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We analyze energy spreading for a system that features mixed chaotic phase-space, whose control
parameters (or slow degrees of freedom) vary quasi-statically. For demonstration purpose we consider
the restricted 3 body problem, where the distance between the two central stars is modulated due to
their Kepler motion. If the system featured hard-chaos, one would expect diffusive spreading with
coefficient that can be estimated using linear-response (Kubo) theory. But for mixed phase space the
chaotic sea is multi-layered. Consequently, it becomes a challenge to find a robust procedure that
translates the sticky dynamics into a stochastic model. We propose a Poincaré-sequencing method
that reduces the multi-dimensional motion into a one-dimensional random-walk in impact-space.
We test the implied relation between stickiness and the rate of spreading.

I. INTRODUCTION

Considering a closed Hamiltonian driven system, such
as a particle in a box with moving wall (the piston
paradigm), the textbook assumption is that quasi-static
processes are adiabatic, and therefore reversible. This
claim can be established for an integrable system by rec-
ognizing that the action-variables are adiabatic invari-
ants [1]. At the opposite extreme, analysis of slowly
driven completely chaotic systems [2–4] has led to a
mesoscopic version of Kubo linear-response theory and
its associated fluctuation-dissipation phenomenology [5–
8]. However, generic systems are neither integrable nor
completely chaotic. Rather their phase space is mixed,
resulting in the failure of the adiabatic picture [9–13],
and of linear-response theory. Namely, the phase space
structure varies with the control parameter: tori are de-
stroyed; chaotic corridors are opened allowing migration
between different regions in phase space [14, 15]; stochas-
tic regions merge into chaos; sticky regions are formed
[16–20]; sets of tori re-appear or emerge. Some of those
issues can be regarded as a higher-dimensional version
of non-linear scenarios that are relate to bifurcations of
fixed points, notably swallow-tail loops [21–25], or as a
higher-dimensional version of the well-studied separatrix
crossing [26–37], where the Kruskal-Neishtadt-Henrard
theorem is followed.

Motivation.– The analysis of driven systems that
feature an underlying mixed-chaotic phase-space is a
rather universal theme, that has relevance to many fields
in physics. There are mainly two ways to motivate the
quasi-static perspective for the pertinent degrees of free-
dom (dof). For some systems it is natural to distinguish
between slow (‘heavy’) dof, and fast (‘light’) dof. Then it
makes sense to regard the heavy dof as parametric driv-
ing, and to ignore the back reaction. The heavy dof might
be the location of a piston, or it might be the distance
between the two stars that perform Kepler motion in the
restricted 3 body problem (which we discuss below).

A different way to motivate this perspective originates
from mesoscopic physics. One would like to provide a
comprehensive set of tools for the design and for the op-

timization of quasi-static protocols, e.g. in the context of
Bose-Hubbard systems [38–40]. The feasibility and the
efficiency of such protocols is related to the underlying
mixed-chaotic phase-space dynamics, as demonstrated in
[12, 13, 15].

Model systems.– The simplest way to demon-
strates anomalies that may arise in the quasi-static limit
is to study billiard systems [9, 11]. The geometric
construction allows a sharp distinction between regions
in (phase)space. For example, the Bunimovich mush-
room geometry of [11] is composed of a regular region
(the mushroom cap), and a chaotic region (stadium-like
stem). However, such model is in some sense not generic.
More generally, phase space has hierarchical structure
with peripheral sticky regions [16] (and see Refs.[1-10]
therein); and the composition of the energy surface de-
pends on energy. Furthermore, in practice the distinction
between the “sea” and the “islands” is not sharp neither
fully controlled. This requires the development of new
tools, to facilitate the analysis of the time-dependent dy-
namics.

For the purpose of developing tools for the analysis
of quasi-static scenarios, Billiards are too simple, while
Bose-Hubbard systems are over-complicated and too de-
manding. A mathematically-oriented strategy would be
to select an artificial Hamiltonian. But it is much more
appealing to consider a toy Hamiltonian that has physi-
cal significance. At this point, it is appropriate to recall
that the discussion of Hamiltonian chaos is historically
rooted in the 3 body problem of celestial mechanics.

