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that are driven quasistatically
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We analyze energy spreading for a system that features mixed chaotic phase space, whose control parameters
(or slow degrees of freedom) vary quasistatically. For demonstration purpose we consider the restricted three-
body problem, where the distance between the two central stars is modulated due to their Kepler motion. If
the system featured hard chaos, one would expect diffusive spreading with coefficient that can be estimated
using linear-response (Kubo) theory. But for mixed phase space the chaotic sea is multilayered. Consequently,
it becomes a challenge to find a robust procedure that translates the sticky dynamics into a stochastic model.
We propose a Poincaré-sequencing method that reduces the multidimensional motion into a one-dimensional
random walk in impact space. We test the implied relation between stickiness and the rate of spreading.
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I. INTRODUCTION

Considering a closed Hamiltonian-driven system, such as
a particle in a box with moving wall (the piston paradigm),
the textbook assumption is that quasistatic processes are adi-
abatic and therefore reversible. This claim can be established
for an integrable system by recognizing that the action vari-
ables are adiabatic invariants [1]. At the opposite extreme,
analysis of slowly driven completely chaotic systems [2–4]
has led to a mesoscopic version of Kubo linear-response
theory and its associated fluctuation-dissipation phenomenol-
ogy [5–8]. However, generic systems are neither integrable
nor completely chaotic. Rather their phase space is mixed,
resulting in the failure of the adiabatic picture [9–13] and
of linear-response theory. Namely, the phase-space structure
varies with the control parameter: Tori are destroyed; chaotic
corridors are opened, allowing migration between different
regions in phase space [14,15]; stochastic regions merge into
chaos; sticky regions are formed [16–20]; and sets of tori
reappear or emerge. Some of those issues can be regarded
as a higher-dimensional version of nonlinear scenarios that
are relate to bifurcations of fixed points, notably swallow-
tail loops [21–25], or as a higher-dimensional version of the
well-studied separatrix crossing [26–37], where the Kruskal-
Neishtadt-Henrard theorem is followed.

A. Motivation

The analysis of driven systems that feature an underlying
mixed-chaotic phase space is a rather universal theme that
has relevance to many fields in physics. There are mainly two
ways to motivate the quasistatic perspective for the pertinent
degrees of freedom (DOF). For some systems it is natural to
distinguish between slow (“heavy”) DOF, and fast (“light”)
DOF. Then it makes sense to regard the heavy DOF as para-
metric driving and to ignore the back reaction. The heavy

DOF might be the location of a piston, or it might be the
distance between the two stars that perform Kepler motion in
the restricted three-body problem (which we discuss below).

A different way to motivate this perspective originates from
mesoscopic physics. One would like to provide a compre-
hensive set of tools for the design and for the optimization
of quasistatic protocols, e.g., in the context of Bose-Hubbard
systems [38–40]. The feasibility and the efficiency of such
protocols is related to the underlying mixed-chaotic phase-
space dynamics, as demonstrated in Refs. [12,13,15].

B. Model systems

The simplest way to demonstrates anomalies that may arise
in the quasistatic limit is to study billiard systems [9,11].
The geometric construction allows a sharp distinction be-
tween regions in (phase) space. For example, the Bunimovich
mushroom geometry of Ref. [11] is composed of a regular
region (the mushroom cap) and a chaotic region (stadium-like
stem). However, such model is in some sense not generic.
More generally, phase space has hierarchical structure with
peripheral sticky regions [16] (and see Refs. [1–10] therein),
and the composition of the energy surface depends on energy.
Furthermore, in practice the distinction between the “sea”
and the “islands” is neither sharp nor fully controlled. This
requires the development of new tools to facilitate the analysis
of the time-dependent dynamics.

For the purpose of developing tools for the analysis of
quasistatic scenarios, billiards are too simple, while Bose-
Hubbard systems are overcomplicated and too demanding. A
mathematically oriented strategy would be to select an artifi-
cial Hamiltonian. But it is much more appealing to consider a
toy Hamiltonian that has physical significance. At this point,
it is appropriate to recall that the discussion of Hamiltonian
chaos is historically rooted in the three-body problem of ce-
lestial mechanics.
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C. The restricted three-body problem

It is natural to select Hill’s Hamiltonian [41–43] as a pro-
totype model for analysis. This Hamiltonian describes the
motion of a test particle in the field of force of a binary
systems (stars that perform Kepler motion). In reality the test
particle might be a satellite or a circumbinary planet [44–46].
Optionally, in order to emphasize the analogy with the piston
paradigm, we can have in mind a binary system immersed in a
cloud of dust: The dust is driven quasistatically by the Kepler
motion of the stars. In reality the “dust” might be an asteroid
system, and the binary system might consist of massive black
holes at the center of a galactic nuclei.

Hill’s Hamiltonian, unlike the Bose-Hubbard Hamiltonian,
is simple for visualization and still possesses all the generic
features of realistic models. The test-particle might perform
quasiregular motion around one of the stars or chaotic motion
wandering between the two stars. We find, as expected, a
textured phase-space structure with sticky peripheral regions.
As an additional bonus this model also allows to consider a
disintegration scenario: The test particles gains energy and
eventually escapes to infinity.

D. The full three-body problem

The analysis of the Hill’s Hamiltonian has possibly impor-
tance in the restricted sense, but we suggest that its quasistatic
perspective might be of interest also for the full three-body
problem. Here we would like to refer to Refs. [47,48] (and
see references therein). Given the total energy and the total
angular momentum, the challenge is to calculate, say, the
probability σ (E ) that one of the stars is ejected with an energy
E . For this purpose it has been assumed that phase space is
composed of a totally chaotic interaction region and an outer
region where one of the bodies becomes an outsider (possibly
unbounded). Assuming that the motion in the interaction re-
gion completely ergodizes the energy, the probability σ (E ),
up to normalization, is given by the corresponding phase-
space volume, which can be calculated analytically.

Let us speculate that in some cases the dynamics of the
escaping body, while in the interaction region, is described
by the Hill’s Hamiltonian. Then the question arises regarding
how its energy E is affected by the motion of the binary
system. It is possibly more transparent to rephrase this ques-
tions using the language of statistical mechanics. Namely,
considering a cloud of trajectories, we analyze the spreading
in energy.

Clearly, the assumption of total randomization of E is an
oversimplification for several reasons. First, integrable islands
should be excluded. But even if we ignore the islands, we
are going to show that the spreading dynamics is not trivial.
Roughly speaking, we are going to characterize the energy
distribution by its “width” and by its “average.” One expects a
fluctuation-dissipation relation that related the rate of energy
increase to the rate of the spreading [5–8]. But this relation is
endangered by the mixed phase-space dynamics.

