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We study the time evolution of a bi-partite Bose-Hubbard model prepared far from equilibrium.
When the classical dynamics is chaotic, we observe ergodization of the number distribution and a
constant increase of the entanglement entropy between the constituent subsystems until it saturates
to thermal equilibrium values. No thermalization is obtained when the system is launched in quasi-
integrable phase space regions.

I. INTRODUCTION

The study of thermalization in isolated systems with a
finite number of degrees of freedom [1] goes back to the
pioneering work of Fermi, Pasta, and Ulam (FPU) on 1D
oscillator chains with interactions [2–4]. While FPU were
not able to demonstrate thermalization and observed
long time recurrences, it was later understood that the er-
godization of the system depends on its degree of nonlin-
earity and is linked to the onset of hard dynamical chaos
[5]. Thus, beyond a certain interaction strength thresh-
old, at which the Kolmogorov-Arnold-Moser (KAM)
phase-space surfaces [6] break down, thermalization-like
behavior is observed. Dynamical chaos and KAM physics
apply also to classical mechanical systems with very few
degrees of freedom; this connection implies that contrary
to the traditional perception of statistical physics as de-
scribing large systems with numerous degrees of freedom,
equilibration and statistical behavior are relevant even
for small chaotic systems [7–9].

Trying to extend this understanding to the quantum
realm is not straightforward because strict dynamical
chaos is absent in quantum mechanics, which is linear
and quasi-periodic by construction. Consequently, many
open issues pertaining to the long time dynamics of iso-
lated quantum systems and their ergodization are still
under active experimental and theoretical investigation
[10–28]. These include the existence of universal crite-
ria for equilibration and thermalization, the mechanism
by which thermal equilibrium may be attained and the
role of quantum signatures of chaos in it, the nature of
the equilibrated quantum state, and unique quantum fea-
tures such as many-body Anderson localization [29–31].

When a system is dynamically chaotic, classical trajec-
tories uniformly cover the microcanonical energy shell.
The semiclassical outcome of this ergodicity is that
phase-space distributions associated with any quantum
eigenstate with the same energy are smeared through-
out this shell. As a result, expectation values calculated
for arbitrary individual energy eigenstates coincide with
microcanonical averages taken over the appropriate en-
ergy surface. This observation is known as the Eigen-
state Thermalization Hypothesis (ETH) [13, 14] wherein
thermalization occurs ’within individual eigenstates’. By
contrast, when the system is classically integrable, differ-
ent eigenstates sample different phase-space regions cor-

responding to different periodic orbits within an energy
shell and thus give different non-thermal expectation val-
ues.

Starting from a non-equilibrium initial state, the
paradigm for attaining thermalization between coupled
quantum subsystems is Linear Response Theory (LRT).
If the underlying classical dynamics is chaotic, thermal-
ization is attained via diffusive energy spreading in each
of the constituent subsystems, in response to its coupling
to the others, resulting in a linear growth of the subsys-
tem energy variance. This diffusive process, described
by a Fokker-Planck Equation (FPE) [22–28], eventually
leads to the desired ergodization of the composite system
over all accessible states within the initial microcanonical
energy shell.

Linear response theory is quantitatively based on a
Fermi-golden-rule (FGR) picture in which the rates of
transitions between the energy eigenstates of either sub-
system are given by first-order-perturbation-like matrix
elements, but over long timescales that involve many per-
turbative orders. The diffusion coefficient D of the FPE
is estimated from these rates by a Kubo formula [32, 33],
which implies QCC in the evolution of the spreading sub-
system energy distribution [34].

In previous works we have studied the equilibration of
Bose-Hubbard models with three [24] or four [25] bosonic
modes. The viability of LRT was tested and effective
FPEs describing the evolution of the pertinent energy
distributions were derived. The degree of thermaliza-
tion was evaluated from the agreement between the long
time subsystem energy distribution and an ergodic dis-
tribution proportional to the density of states. Here, we
expand and complement these studies by a direct calcula-
tion of the von Neumann entanglement entropy between
the constituent subsystems of a bi-partite N -boson sys-
tem, demonstrating nearly complete thermalization when
the corresponding classical motion is chaotic.