The restricted 3 body problem.– It is natural to
select Hill’s Hamiltonian [41–43] as a prototype model
for analysis. This Hamiltonian describes the motion of a
test-particle in the field of force of a binary systems (stars
that perform Kepler motion). In reality the test particle
might be a satellite or a circumbinary planet [44–46].
Optionally, in order to emphasize the analogy with the
piston paradigm, we can have in mind a binary system
immersed in a cloud of dust: the dust is driven quasi-
statically by the Kepler motion of the stars. In reality
the ‘dust’ might be an asteroid system, and the binary
system might consist of massive black holes at the center
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of a galactic nuclei.

Hill’s Hamiltonian, unlike the Bose-Hubbard Hamilto-
nian, is simple for visualization, and still possesses all
the generic features of realistic models. The test-particle
might perform quasi-regular motion around one of the
stars, or chaotic motion wandering between the two stars.
We find, as expected, a textured phase space structure
with sticky peripheral regions. As an additional bonus
this model also allows to consider a disintegration sce-
nario: the test particles gains energy and eventually es-
capes to infinity.

The full 3 body problem.– The analysis of the
Hill’s Hamiltonian has possibly importance in the re-
stricted sense, but we would like to suggest that its quasi-
static perspective might be of interest also for the full
3 body problem. Here we would like to refer to the re-
cent works of [47, 48] (and see references therein). Given
the total energy and the total angular momentum, the
challenge is to calculate, say, the probability σ(E) that
one of the stars is ejected with an energy E. For this pur-
pose it has been assumed that phase space is composed of
a totally chaotic interaction region, and an outer region
where one of the bodies becomes an outsider (possibly un-
bounded). Assuming that the motion in the interaction
region completely ergodizes the energy, the probability
σ(E), up to normalization, is given by the corresponding
phase-space volume, that can be calculated analytically.

Let us speculate that in some cases the dynamics of
the escaping body, while in the interaction region, is de-
scribed by the Hill’s Hamiltonian. Then the question
arises, how its energy E is affected by the motion of
the binary system. It is possibly more transparent to
re-phrase this questions using the language of statistical
mechanics. Namely, considering a cloud of trajectories,
we would like to analyse the spreading in energy.

Clearly the assumption of total randomization of E is
an over-simplification for several reasons. First of all,
integrable islands should be excluded. But even if we ig-
nore the islands, we are going to show that the spreading
dynamics is not trivial. Roughly speaking we are going to
characterize the energy distribution by its “width”, and
by its “average”. One expects a fluctuation-dissipation
relation that related the rate of energy increase to the
rate of the spreading [5–8]. But this relation is endan-
gered by the mixed phase space dynamics.

Outline.– In Sec. (II) we introduce the general-
ized Hill’s Hamiltonian. This Hamiltonian will be used
as a test case for the application of our approach. It
features a mixed chaotic phase space whose paramet-
ric evolution can be visualized using a Poincaré land-
scape plot. In Sec. (III) we use a Poincaré-sequencing
method in order to encode the time dependent dynam-
ics. Consequently, the multi-dimensional motion in phase
space is reduced into a one-dimensional random-walk in
impact-space. This inspires the introduction of an effec-
tive stochastic model in Sec. (IV) and Sec. (V), which
is used in Sec. (VI) to provide an explicit relation be-
tween stickiness and the rate of spreading. In Sec. (VII)

we explain that the dependence on the directionality of
a cycle is linked to asymmetry that can be detected in
the Poincaré-sequencing analysis. For completeness we
present in Sec. (VIII) the theoretical reasoning that re-
lates the rate of dissipation to the stochastic characteri-
sation of the dynamics.