E. Outline

In Sec. II we introduce the generalized Hill’s Hamilto-
nian. This Hamiltonian will be used as a test case for the

application of our approach. It features a mixed chaotic phase
space whose parametric evolution can be visualized using
a Poincaré landscape plot. In Sec. III we use a Poincaré-
sequencing method in order to encode the time-dependent
dynamics. Consequently, the multidimensional motion in
phase space is reduced into a one-dimensional random walk
in impact space. This inspires the introduction of an effective
stochastic model in Sec. IV and Sec. V, which is used in
Sec. VI to provide an explicit relation between stickiness and
the rate of spreading. In Sec. VII we explain that the depen-
dence on the directionality of a cycle is linked to asymmetry
that can be detected in the Poincaré-sequencing analysis. For
completeness we present in Sec. VIII the theoretical reasoning
that relates the rate of dissipation to the stochastic characteri-
zation of the dynamics.

II. THE GENERALIZED HILL PROBLEM

The Hamiltonian under consideration concerns the motion
of a test particle (satellite) in the vicinity of massive bodies
(stars). The stars are performing a cycle (X (t ),Y (t )) that has
frequency � and constant angular momentum �. It might be,
but not have to be, the Kepler motion of Appendix A. We
define the characteristic radius c such that the scaled angu-
lar momentum is � ≡ c2�. In polar coordinates the cycle is
parameterized by R(t ) = cR[θ (t )]. By definition of c, one
observes that the dθ/(2π ) integral over |R(θ )|2 is unity. Re-
garding θ as the time variable, one obtains, after a sequence
of transformations (see Appendix B), the generalized Hill’s
Hamiltonian:

H = 1
2 (p − r⊥)2 + gR(θ )u(r) − 1

2 K(θ )r2, (1)

where (prime indicates θ derivative):

K(θ ) = 1 +
[

1

R(θ )

]′′
R(θ ) (2)

and the scaled version of the attractive potential is

u(r) = − μ2√
(x − μ1)2 + y2

− μ1√
(x + μ2)2 + y2

(3)

with μ1 + μ2 = 1. The parameter g is the scaled attraction
constant for the force between the satellite and the stars. It
can be due to gravitation, or (in different context) it can be of
Coulomb origin.

For an arbitrary quasi-Kepler motion (as defined above,
meaning that � is constant) the Hamiltonian is controlled
by two parameters (R, K). So in general the satellite
experiences a cycle. But for a proper Kepler motion
K(θ ) = gεR(θ ) = 1/[1 + ε cos(θ )] with gε = (1 − ε2)−3/4.
Consequently, see Appendix C, we get a Hamiltonian that
depends on a single parameter,

H(r, p) = 1
2 (p − r⊥)2 + R(θ )

[
gu(r) − 1

2 gεr2
]
. (4)

Thus, a proper Kepler motion should be regarded as a modu-
lation and not as a cycle.

In the last paragraph of Appendix C we explain that the
dimensionless slowness parameter that indicates a quasistatic
Kepler driving is εgε/g. For simulations we used g = 25,
ε = 0.2, and μ1 = μ2 = 1/2.
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FIG. 1. Poincaré landscape. The upper panel is a standard
Poincaré section for Hill’s Hamiltonian Eq. (1) with μ1 = μ2 = 1/2,
ε = 0.2, and g = 25 at energy E = −22.2. The control parameter R
is frozen at the value θ = 0. In the middle panel each row is a px = 0
stripe of the Poincaré section at different E , while R is frozen at the
value θ = 0. In the lower panel the Poincaré stripes are plotted for
frozen R at different values of θ . Initially, E = −22.2, and later we
follow E adiabatically. The color code is such that chaotic trajectories
are red, while quasiregular chaotic trajectories are blue.

A. Poincaré landscape

Figure 1 displays a representative Poincaré section for the
time-independent (θ -frozen) Hill’s Hamiltonian. The phase-
space structure is as follows: Two (blue) regions contain
quasiregular trajectories around each of the two stars, there
are additional quasiregular regions, and there is a large (red)
chaotic sea. In order to demonstrate the variation of phase
space with respect to the energy E , or with respect to a control
parameter (here it is θ that parametrize the Kepler motion), we
propose to look on the Poincaré landscape that is displayed in
the additional panels of Fig. 1. Each row in those additional

FIG. 2. Poincaré pulses. Representative piece of the signal
f [r(t )]. The vertical red lines indicate the moments t j that are se-
lected by the Poincaré section. The signal is regarded as a sequence
of rectangular pulses (green line). Each pulse has duration Tj and
average height F̄j = Fj/Tj . In the figure F̄ is scaled vertically (×3)
to improve resolution.

panels encodes the information regarding the phase-space
structure for a different value of E or θ , respectively.

In a later section we display on top of this landscape,
an evolving cloud that is propagated by the time-depended
Hamiltonian H(r, p; θ (t )), with θ̇ = 1 as implied by our defi-
nitions of scaled time. In this time-dependent scenario, points
of the cloud can spread in energy and migrate between differ-
ent regions.

III. POINCARÉ SEQUENCING

The spreading of energy of a driven system is determined
by the fluctuations of the generalized force F that is associ-
ated with the control variable θ . Note that we assume periodic
driving and that the scaled Hamiltonian is defined such that
θ̇ = 1. For typical model systems, e.g., Billiards with moving
piston, and also for the Hill’s Hamiltonian, we can factorize
F as follows:

F = −∂H
∂θ

≡ h(θ ) f (r), (5)

where f (r) = (g/gε )u(r) − (1/2)r2. The variation of the en-
ergy is an integral over −θ̇F (t ), but for the analysis it is more
convenient to consider

Q =
∫ t

0
f [r(t )]dt ≡

∑
j

Fj . (6)

The last equality expresses the integral as a sum over pulses,
whose area is defined in the illustration of Fig. 2.

The variation of Q, unlike that of E does not include θ̇

as a prefactor, and therefore allows us, on equal footing, to
compare the fluctuations of the driven system to the fluctu-
ations that are generated by the time-independent (frozen θ )
Hamiltonian.

A. Simulations

In the simulations we consider the following scenario.
Initially, we launch a narrow cloud in the middle of the
chaotic sea. After a short transient, keeping θ frozen, this

054113-3



YEHOSHUA WINSTEN AND DORON COHEN PHYSICAL REVIEW E 105, 054113 (2022)

FIG. 3. Variation of the energy. The energy for a cloud of chaotic
trajectories is plotted as a function of time (upper panel). The spread-
ing is displayed in the lower panel (black line). Here we define SE as
the width of the central region that supports 50% of the distribution.
The blue line is a moving average.

cloud fills most of the chaotic sea. Some extra time might be
required in order to penetrate into peripheral regions where
the dynamics is sticky. We shall come back to this stickiness
issue later. Subsequently, we run the simulation with the time-
dependent Hamiltonian (θ unfrozen). Due to the driving, the
cloud further evolves as follows: (a) spreading away from the
initial energy surface and (b) migration between separated
phase-space regions. The dissipation aspect (growth of the
average-energy) is directly related to #a and indirectly related
to #b.