In Section II we review the model system, its quan-
tum Hilbert space and the determination of classically
chaotic regions. The dynamics of the inter-system parti-
cle number distribution and its long time stationary form
are described in Section III, while the time evolution of
the reduced subsystem entropies is presented in Section
IV. Conclusions are provided in Section V.
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II. MODEL SYSTEM

A. The four-mode Bose-Hubbard Hamiltonian

We employ the same model as in Ref. [25]: a system of
N bosons in four second quantized modes. The dynamics
is generated by the Bose-Hubbard Hamiltonian (BHH)

H =
U

2

3∑
j=0

n̂2j −
Ω

2
(â†1â2 + â†1â3 + h.c.) +HP , (1)

where the operators âj , â
†
j and n̂j = â†j âj annihilate, cre-

ate and count particles in site j, U is the on-site interac-
tion, and Ω couples a chain of three sites j = 1, 2, 3. The
perturbation HP generates transitions to an additional
j = 0 site, namely,

HP = −ω
2

3∑
j=1

(â†0âj + h.c.) . (2)

Thus H describes a bi-partite system: a BHH trimer cou-
pled to a monomer (see schematic illustration in Fig.1).
Weak coupling between the two subsystems is assumed
(ω � Ω, NU), and the interaction within the trimer is
quantified by the dimensionless interaction parameter
u = NU/Ω. In the classical description each site is de-
scribed by conjugate action angle variables (nj , ϕj). The
standard procedure [35] is to work with dimensionless
variables. In particular, the scaled occupations are nj/N ,
hence upon quantization the scaled Planck constant is
~ = 1/N . The classical limit is attained by taking the
limit N →∞ while keeping NU constant. In this limit
quantum fluctuations diminish and the bosonic operators
can be replaced by c-numbers. The semiclassical descrip-
tion becomes valid if ~� 1.

The above trimer plus monomer model is the mini-
mal Bose-Hubbard configuration which allows chaos and
thermalization, because the trimer subsystem is classi-
cally chaotic [36] while a dimer is not. Furthermore, this
type of minimal configuration serves as the building-block
for progressive thermalization of large arrays [37, 38].

B. Hilbert space of the unperturbed system

The trimer population x̂ ≡ n̂1+n̂2+n̂3 commutes with
the unperturbed (ω = 0) Hamiltonian H0, and therefore
constitutes a good quantum number in the absence of
coupling. The unperturbed spectrum is defined by the
eigenstate equation

H0 |x, νx〉 = Ex,νx |x, νx〉 , (3)

where the tetramer states

|x, νx〉 = |x, νx〉T |N − x〉M , (4)

are products of trimer states |x, νx〉T and monomer states
|N − x〉M . The index νx counts the possible trimer states

FIG. 1: Top left: The energy eigenstates of the unperturbed
(ω = 0) trimer-monomer model (lower inset), classified by the
trimer population x. The parameters are N = 60, NU = 20,
and Ω = 3.17. The number of states in each x column N (x) is
plotted in the upper inset. The spectrum is scaled by assign-
ing a zero value to the lowest energy. Top right: Chaotic-
ity map, showing the value of 〈r〉 throughout the allowed
E, x range. Chaotic regions are yellow while integrable re-
gions are blue. Lower panels: sections through the chaoticity
map, along the lines marked in the top right panel. Hori-
zontal dotted lines mark the expected values for Poissonian
level spacing statistics (quasi-integrability) and for the level
spacing statistics of the eigenstates of a Gaussian orthogo-
nal ensemble of matrices (chaos). Symbols denote the four
preparations used throughout the manuscript, two of which
are chaotic (unfilled markers) and two lie in quasi-integrable
or mixed regions (filled markers).

within a manifold that has x trimer particles. Thus, for
any integer x ∈ [0, N ] we have νx ∈ [1, (x+ 1)(x+ 2)/2].
Due to total particle number conservation, the monomer
occupation is uniquely determined by x to be N − x.

