribution approaches the stationary form

∑ ∑ ν ν= | |
ν

∞P x P n x P n x( ) ( , ) ( , )
n

x x0 ,0

x (14)

where we have defined the local density of states (LDOS)

ν ν| ≡ |⟨ | ⟩|P n x n x( , ) ,x x
2

(15)

Thus, given an initial state |x0,νx,0⟩, the long time probability of
finding the system in any other eigenstate of the unperturbed
system |x,νx⟩ is given by the scalar product of their LDOS
vector representations.
The final degree of ergodization can therefore be deduced

from a simple comparison of Perg(x) and P∞(x) (markers in the
bottom panels of Figure 3 and Figure 4). Initial preparations
which reside in quasi-integrable phase space regions are
superpositions of a fairly narrow band of exact eigenstates,
thus giving localized, highly nonergodic quantum saturation
profiles. However, when the initial preparation is chaotic, it
projects uniformly on all exact eigenstates, so that the quantum
saturation profile becomes ergodic.44,45

Comparing the long time P(x) distributions obtained in
semiclassical and quantum simulations, it becomes clear that for
quasi-integrable preparations both distributions remain local-
ized. This quantum-classical correspondence clearly indicates
that localization in the integrable domain is related to classical
phase space structures. For chaotic preparations, as pointed
above, both the classical and quantum distributions become

nearly ergodic.46,47 However, while given a sufficient amount of
time the classical distribution always approaches Perg(x), and
the final quantum distribution P∞(x) shows a residual
localization, lacking weight at large and small x. This indicates
purely quantum/many-body localization,48 which will be
studied in detail in future work.

IV. DYNAMICS OF THE REDUCED SUBSYSTEM
ENTROPY

Having established the ergodization of the population
distribution between the two subsystems in the chaotic domain,
we next demonstrate their thermalization by tracing the
dynamics of the subsystems’ entropy.49 For this purpose we
define the reduced trimer and monomer density operators

∑
ρ ρ

ν ν

=

= * | ⟩ ⟨ ′|
ν ν

ν ν
′

′a a x x
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is the pure density matrix of the complete tetramer system and
ax,νx ≡ ⟨x, νx|ψ⟩. The trimer density matrix is thus block-
diagonal and has the same size as the full density matrix, while
the monomer density matrix is a diagonal matrix of size N + 1.
The entanglement between the constituent subsystems is

quantified by the von Neumann entropy of their reduced
density matrices

ρ ρ=α α αS Tr( ln ) (19)

where α = T, M. Starting with the factorizable state |x0,νx,0⟩ (ST
= SM = 0), the entropy of the two subsystems grows as they
evolve and thermalize. Since the full system is isolated the
subsystem entropies remain equal, i.e., ST = SM = S. Complete
thermalization is indicated when S approaches the ergodic value

∑=S P x P x( ) ln ( )
x

erg erg erg
(20)

The time evolution of S is plotted in Figure 5 for the four initial
conditions considered in the previous sections. As expected,
nearly complete thermalization is obtained for the chaotic cases,
whereas if the system is launched in classically quasi-integrable
regions, the entropy remains well below its equilibrium value.

V. CONCLUSIONS
Statistical thermodynamics relies on a number of postulates,
which are usually taken for granted. Given the system’s
configuration space Ω, the probability Pt(s) of finding any
configuration s ∈ Ω at time t is assumed to obey a deterministic
master equation. Equilibration is attained if Pt(s) assumes a
stationary form as t → ∞. Thermalization requires that in
addition, the probability currents between all pairs of
configurations cancel out, resulting in detailed balance. An
isolated system thermalizes into a uniform Pt(s), i.e., regardless
of initial conditions, each accessible configuration is visited with
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equal probability. This equal a priori probability postulate is the
crux of equilibrium statistical physics.
In this work we have used a concrete quantum many-body

system to address the origins of this fundamental framework of
statistical physics and highlight the role of chaos in it. The
schematic sketch of hopping between configurations is
transformed explicitly into the FGR master eq 8. Equilibration
of the classical and quantum distributions into the stationary
limits of Perg (eq 12) and P∞ (eq 14), respectively, is clearly
observed. Thermalization is evident from the asymptotic limit
of the reduced subsystems’ entropy. It is also evident that in the
absence of chaos the system equilibrates over a restricted subset
of accessible configurations but does not thermalize into the
microcanonical equal probability distribution.
While the equilibrium quantum distribution P∞ in the

chaotic regime is nearly thermalized, its incomplete overlap
with Perg raises intriguing questions regarding the localization
mechanism. The thermalization of the classical distribution at
the same time suggests that this mechanism is an intricate
many-body effect related to the quantum entanglement
between particles. This issue will be addressed in a separate
manuscript.
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