B. The spreading measure SQ

The traditional measure for phase-space spreading is en-
tropy, but we prefer to adopt a measure that has a direct
practical meaning. The natural choice is to look on the energy.
We define SE as the width of the energy distribution, namely it
is the range around the median where 50% of the distribution
is located (third quartile minus first quartile). In Fig. 3 we
display E for the trajectories of the cloud and extract the
spreading SE as a function of time. Both feature intracycle
modulation that is mainly related to the h(θ ) of Eq. (5). In
order to get rid of this modulation we prefer to look on Q.
In Fig. 4 we display SQ as a function of time. It is defined
as the width that holds 50% of the distribution. Its variation
in time, unlike that of SE , is rather smooth and better reflects
the systematic spreading of the distribution over phase-space
cells. Another advantage is that we can compare the SQ of

FIG. 4. Spreading. The dynamics is generated by Eq. (1), with
the same parameters as in Fig. 1. The time dependence of SQ is
regarded as a measure for spreading, where Q is defined by Eq. (6).
The black line is SQ for an ensemble of 1-cycle (normal panel) and
10-cycles (log-log panel, base 10) trajectories that were launched in
the chaotic sea. In the log-scale panel, the lower and upper dashed
lines indicate ∝ t and ∝ t2 dependence. The red and blue lines are
SQ if the control parameter R were frozen. The selected values are at
θ = 0 (red) and θ = π (blue), for which the spreading is relatively
fast or slow, respectively. According to the traditional paradigm of
quasistatic processes, the black line should be roughly between the
red and the blue lines, which is clearly not the case. The red and blue
dotted lines (lower data lines in both panels) are SQ for a signal that
is composed of a randomized sequence of the same pulses, i.e., they
provide the variance that would be expected if the actual signal did
not have phase-space correlations. We conclude that correlations are
enhanced due to the time dependence of θ (t ).

the driven system with the SQ of the frozen-θ Hamiltonian.
Clearly, in the latter context SQ is not a measure for spreading
but a measure for the fluctuations of F .

C. Optional perspective on SQ

A very long chaotic trajectory that explores the whole
chaotic sea can be regarded as a Poincaré sequence of Fj

pulses that is characterized by the SQ(t ) of Fig. 4. In order
to get SQ(t ), the chaotic trajectory can be divided into subse-
quences of length T (upper panel) or of length 10T (lower
panel), where T is the period of a cycle. Equivalently, as
described in the previous paragraph, we start the simulation
with a cloud of initial points at the middle of the chaotic sea,
evolve them, and care to exclude the initial transient.
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FIG. 5. Poincaré sequences of pulses. The rows of each image
displays the color-coded sequences F̄j of the length-T trajectories
for which the spreading has been calculated in the upper panel of
Fig. 4. The three panels are for θ = π , and for θ = 0, and for the
actual θ (t ) of the Kepler motion. The trajectories in each panel are
ordered by the average value of F̄j . The red stretches for θ = 0
indicate stickiness in red regions that will be identified in Fig. 6. The
additional blue stretches in the lower panel indicate excess dwell time
in the chaotic sea.

D. Detecting correlations

In order to figure out whether temporal correlations are
important we randomize the original Fj sequence and then
divide it again into subsequences. In Fig. 4, the spreading
of the randomized trajectories is displayed, too, for sake of
comparison. The ratio between the actual rate of spreading,
and that of the randomized trajectories, is a robust measure
for correlations.

We would like to “see” the correlation by looking on the
“signal.” For this purpose we plot images of the nonrandom-
ized subsequences in Fig. 5. The subsequences are ordered
according to their average. If the subsequences originated
from a randomized-trajectory, this average would be close to
zero, and the ordering would not result in any visual effect.

FIG. 6. Poincaré mapping of pulses. The upper panel displays
the Poincaré section for the θ = 0 Hamiltonian. Those are the same
chaotic trajectories as in Fig. 1 (the quasi-integrable regions are left
empty), but the points are color coded by the values of F̄j . The black
line indicates the border of the energy surface (the forbidden region
is outside). The lower panel shows a chaotic trajectory (x(t ), y(t )).
The color encodes the time. The black stretch indicates motion in the
“red” sticky region of the upper panel. It is characterized by an “∞”
shaped loops.

But sequences of the nonrandomized trajectory are correlated.
The correlations can be identified by inspection of the figure.
Specifically, the sequences of the time-independent θ = 0
Hamiltonian exhibit long red stretches, and the Kepler-driven
sequences exhibit also blue stretches. This should be con-
trasted with the sequences of the θ = π Hamiltonian, that look
rather uncorrelated.

E. Phase-space exploration

Having identified correlations in the “signal,” we would
like to trace their phase-space origin. For this purpose we
point out that the value F of the pulse provides information
about the location of the phase-space region that supports the
pulse, as demonstrated in Fig. 6. Roughly speaking, we can
regard F as a radial coordinate for points in the Poincaré
section. Variations in the value of F indicate migration of the
trajectory between different regions. In this specific example,
red pulses originate from peripheral regions of the chaotic
sea, while blue pulses originate from the central region of
the chaotic sea. Thus, the red and blue stretches in Fig. 5
indicate stickiness in phase-space regions that have distinct
typical nonzero value of F .

The stickiness to peripheral regions is expected. It has been
studied in past literature. What we find rather surprising is the
extra stickiness that we find in the dynamics that is generated
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FIG. 7. Driven system dynamics. In the upper panel a trajec-
tory of the Kepler-driven Hamiltonian is presented using the same
section as that of Fig. 6. Gray is used for all the points of the
trajectory, while red and blue are used for the correlated stretches of
Fig. 5. Parameters are the same as in Fig. 1. The Hamiltonian is time
dependent. Accordingly, the cloud of trajectories spreads in energy
and can migrate between different regions. This is demonstrated in
the lower panel, where we use the same presentation method as in
Fig. 1. The native chaotic region, which corresponds to the red areas
in Fig. 1, is in black. The evolving cloud of the Kepler-driven system
is displayed using blue, red and gray dots. Red indicates sticking in
periphery regions, while blue indicates sticking in the native chaotic
sea. The nonsticking gray points expand into “swamp” regions that
are located outside of the native chaotic sea. See text for further
details.

by the Kepler-driven system: The additional blue stretches
indicate excess dwell time in the central region of the chaotic
sea.

A more careful inspection, see Fig. 7, reveals that the stick-
iness in the central region of the chaotic sea is in the region
that was chaotic also in the absence of driving. So roughly
we have the following regions: (a) native chaotic sea region,
(b) swamp chaotic region, (c) peripheral chaotic regions, and
(d) quasiregular regions. The swamp regions appear due to the
driving. They form in some sense a barrier between the native
chaotic sea and its periphery. As for the quasiregular regions:
They are excluded from our simulation, and not penetrated by
the chaotic trajectories.

IV. STOCHASTIC MODELING

Hard-chaos dynamics can be described as a random hop-
ping between cells in phase space. We have mixed-chaotic

FIG. 8. Transition probability matrix. The matrix element Pn,m is
the probability to make a transition form bin m to bin n. The images
of the matrix are for the frozen θ = 0 dynamics and for the Kepler-
driven dynamics. In both cases one observes high probability to stay
in the red region (last bin). In the Kepler-driven case there is also
enhance probability to stay in the blue region (first bin).

phase space, with tendency for stickiness in, e.g., peripheral
regions, and therefore an effective stochastic description be-
comes a challenge. We introduce a robust procedure for this
purpose. First, we recall that (i) chaotic motion is ergodic
and (ii) the pulse strength F is like a radial coordinate. It is
therefore rather natural to divide phase space into F cells.
The size of the F bins is determined such that all the (binned)
values have the same rate of occurrence in the Fj sequence. In
particular we distinguish in Fig. 6 the blue and the red regions,
which correspond to the bins that contain the smallest and the
largest pulses, respectively.