In practice, since the model system is symmetric un-
der exchange of trimer sites j = 2 and j = 3, the Hilbert
space separates into two uncoupled subspaces spanned
by the symmetric and antisymmetric superpositions of
the four-site Fock states. Hence we can reduce the di-
mensionality of the many-body system with no change
in its dynamics by selecting only the eigenstates belong-
ing to a single symmetry subspace. Such separation is
also a neccessary condition for the validity of the level-
spacing analysis described in the next section. The re-
sulting spectrum, classified into the different x manifolds,
is plotted in Fig.1.
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FIG. 2: Representative Poincare cross sections in the phase-
space of the unperturbed system for the four initial conditions
marked in Fig.1. Top panels refer to same-E points (squares),
while bottom panels refer to same-x points (diamonds).

C. Classically chaotic region

The region where the trimer dynamics is classically
chaotic is identified from the level-spacing statistics [39].
The adjacent spacings ratio

rνx = min {sνx , sνx−1} /max {sνx , sνx−1} ∈ [0, 1] (5)

where sνx = Ex,νx+1 − Ex,νx is averaged over a small
energy window. When the motion is regular the energy
levels are uncorrelated, resulting in Poissonian spacing
statistics with 〈r〉 = 〈r〉P = 2 ln 2 − 1 ≈ 0.39. By con-
trast, in regions of chaotic motion there is strong level
repulsion, yielding Wigner-Dyson spacing statistics, with
〈r〉 = 〈r〉GOE = 0.53. Intermediate 〈r〉 values indicate a
mixed phase space, containing both chaotic and quasi-
integrable regions.

The obtained chaoticity map is plotted in Fig.1. It is in
excellent agreement with previously obtained results of a
Brody parameter map [25, 40]. Comparison with repre-
sentative classical Poincare sections (see Fig.2) confirms
that the classical motion is indeed chaotic in the high 〈r〉
regions and becomes quasi-integrable in low 〈r〉 regions .

III. COUPLING INDUCED DYNAMICS

A. Dynamics of subsystem number distribution

Coupling the trimer and monomer subsystems allows
the transfer of particles and energy between them, thus
inducing transitions along the occupation axis x. Given
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FIG. 3: Snapshots of the spreading x-distribution. The en-
ergy probability distribution Pt(x) is plotted at the indicated
times for the regular (left panels) and chaotic (right panels)
same-E initial conditions marked by squares in Fig.1. The
quantum (solid black) and the classical (wide solid gray) sim-
ulations are compared to the propagation of FGR (dashed
red) and FPE (dash-dotted blue) equations. The symbols in
lowest panels indicate the saturation profiles Perg(x) (squares)
and P∞(x) (circles).

the total system’s time-dependent state

|ψ〉t =
∑
x,νx

|x, νx〉〈x, νx|ψ〉t , (6)

we focus our attention on the evolution of the trimer’s
number distribution

Pt(x) =
∑
νx

|〈x, νx|ψ〉|2 , (7)

starting with an initial state |x0, νx,0〉. This preparation
is an eigenstate of the unperturbed Hamiltonian, but a
far from equilibrium initial state for the combined sys-
tem.

The weak coupling condition is obeyed by selecting
ω = 0.1Ω. Representative examples for both classical
and quantum mechanical evolution of the Pt(x) distribu-
tion with four different initial states (marked in Fig.1)
are shown in Fig.3 and Fig.4. Two of these preparations
lie within the chaotic region whereas the other two re-
side in quasi-integrable regions. Similarly to the results
of Refs. [23–25], the dynamics in the chaotic regime is
characterized by stochastic-like diffusive spreading, even-
tually leading to a thermalized, ergodic x distribution.
By contrast, launching the system in quasi-integrable re-
gions, we obtain localized, non-ergodic distributions.