A. Stochastic kernel

Having done the F binning of phase-space regions, it
becomes possible to define a matrix P whose element Pn,m

provide the probability to make a transition form bin m to bin
n. Note that the calculation of P is a straightforward “signal
analysis” procedure that is based solely on the inspection of
the Fj sequence.

An image of the Pn,m matrix is provided in Fig. 8. Qual-
itatively, we see that the images reflects our expectation for
enhanced probability to stay in red and blue regions whenever
stickiness is observed in Fig. 5. But this is misleading. In fact,
P is not capable of providing an explanation for the stickiness.
We explain this point in the subsequent paragraph.
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FIG. 9. Survival probability P (τ ). The probability to find a pulse
that has at least τ consecutive pulses at the same region. The red
and blue refer respectively to survival in the red and in the blue
regions. The + symbols are for the time-independent θ = 0 Hamil-
tonian, and the ∗ symbols are for the Kepler-driven time-dependent
Hamiltonian. The solid lines are the analytic results based on the
minimal stochastic model (the thicker lines are for the Kepler-driven
Hamiltonian). The dashed lines illustrate the naive exponential decay
for the time-independent θ = 0 Hamiltonian.

We can generate artificial Fj sequences using P as the prop-
agator (kernel) for a memory-less Markov process. Naively,
one might have the hope to get sequences that have the same
statistical properties as the original Poincaré sequences. But
this is not the case: The Markov process does not reproduce
the red and blue stretches that are seen in Fig. 5. On the
quantitative side, we define the probability P (τ ) for survival
in (say) the “red” region after τ steps. It is defined as the
relative number of “red” pulses that have at least τ consecu-
tive red pulses. (In other words, it is the inverse-cumulative
distribution of the dwell time in the the red region). The
one-step survival probability is Ps ≡ P (τ = 1). Accordingly,
for a Markov process with Pn,m we get

P (τ )|Naive = (Ps)τ , τ = 0, 1, 2, . . . . (7)

The actual P (τ ) clearly does not agree with exponential
decay, as shown in Fig. 9. The naive expectation grossly
underestimates the stickiness.

V. MINIMAL STOCHASTIC MODEL

The failure of Pn,m to reproduce P (τ ) is easily understood
by inspection of phase space. For presentation purpose we
focus on the stickiness in the “red” region(s) of Fig. 6. Regard-
ing this region as composed of tiny phase-space cells, we can
determine what is the “survival time” in the red region for each
cell. Then we realize that red cells with large survival time
constitute a minority. Accordingly, Pn,m should be regarded as
the coarse-graining of a finer kernel Pν,μ. Note that the type
of index (Roman vs Greek) is used in order to distinguish the
coarse-grained version from the “microscopic” version.

We construct a minimal version for Pν,μ, that corresponds
to Pn,m, such that P (τ ) is reproduced correctly. Using this
model we relate the rate of spreading to the stickiness. The
calculation of P (τ ), given a Markov kernel P, is done as

follows:

P (τ )|Markov =
(

1

p† p

)
p†(QP)τ p. (8)

In this expression p is a vector that contains the initial dis-
tribution within the bins. Specifically, we assume uniform
distribution within the “red” bins. Note that (p† p)−1 is the
number of participating red bins. The matrix Q is a projector
on the red bins, and the final projection provides the total
survival probability after τ iterations with QP. We can adopt
the area of P (τ ) as a measure for stickiness. For a given
Markov process it is calculated as follows:

S =
∑

τ

P (τ ) =
(

1

p† p

)
p†

[
1

1 − QP

]
p. (9)

Note that the naive expression Eq. (7) gives a rather low value
S = 1/(1 − Ps).

We already saw in Fig. 9 that a naive 2-region model is
not enough to reproduce the stickiness. So the minimum is
apparently 3-regions. We assume that we have n0 phase-space
cells in the nonred region, and n1 + n2 cells in the red re-
gion. Consider the possibility of fully connected chaos with
N = n0 + n1 + n2 cells with equal transition probabilities.
Then the reduced P that describes the transitions of proba-
bilities among the three regions would be

P = 1

N

⎛
⎝n0 n0 n0

n1 n1 n1

n2 n2 n2

⎞
⎠. (10)

The survival probability in the red region would be
P0 = (n1 + n2)/N , that is characterized by S0 = 1/(1 − P0).

We now turn to consider a mixed phase space, where the
chaotic sea is connected, but not fully connected. Specifically,
we assume that the transition probabilities from the n0 cells to
the n1 cells are all equal to p1, while all the transition proba-
bilities between the n1 cells and the n2 cells equal q. Then the
reduced P that describes the transitions of probabilities among
the three regions is

P =
⎛
⎝1 − n1 p1 n0 p1 0

n1 p1 1 − n0 p1 − n2q n1q
0 n2q 1 − n1q

⎞
⎠. (11)

The model is characterized by four parameters

P0 = (n1 + n2)

n0 + (n1 + n2)
≡ Nred

N
, (12)

Rs = n2

n1
, (13)

Ps = 1 −
(

n1

n1 + n2

)
n0 p1, (14)

Qs = n1q. (15)

The parameters P0 and Rs reflect the relative size of the re-
gions. Namely, P0 is the relative size of the red region (and
hence would equal the survival probability in the red region if
we had fully connected chaos), and Rs is fraction of sticky red
cells. The parameters Ps and Qs reflect the transitions between
the regions. We could have added also direct transitions with
probability p2 between the n0 and the n2 cells, but it turns out
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that this would be a redundancy for our purpose. Also the total
number of cells is insignificant for the analysis.

All the probabilities in the P matrix must be less than 1.
This imposes some constraints over the valid range of the
model parameters. In particular one realizes that if Rs > 1,
then Ps > (1/2). Therefore, in order to describe a model that
exhibits stickiness (small Ps) we have to assume Rs < 1, and
then the same constraints imply that Ps > [Rs/(Rs + 1)].

In practice the effective parameters (Ps, Rs, Qs) are de-
termined from P (τ ), as explained in Appendix D. These
parameters determine the stickiness measure of Eq. (9),
namely

S = 1

1−Ps
+

[
Rs

Rs + 1

]
1

Qs
. (16)

For Rs = 0 we get the naive result S = 1/(1 − Ps). In the
limit Qs → 0 there is no decay from the n2 cells, and then the
survival probability approaches P (∞) = Rs/(1+Rs), and S
diverges. The minimal value S = S0 = 1/(1−P0) is obtained
for a fully connected chaos.

On the basis of the simulations, we have determined P (τ )
for the blue and for the red regions for both the θ = 0 Hamil-
tonian and for the Kepler-driven Hamiltonian. The results are
displayed in Fig. 9. The effective model parameters have been
extracted and are listed in Appendix D.

VI. STICKINESS AND RATE OF SPREADING

We relate the rate of spreading to the stickiness. Within the
framework of the stochastic picture, the spreading is deter-
mined by the time-dependent diffusion coefficient

D(t ) ≡ 1

2

t∑
τ=−t

C(τ ) (17)

with the correlation function

C(τ ) = 〈Fτ F0〉 = 1

N

∑
μ,ν

fμ[Pτ ]μ,ν fν, (18)

where N is the number of cells and fμ is the F value that is
associated with the phase-space cell that is indexed as μ. Note
that a finite result for P (τ ) is obtained provided

∑
fμ = 0,

reflecting that the correlation function is defined after subtrac-
tion of the average (i.e., for a zero average signal).

Without the sticky red region, the correlation function is of
the form C(τ ) = C0δτ,0. With the red region included, we get
correlations due the stickiness. To evaluate the contribution
of the latter we use the reduced matrix of Eq. (11), where
all the cells are grouped into three regions. In such case the
sum over μ in Eq. (18) is replaced by a sum over regions, and
the number of cells in each region should be introduced as a
weight factor. Then one obtains

C(0) = C0 + P0S0 f 2
red, (19)

where fred is the average F value of the red region, and it
is implied that the average F value of the nonred region is
−P0S0 fred. The summation over τ leads to Eq. (18) with Pτ

replaced by 1/(1 − P). The zero mode has to be excluded

FIG. 10. Stochastic modeling of spreading. The solid lines are
Var(Q) for the Fj digitized sequences. See Appendix D for technical
details regarding the “digitization.” Note that the “time” (τ ) is the
number of Poincaré steps. The red lines are for the θ = 0 Hamil-
tonian, and the black lines are for the Kepler-driven Hamiltonian.
The lower dashed lines are the prediction of the effective stochastic
model. The dotted lines are for a randomized Fj sequence, namely the
expected result if the pulses were uncorrelated. The lower and upper
dashed lines indicate ∝ t and ∝ t2 dependence (the former cannot be
resolved from the dotted lines).

from the inversion. Including C0 we get

∞∑
τ=0

C(τ ) = C0 + P0S f 2
red. (20)

We define the correlation factor as follows:

cs =
∑

τ C(τ )

C(0)
= 2

[∑∞
τ=0 C(τ )

C(0)

]
− 1. (21)

It is the correlation “time” in terms of iterations with the
Poincaré map. For the minimal model of Eq. (11) one obtains

cs = 2

( S
S0

)
− 1, for C0 = 0. (22)

Note that for fully connected chaos we get cs = 1 as expected.
For the Kepler-driven system we observed an additional

“blue” sticky region. Therefore we have to generalize the
minimal model, such as to have two sticky regions, “red” and
“blue.” The total number of cells is N = N0 + Nred + Nblue.
We define Pred

0 = Nred/N and Pblue
0 = Nblue/N . Each of the

regions has its own P (τ ), with effective parameters that have
been determined in Appendix D. The implied average F value
of the N0 region is f0 = −(1/N0)[Nred fred + Nblue fblue]. Then
one obtains

C(0) = C0 + N0

N
f 2
0 + Pred

0 f 2
red + Pblue

0 f 2
blue (23)

and
∞∑

τ=0

C(τ ) = C0 + Pred
0 S red f 2

red + Pblue
0 Sblue f 2

blue. (24)

For Nblue = 0 these equations lead back to Eq. (22).
The correlation factor can be extract numerically from the

SQ plots of Fig. 4. Namely, it is the ratio between the slope
of S2

Q for the true pulse sequence and that of the randomized
sequence (of the same pulses). By inspection of Fig. 10 we see
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FIG. 11. The billiard paradigm. This caricature clarifies the
mechanism of dissipation in the quasistatic limit. The control pa-
rameters are R = (X,W ), where X is the position of the piston and
W is the height of a dividing barrier. Consider the “blue” quasistatic
cycle: The barrier is turned on (W = ∞); the piston is pushed in;
the barrier is turned off (W = 0); and the piston is pushed out. Such
cycle, unlike the “red” modulation, raises the average energy of the
system (E �→ αE with α > 1). Note that the blue and red E (t ) plots
reflect the average over an ensemble of trajectories.

that the true S2
Q exhibits a superdiffusive transient, indicating

long-time correlations that are not captured by our simplified
model. The agreement with the minimal model is qualitative
rather than quantitative. Some extra details about the quanti-
tative aspect are provided in Appendix D.

We see that a model that faithfully reproduces P (τ ) is
not enough for the determination of C(τ ). In principle we
could have introduced a more elaborated stochastic model
that features a hierarchy of red and blue regions, but such
an approach has no practical value and does not allow the
derivation of analytical results.

VII. CYCLE VS MODULATION

It is important to distinguish between cycle and modula-
tion. Consider a Hamiltonian HR where R is a set of control
parameters. In a time-dependent scenario, we can say that the
Hamiltonian varies along a curve in a parametric manifold. A
modulation can be parametrized by a single noncyclic param-
eter, say, R(t ) = A cos(�t ), while a cycle requires an angle
parameter, say, θ (t ) = �t , where θ is defined modulo 2π . A
prototype example for cyclic driving is presented in Fig. 11.

It is sometimes difficult to determine whether the time
dependence in the Hamiltonian should be regarded as constant
or as modulated or as cyclic driving. For example, the time
dependence for particle in a rotating box can be removed by
transforming into a rotating frame. Similarly, the time depen-
dence for a particle in an expanding box can be removed via
a dilation transformation. In the case of a cycle, the outcome
depends in general on the sense of the cycle, and furthermore,
for a mixed phase space, we expect difference in the rate of
spreading.

At first glance, one may naively think that a Kepler-driven
system qualifies as cyclic driving. The two parameters might
be (X (t ),Y (t )) or equivalently (R(θ ), K(θ )) as in Eq. (1).

FIG. 12. Cyclic driving. An example for a generic driv-
ing cycle in (R, K) is illustrated by the blue line, where
R(θ ) ∝ [1 + ε cos(θ ) + ε′ sin(2θ )]−1 and K is determined by
Eq. (2), with ε = 0.2 and ε′ = 0.1. For Kepler driving we set ε′ = 0
and get the black line, which is a single-parameter modulation.

But it turns out that for a proper Kepler driving the cy-
cle degenerates into a modulation. In order to avoid such
“degeneracy,” we have to assume an asymmetric R(θ ), for
example, R(θ ) ∝ [1 + ε cos(θ ) + ε′ sin(2θ )]−1, that is illus-
trated in Fig. 12.

If we have a nondegenerate cycle, we can ask whether
the rate of spreading depends on its sense (cycle vs reversed
cycle). For a system with mixed-chaotic phase space indeed
we can have such dependence, as discussed for, e.g., the
mushroom billiard in Ref. [11]. A different illustration of
the same idea is provided in Fig. 11. During the cycle the
space is divided by a barrier (that serves as a “valve”) into
two regions. This is done periodically and out-of-phase with
respect to the piston movement. Specifically, in the plotted
illustration, the splitting ratio of the cloud is roughly 1:2 for
the forward cycle and roughly 1:1 for the reversed cycle.
Changes of energy due to changes in the volume obey a simple
“ideal gas” multiplicative law E �→ αE , where α is given by
Eq. (E7). The value of α depends on the sense of the cycle,
due to the different splitting ratio, and we get α = 10/9 and
α = 9/8, respectively.