B. Quantitative description of Pt(x) dynamics

As outlined in Ref. [25], the stochastic-like spreading
dynamics of Pt(x) in the chaotic regime, is captured by
the master equation

d

dt
px′,ν′

x′
= −

∑
x,νx

Γx,νx,x′,ν′
x′

(px′,ν′
x′
− px,νx) , (8)
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FIG. 4: Same as Fig. 3, only now for the same-x initial
conditions marked by diamonds in Fig.1.

with rates given by a Fermi golden rule (FGR) prescrip-
tion,

Γx,νx,x′,ν′
x′

= 2πτ |〈x′, ν′x′ |Hp|x, νx〉|
2
, (9)

and restricted to the band |Ex,νx − Ex′,ν′
x′
| < 1/τ where

the bandwidth 1/τ corresponds to the width of the
power-spectrum of the perturbation, estimated by its
variance

1

τ
=

√
〈x0, νx,0|H2|x0, νx,0〉 − 〈x0, νx,0|H|x0, νx,0〉2 .

(10)
The kinetic equations (8) can be coarse grained to give a
Fokker-Planck diffusion equation in x space [24, 25]

∂

∂t
P (x) =

∂

∂x

[
g̃(x)D(x)

∂

∂x

(
g̃(x)−1P (x)

)]
, (11)

where g̃(x) is the density of states within the allowed
energy shell. Proper evaluation of the diffusion coeffi-
cient D(x) requires a resistor-network calculation (see
Refs. [25, 41] for details).

The red dashed lines in Fig.3 and Fig.4 correspond
to the propagation of Eq.(8) while blue dash-sotted lines
correspond to the propagation of Eq.(11). The very good
agreement with full quantum and semiclassical simula-
tion validates these quantitative descriptions.

C. Equilibrium distributions

The FPE Eq.(11) describes a diffusive spreading pro-
cess which continues until all accessible eigenstates are
uniformly occupied, i.e. until the x-distribution saturates
into the ergodic profile

Perg(x) =
g̃(x)∑
x g̃(x)

. (12)

On the other hand, the quantum eigenstate occupation
may be expressed in the basis of exact eigenstates |n〉 of

the full Hamiltonian H:

Pt(x, νx) =
∣∣〈x, νx|e−iHt|x0, νx,0〉∣∣2

=

∣∣∣∣∣∑
n,m

〈x, νx|m〉〈m|e−iHt|n〉〈n|x0, νx,0〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
n

e−iEnt〈x, νx|n〉〈n|x0, νx,0〉

∣∣∣∣∣
2

, (13)

so that at sufficiently long times oscillating terms are
averaged out and the x-distribution approaches the sta-
tionary form

P∞(x) =
∑
νx

∑
n

P (n|x, νx)P (n|x0, νx,0) , (14)

where we have defined the local density of states (LDOS)

P (n|x, νx) ≡ |〈n|x, νx〉|2 . (15)

Thus, given an initial state |x0, νx,0〉, the long time prob-
ability of finding the system in any other eigenstate of the
unperturbed system |x, νx〉 is given by the vector product
of their LDOS representations.

The final degree of ergodization can therefore be de-
duced from a simple comparison of Perg(x) and P∞(x)
(markers in the bottom panels of Fig.3 and Fig.4). Ini-
tial preparations which reside in quasi-integrable phase
space regions are superpositions of a fairly narrow band
of exact eigenstates, thus giving localized, highly non-
ergodic quantum saturation profiles. However, when the
initial preparation is chaotic, it projects uniformly on all
exact eigenstates, so that the quantum saturation profile
becomes ergodic [42, 43].

Comparing the long time P (x) distributions obtained
in semiclassical and quantum simulations, it becomes
clear that for quasi-integrable preparations both distri-
butions remain localized. This quantum-classical cor-
respondence clearly indicates that localization in the
integrable domain is related to classical phase space
structures. For chaotic preparations, as pointed above,
both the classical and quantum distributions become
nearly ergodic [44, 45]. However, while given a suffi-
cient amount of time the classical distribution always ap-
proaches Perg(x), the final quantum distribution P∞(x)
shows a residual localization, lacking weight at large and
small x. This indicates purely quantum/many-body lo-
calization [46] which will be studied in detail in future
work.