However, the billiard examples are rather artificial. They
are based on construction that allows a sharp distinction be-
tween regions in (phase) space. Generic systems, such as
the Hill’s Hamiltonian, do not feature dramatic splitting and
merging of well-defined (phase) space regions. Consequently,
dependence on the sense of the cycle is not a prominent
effect, and a careful numerical procedure is required to detect
it. This motivates the following discussion of directionality
dependence.

A. Directionality

The dependence on the sense of the cycle is related to
the directionality dependence of a modulation. The argument
is as follows: A modulation can be encoded by a sequence
AĀAĀ · · · AĀ · · · . The inverse modulation is clearly the same
sequence. A cycle can be encoded as AB̄AB̄ · · · AB̄ · · · . The
reversed cycle BĀBĀ · · · BĀ · · · is distinct if the cycle is
not degenerated (A �= B) and provided A and Ā are not
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FIG. 13. Directionality dependence. The probability distribution
of the Fj over the bins is uniform by definition. It can be regarded
as the sum of “forward” pulses distribution and “backward” pulses
distribution. Here we plot the deviation of the cumulative probability
distribution of the backward pulses from a uniform distribution. The
horizontal axis is the indexed F value (the smallest value is indexed
as 1 and the largest value is indexed as 38 516). We see that the small
values (blue pulses) become slightly more frequent, as opposed to
the large values (red pulses) that become slightly less frequent.

characterized by the same spreading rate. It is therefore
enough to establish dependence on directionality.

Regarding the sequence Fj as a “signal,” we ask whether it
looks statistically the same during the “forward” half period
when R(θ ) changes from R(0) to R(π ), and the “backward”
half period when it changes from R(π ) to R(0). In the standard
paradigm of quasistatic processes the directionality has no
significance. In Fig. 13 we plot the distribution of the F values
for the two groups of pulses. For the full signal the distribution
of the Fj over the bin is uniform by definition. But if we look
only on the pulses that belong to the “backward” half-periods
we see that the small values (blue pulses) become slightly
more frequent, as opposed to the large values (red pulses) that
become slightly less frequent. The difference is very small.
Still, it indicates that the steady state is not the same for
“forward” and “backward” driving.

VIII. DISSIPATION

Dissipation is associated with energy spreading. The
standard theory [2–4] assumes a globally chaotic energy
surface that instantly ergodizes at any moment. It follows
that the phase-space volume N (E ; θ ) is an adiabatic in-
variant, where θ (t ) is a slowly varying control parameter.
For a closed cycle, the conservative work is zero. Still,
beyond the zero-order adiabatic result, there is diffusion
in energy with coefficient DE = νθ̇2, where ν is the in-
tensity of the fluctuations, i.e., the algebraic area of C(t ).
From the Fokker-Plank description of the spreading pro-
cess, one deduces the rate of absorption Ė = μθ̇2, or
the Kubo formula, with dissipation coefficient μ that is
related to ν via a fluctuation-dissipation relation [5–8],
namely μ = (1/2)βν, where β(E ) is some version of
microcanonical inverse temperature, as defined in Ap-
pendix E. Consequently, for periodic driving with frequency
� ≡ θ̇ one expects an amount Q = 2πμ� of dissipated

energy per cycle, which vanishes in the quasistatic limit
(� → 0).

For a driven mixed-chaotic system, we expect parametric
dissipation, meaning that the dissipated energy per cycle (Q)
approaches a finite nonzero constant in the limit (� → 0)
and depends on the directionality of the driving as discussed
in the previous paragraph. Billiard examples that have been
discussed in the past, as well as that of Fig. 11, are illumi-
nating but do not fully reflect some complications that are
encountered once we deal with a generic system, such as
Hill’s. In what follows we highlight those zero-order subtleties
and also generalize the first-order formulation.

A. Zero-order dissipation

In systems with mixed-chaotic dynamics, we can get ir-
reversibility due to phase-space spreading (growth of the
entropy), as well as dissipation (growth of the average en-
ergy), even in the quasistatic limit. The derivation of this claim
requires phase-space generalization of Ref. [11]. This general-
ization is presented in Appendix E. We write the phase-space
area as A = ∑

μ Aμ, where μ distinguishes different regions.
Each region might have a different “inverse temperature” βμ.
Then we obtain the following result:

〈Q〉0 ≈ −
∑
steps

∑
μ

δAμ

βμA
+ O(δA2). (25)

This expression is obtained from Eq. (E6) after expansion
with respect to δA = Aμ − A(0)

μ . Based on Eq. (25) our ob-
servation is that we can get an O(δA) nonzero result provided
the βμ are nonidentical. In such case 〈Q〉0 can switch sign
for a reversed cycle. This should be contrasted with a billiard
system for which the βμ = 1/E are identical and 〈Q〉0 is
always positive.

B. First-order dissipation

We define F = −∂H/∂θ . For a periodically driven Hamil-
tonian with θ̇ = � we have Ė = −�F (t ). Integrating over
a cycle, squaring, and averaging over an ensemble, we get
Var(Q) = 2πν�, where ν is the intensity of the fluctuations
(the area of the F autocorrelation function). This assumes
a globally chaotic energy surface. If we have a fragmented
phase space (as in the previous billiard example), then we
get Var(Q) = Var0(Q) + 2πν�, where Var0(Q) is the vari-
ance that is associated with 〈Q〉0. Using the above explained
fluctuation-dissipation reasoning, we deduce that the energy
increase per cycle is

〈Q〉 = 〈Q〉0 + 1
2βeff[Var0(Q) + 2πν�]. (26)

This expression goes beyond Kubo, because the zero-order
spreading is taken into account. Note that if correlations per-
sist over a time duration that is longer than a cycle, then the
result is a long superdiffusive transient as in Fig. 4. In any case
the appropriate correlation factor cs has to be incorporated in
the calculation of ν, as discussed in Sec. VI.
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IX. SUMMARY AND OUTLOOK

We have introduced an effective stochastic theory for qua-
sistatic spreading in systems with mixed chaotic phase space.
The main objective was to provide tools for the analysis of
phase-space spreading, more specifically, the spreading of the
energy, which is useful for the calculation of the average
energy growth (dissipation), and possibly for estimating the
rate of “evaporation.”

For demonstration of our approach we have selected Hill’s
Hamiltonian. This toy model, by itself, has physical sig-
nificance, as discussed in the Introduction. The problem of
interest has possibly direct relevance to studies that concern
the long-term stability of planets in binary systems [44–46].
Furthermore, it illuminates the relevance of mixed-chaotic
dynamics in the context of the three-body problem. The model
has all the essential ingredients for our analysis. However,
in retrospective, we have to admit that stickiness, rather than
a zero-order dissipation effect, is the dominant feature that
determines the rate of spreading. This stands in contrast to the
analysis of energy spreading due to quasistatic driving of spe-
cially designed billiard systems [9–11], which has motivated
the present study.

Our agenda was, on the one hand, to characterize the
multidimensional phase-space dynamics via “signal-analysis”
of a single chaotic trajectory. On the other hand, we wanted
to reproduce the essential statistical features of the “signal”
using a minimal Markovian model.

For the characterization of the chaotic motion, we repre-
sent the chaotic trajectory as a Poincaré sequence of pulses
(Fj). The value of F is regarded as a “radial” phase-space
coordinate that is used in order to divide phase space into
regions (indexed by n). We realize that this coarse-graining
is too rough: We cannot build on it a Markov process that
reproduces the observed stickiness. We therefore have to de-
fine a refined version of the Markov process that reflects the
hierarchic structure of phase space. Consequently, we con-
structed a minimal model that allows us to reproduce the
observed stickiness. This model suggests a relation between
the stickiness and the enhancement that is observed is the
rate of spreading. Unfortunately, in the present model, the
quantitative agreement is poor due to long-range correlations
that were neglected.

Specifically, for the frozen dynamics, we have identified
stickiness in peripheral regions of the chaotic sea. A minimal
stochastic model for such configuration requires three regions
(central chaotic region, nonsticky peripheral chaotic region,
and sticky peripheral chaotic region). Surprisingly, in the
Kepler-driven system extra stickiness manifests in the native
chaotic sea. This extra stickiness is related to the appear-
ance of an additional “swamp chaotic region,” where chaos
penetrates due to the time dependence of the Hamiltonian.
Nevertheless, it can be treated on equal footing using the same
stochastic model (with extra regions).

We also looked for directionality dependence, implying
that the rate of spreading is not the same if a cycle is reversed.
We have clarified that also this effect can be identified from
the “signal analysis” of the Poincaré sequence. For the model
system that we have studied, the finding was that it is a very
weak effect (a few-percentage difference).

Finally, for sake of generality, we have explained how the
Kubo theory of dissipation can be generalized in order to
incorporate both the zero-order and first-order irreversibil-
ity. This picture implies exponential energy growth if 〈Q〉
of Eq. (26) is proportion to E . This is indeed the case
for billiard systems if 〈Q〉0 �= 0 as discussed originally in
Refs. [9–11]. More generally, we can get from Eq. (26)
different energy dependence, say, Ė = λEα . Note that for
α > 1 one obtains hyperbolic-like growth that leads to escape
E ∼ 1/(t − te)1/(α−1) within a finite time te. The exploration
of such scenario requires further study of possibly different
model systems.
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APPENDIX A: BASIC FORMULAS FOR KEPLER MOTION

The constant of motion in Kepler problem is the angular
momentum. In terms of polar coordinates (θ, R) we define
� = R2θ̇ . Kepler’s area law is the statement

d

dt
Area = 1

2
�. (A1)

The Kepler motion is along an ellipse with major axes a and
b = √

1 − ε2a. We also define c = √
ab. From the area law

it follows that T = 2πab/�. Accordingly, the frequency is
� = �/(ab). So we have the relation

� = ab� = c2�. (A2)

For a circular motion of radius R = a = b = c, the frequency
the motion is determined by the equation

�2a3 = G(M1 + M2) ≡ GM. (A3)

This result applies also if the motion is along an ellipse. The
equation of the ellipse is

R(θ ) = (1 − ε2) a

1 + ε cos(θ )
≡ cR(θ ). (A4)

Note that with this definition R(θ ) is square-normalized to
unity. The equation of motion for the radial motion is

R̈ = �2

R3
− GM

R2
, (A5)

which implies conservation of energy (here we are in the
nonrotating “lab” frame):

E = 1

2
Ṙ2 + �2

2R2
− GM

R
= −1

2
a2�2. (A6)

Given (GM, E , �), the orbit, up to orientation, is described
by (�, a, c). The � and the a are determined by Eq. (A3) and
Eq. (A6), while c is determined by Eq. (A2), and we have the
ratio c/a = (1 − ε2)1/4.

APPENDIX B: THE GENERALIZED HILL HAMILTONIAN

We use the notations r = (x, y) and p = (px, py ). We con-
sider time-dependent R(t ) and θ (t ). Without loss of generality,
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we set m = 1 for the mass of the satellite. The Hamiltonian is

H = 1
2 p2 + U (r; R(t ), θ (t )). (B1)

In order to transform the Hamiltonian we use a sequence
of canonical transformations. For clarity we use “quantum
language.” Given a transformation T = exp[−iα(t )G] that is
generated by G, we use the formula

H = T †HT − iT † ∂T

∂t
, (B2)

= T †HT − α̇G. (B3)

The first transformation is to a rotating reference frame with
T = exp[−iθ (t )L] where L = r ∧ p = xpy − xpy,

H = 1
2 p2 − θ̇L + U (r; R(t ), 0). (B4)

The second transformation is a time-dependent dilation with
T = exp[−i(ln R)K] where K = r · p = xpx + ypy. Note
that T †xT = Rx and T † pT = (1/R)p. Using the notation
U (r) = U (r; 1, 0) we get

H = 1

2R2
p2 − Ṙ

R
K − θ̇L + 1

R
U (r), (B5)

= 1

2R2
p2 − Ṙ

R
r · p − θ̇L + 1

R
U (r). (B6)

The third transformation is a time-dependent Gauge with
T = exp[−i�] where � = −(1/2)RṘr2. Note that T †xT = x
and T † pT = p − ∂�. Accordingly, we get

H = 1

2R2
(p + RṘr)2 − Ṙ

R
r · (p + RṘr) − θ̇L

+ 1

R
U (r) + 1

2
[Ṙ2 + RR̈]r2

= 1

2R2
p2 − θ̇L + 1

R
U (r) + 1

2
RR̈r2

= 1

2R2
(p − A)2 + 1

R
U (r) − 1

2
[R2θ̇2 − RR̈]r2,

where A = R2θ̇r⊥ with r⊥ = (−y, x). Given R(t ) and θ (t ), the
above Hamiltonian can be written schematically as

H(r, p; θ (t ), R(t ))

= 1

R(t )2

{
1

2
[p − �(t )r⊥]2 + R(t )U (r) − 1

2
K (t )r2

}
,

where �(t ) ≡ R2θ̇ and K (t ) ≡ (R2θ̇ )2 − R3R̈. If we assume
Kepler motion, then we get K (t ) = �2a3R(t ) from the radial
equation of motion.