IV. DYNAMICS OF THE THE REDUCED
SUBSYSTEM ENTROPY

Having established the ergodization of the population
distribution between the two subsystems in the chaotic
domain, we next demonstrate their thermalization by
tracing the dynamics of the subsystems’ entropy [47]. For
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FIG. 5: The von Neumann entropy for the reduced density
matrix of the monomer subsystem. Each panel represents one
of the initial conditions marked in Fig.1, keeping the same
ordering as in Fig.2. In the long time limit the entropy of the
chaotic states (right panels) approach the ergodic value Serg

(dashed lines), while the entropy of the regular states (left
panels) continues to oscillate about values significantly below
Serg.

this purpose we define the reduced trimer and monomer
density operators

ρT = TrM (ρ)

=
∑

x,νx,ν′
x

ax,νxa
∗
x,ν′

x
|x, νx〉T 〈x, ν

′
x|T , (16)

ρM = TrT (ρ)

=
∑
x

(∑
νx

ax,νxa
∗
x,νx

)
|x〉M 〈x|M , (17)

where

ρ =
∑

x,νx,x′,ν′
x′

ax,νxa
∗
x′,ν′

x′
|x, νx〉 〈x′, ν′x′ | (18)

is the pure density matrix of the complete tetramer sys-
tem and ax,νx ≡ 〈x, νx|ψ〉. The trimer density matrix
is thus block-diagonal and has the same rank as the full
density matrix, while the monomer density matrix is a
diagonal matrix of rank N + 1.

The entanglement between the constituent subsystems
is quantified by the von Neumann entropy of their re-
duced density matrices

Sα = Tr (ρα ln ρα) , (19)

where α = T,M . Starting with the factorizable state
|x0, νx,0〉 (ST = SM = 0), the entropy of the two subsys-
tems grows as they evolve and thermalize. Since the full

system is isolated the subsystem entropies remain equal,
i.e. ST = SM = S. Complete thermalization is indicated
when S approaches the ergodic value

Serg =
∑
x

Perg(x) lnPerg(x) . (20)

The time evolution of S is plotted in Fig.5 for the four
initial conditions considered in the previous sections. As
expected, nearly complete thermalization is obtained for
the chaotic cases, whereas if the system is launched in
classically quasi-integrable regions, the entropy remains
well below its equilibrium value.

V. CONCLUSIONS

Statistical thermodynamics relies on a number of pos-
tulates which are usually taken for granted. Given the
system’s configuration space Ω, the probability Pt(s) of
finding any configuration s ∈ Ω at time t, is assumed to
obey a deterministic master equation. Equilibration is
attained if Pt(s) assumes a stationary form as t → ∞.
Thermalization requires that in addition, the probability
currents between all pairs of configurations cancel out,
resulting in detailed balance. An isolated system ther-
malizes into a uniform Pt(s), i.e. regardless of initial
conditions, each accessible configuration is visited with
equal probability. This equal a priori probability postu-
late is the crux of equilibrium statistical physics.

In this work we have used a concrete quantum many-
body system to address the origins of this fundamental
framework of statistical physics and highlight the role
of chaos in it. The schematic sketch of hopping be-
tween configurations is transformed explicitly into the
FGR master equation Eq.(8). Equilibration of the clas-
sical and quantum distributions into the stationary lim-
its of Perg (Eq.(12)) and P∞ (Eq.(14)) respectively, is
clearly observed. And thermalization is evident from the
asymptotic limit of the reduced subsystems’ entropy. It
is also evident that in the absence of chaos the system
equilibrates over a restricted subset of accessible config-
urations but does not thermalize into the microcanonical
equal probability distribution.

While the equilibrium quantum distribution P∞ in the
chaotic regime is nearly thermalized, its incomplete over-
lap with Perg raises intriguing questions regarding the lo-
calization mechanism. The thermalization of the classical
distribution at the same time suggests that this mecha-
nism is an intricate many-body effect related to the quan-
tum entanglement between particles. This issue will be
addressed in a separate manuscript.
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