APPENDIX C: HAMILTONIAN FOR A KEPLER SYSTEM

Due to the dilation transformation, the coordinate r is
dimensionless, and the distance between the stars is unity,
while p has the same units as �. We now assume that �

is constant for the cycles of interest. Consequently, we can
rescale the momentum p := �p. It is convenient to define the
characteristic radius c of the orbit through � ≡ �c2, where
� is the frequency of the cycle. We also define the notation
R(t ) = cR[θ (t )]. By definition of c and from θ̇ = �/R(t )2 it

follows that ∮
|R(θ )|2 dθ

2π
= 1. (C1)

Given R(θ ) we have the identity

R̈
�2

R3 = −
(

1

R

)′′
R, (C2)

where dot (.) is for time derivative and prime (′) is for θ

derivative.
We write the attraction constant between the satellite and

the stars as G0M, such that U (r) = G0Mu(r). The Hamilto-
nian takes the form

H = �

R2

{
1

2
(p − r⊥)2 + gRu(r) − 1

2
Kr2

}
, (C3)

where

K = 1 +
(

1

R

)′′
R (C4)

and

g = G0M

c3�2
≡ �2

0

�2
. (C5)

For a Kepler-driven system we use the notation

gε = GM

c3�2
= (1 − ε2)−3/4 (C6)

and get the simpler Hamiltonian

H = �

R2

{
1

2
(p − r⊥)2 + R

[
gu(r) − 1

2
gεr2

]}
. (C7)

Given R(θ ) and � and c we have θ̇ = �/R2. Consequently,
if we use θ as time variable, then we get the Hamiltonian
Eq. (C7) without the �/R2 term.

The necessary but not sufficient slowness condition is
� � �0, which can be written as 1 � g. In analogy with the
piston paradigm, we have to further assume that Ṙ � ṙ where
the typical velocity of the dust particles is ṙ ∼ c�0. For Kepler
motion, the maximum velocity of the “piston” is Ṙ ∼ cεgε�.
Consequently, the slowness condition takes the form εgε � g,
which always breaks down if ε is too close to unity.

APPENDIX D: DETERMINATION OF EFFECTIVE
PARAMETERS

The Fj values have been grouped into 10 bins. The pulses
that belong to a given bin define a region n in phase space.
It is implied that the same number of pulses is associated
with each region. In our jargon n = 1 is the “blue” region
and n = 10 is the “red” region, and it is implied that for
fully connected chaos the probability to stay in a red bin is
P0 = 0.1. The matrix Pn,m of Fig. 8 characterizes the statistics
of the transitions between regions. Additionally, we determine
numerically the probability P (τ ) to stay in a given region as
a function of τ , see Fig. 9. Specifically, we have obtained
P (τ ) for [θ = 0, red], for [θ = 0, blue], for [Kepler,red], and
for [Kepler,blue]. From that we have extracted (in each case)
the staying probability Ps = P (τ = 1), and the stickiness
measure S . The latter is the “area” of P (τ ). The additional
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effective parameters (Rs, Qs) are deduced via Eq. (16), with
value of 1/Qs that fits the stretched tail of P (τ ). The results
were respectively:

Ps = 0.27, 0.06, 0.24, 0.23, (D1)

Rs = 0.15, 0.0003, 0.092, 0.067, (D2)

Qs = 0.65, 0.83, 0.42, 0.26, (D3)

S = 1.57, 1.06, 1.52, 1.53. (D4)

The main difference between the Kepler-driven Hamiltonian
and the frozen Hamiltonian is related to the stickiness in the
blue region.

The “digitized” signal is obtained as follows. We define fn

as the average value that characterizes the nth bin. Then we
set digitized[Fj] = fn, if Fj belongs to the nth bin. In order to
analyze the stickiness-related correlations, we have regarded
all the intermediate bins (n = 2 · · · 9) as one region that is
characterized by an average value f0, while bins n = 1, 10
are characterized by fblue and fred, respectively. Due to this
digitization the noise is reduced by factor ∼2.5. We are left
with a signal that contains information that is related to the
stickiness, and we can set C0 = 0 in Eq. (19). Consequently,
this digitization procedure allows a meaningful comparison
between the numerical results and the minimal model in
Fig. 10.

The correlation factor cs can be extract numerically by
inspection of Fig. 10. For the Kepler-driven system we get
cs = 18, while for the θ = 0 Hamiltonian we get cs = 9. This
is consistent with what we observed in Fig. 4. The minimal
model does not take into account the observed long-time cor-
relations and therefore predicts much smaller values, namely
cs = 2.0 and cs = 1.7, respectively.

APPENDIX E: QUASISTATIC ENERGY SPREADING

The energy landscape of phase space is described by the
function E = H(r, p; θ ). The drd p/(2π )DOF volume of an
energy surface is denoted N (E ; θ ) and corresponds to the
number of phase-space cells in semiclassical mechanics. The
area of the energy surface is defined as A(E ; θ ) = ∂EN and
corresponds to the density of states. The microcanonical-like
inverse temperature is β = ∂E lnN = A/N . For a particle in
a billiard of area A, setting appropriate units for the mass, we
get N = AE and β = 1/E . For a mixed phase space the total
area is written as

A(E ; θ ) ≡ ∂EN =
∑

μ

Aμ(θ ). (E1)

This assumes that there is a way to identify distinct regions
as in the billiard example of Fig. 11 where μ = L, R distin-
guishes the left and right regions and Aμ(θ ) is the respective

geometric area of the μth region, while θ is a parameter that
is used to specify the position of the piston. Without any
approximation we always have

Ė =
〈
∂H
∂θ

〉
t

θ̇ ≡ −�F[θ (t )]. (E2)

In the Ott-Wilkinson-Kubo formulation of linear response
theory [2–8], it is assumed that for a quasistatic process the
instantaneous average can be replaced by an evolving mi-
crocanonical average due to quasiergodicity. Accordingly, the
variation of the energy becomes parameteric:

dE =
〈
∂H
∂θ

〉
E ,θ

dθ = −
(

∂θN
∂EN

)
dθ. (E3)

From the last relation it is implied that dN = 0, meaning that
N (E ; θ ) is an adiabatic invariant. With the definition of phase-
space area this can be written as

dE = − 1

β
[∂θ lnN ] dθ ≡ − 1

βeff
[∂θ lnA] dθ, (E4)

where the latter equality defines βeff. Adjusting notations to
mixed phase space we write the change of the energy per cycle
as

dE = −
∑

μ

Pμ(θ )
1

βμ

[∂θ lnAμ] dθ, (E5)

where Pμ(θ ) is the probability at region μ of the energy
surface, and it is assumed that the regions are well defined.
Reference [11] consider a more complicated case where the
borders between regions is affected by θ . But such a compli-
cation does not affect the big picture.

For a billiard system that undergoes a multistep process of
the type that is illustrated in Fig. 11, the dissipated energy per
cycle is

〈Q〉0 = − 1

β

∑
steps

∑
μ

A(0)
μ

A(0)
ln

[ Aμ

A(0)
μ

]
, (E6)

where β = 1/E assumes a narrow distribution around E . Here
the outer summation is over steps of the cycle. We assume
global chaos at transitions between steps. The superscript “0”
indicates the area at the beginning of a step. Without “0” it is
the area at the end of the step.

Billiard systems are simple enough to allow an improved
(exact) version of Eq. (E6) that does not assume a narrow
distribution around a fixed energy. Changes of energy due to
changes in the volume obey the simple “ideal gas” multiplica-
tive law E �→ αE , with

α =
∑
steps

∑
μ

(
A(0)

μ

)2

A(0)Aμ

. (E7)

One can easily verify that 〈Q〉0 of Eq. (E6) is consistent with
(α − 1)E . Note that we always have α > 1.
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