II. THE GENERALIZED HILL PROBLEM

The Hamiltonian under consideration concerns the mo-
tion of a test particle (satellite) in the vicinity of mas-
sive bodies (stars). The stars are performing a cycle
(X(t), Y (t)) that has frequency Ω and constant angu-
lar momentum `. It might be, but not have to be, the
Kepler motion of Appendix A. We define the character-
istic radius c such that the scaled angular momentum
is ` ≡ c2Ω. In polar coordinates the cycle is parameter-
ized by R(t) = cR(θ(t)). By definition of c, one observes
that the dθ/(2π) integral over |R(θ)|2 is unity. Regarding
θ as the time variable, one obtains, after a sequence of
transformations (see Appendix B), the generalized Hill’s
Hamiltonian:

H =
1

2
(p− r⊥)2 + gR(θ)u(r)− 1

2
K(θ)r2 (1)

where (prime indicates theta derivative):

K(θ) = 1 +

(
1

R(θ)

)′′
R(θ) (2)

and the scaled version of the attractive potential is

u(r) = − µ2√
(x− µ1)2 + y2

− µ1√
(x+ µ2)2 + y2

(3)

with µ1 + µ2 = 1. The parameter g is the scaled attrac-
tion constant for the force between the satellite and the
stars. It can be due to gravitation, or (in different con-
text) it can be of Coulomb origin.

For an arbitrary quasi-Kepler motion (as defined
above, meaning that ` is constant) the Hamiltonian
is controlled by two parameters (R,K). So in gen-
eral the satellite experiences a cycle. But for a
proper Kepler motion K(θ) = gεR(θ) = 1/[1 + ε cos(θ)]
with gε = (1− ε2)−3/4. Consequently, see Appendix C,
we get a Hamiltonian that depends on a single parameter,

H(r,p) =
1

2
(p− r⊥)2 + R(θ)

(
gu(r)− 1

2
gεr

2

)
(4)

Thus, a proper Kepler motion should be regarded as a
modulation and not as a cycle.

In the last paragraph of Appendix C we explain that
the dimensionless slowness parameter that indicates a
quasi-static Kepler driving is εgε/g. For simulations we
used g=25, and ε=0.2, and µ1=µ2=1/2.

Poincaré landscape.– Fig.1 displays a representa-
tive Poincaré section for the time-independent (θ-frozen)
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FIG. 1. Poincaré landscape. The upper panel is a
standard Poincaré section for Hill’s Hamiltonian Eq.(1) with
µ1=µ2=1/2, and ε=0.2, and g=25, at energy E=−22.2. The
control parameter R is frozen at the value θ = 0. In the mid-
dle panel each row is a px=0 stripe of the Poincaré section at
different E, while R is frozen at the value θ=0. In the lower
panel the Poincaré stripes are plotted for frozen R at different
values of θ. Initially E= − 22.2, and later we follow E adia-
batically. The color code is such that chaotic trajectories are
red, while quasi-regular chaotic trajectories are blue.

FIG. 2. Poincaré pulses. Representative piece of the signal
f(r(t)). The vertical red lines indicate the moments tj that
are selected by the Poincaré section. The signal is regarded
as a sequence of rectangular pulses (green line). Each pulse
has duration Tj and average height F̄j = Fj/Tj . In the figure
F̄ is scaled vertically (×3) to improve resolution.

Hill’s Hamiltonian. The phase space structure is as fol-
lows: two (blue) regions contain quasi-regular trajecto-
ries around each of the two stars; there are additional
quasi-regular regions; and there is a large (red) chaotic
sea. In order to demonstrate the variation of phase space
with respect to the energy E, or with respect to a con-
trol parameter (here it is θ that parameterize the Kepler
motion), we propose to look on the Poincaré landscape
that is displayed in the additional panels of Fig.1. Each
row in those additional panels encodes the information
regarding the phase-space structure for a different value
of E or θ, respectively.

In a later section we display on top of this land-
scape, an evolving cloud that is propagated by the time-
depended Hamiltonian H(r,p; θ(t)), with θ̇=1 as implied
by our definitions of scaled time. In this time dependent
scenario, points of the cloud can spread in energy, and
migrate between different regions.

III. POINCARÉ SEQUENCING

The spreading of energy of a driven system is deter-
mined by the fluctuations of the generalized force F that
is associated with the control variable θ. Note that we as-
sume periodic driving, and that the scaled Hamiltonian
is defined such that θ̇=1. For typical model systems,
e.g. Billiards with moving piston, and also for the Hill’s
Hamiltonian, we can factorize F as follows:

F = −∂H
∂θ

≡ h(θ)f(r) (5)

where f(r) = (g/gε)u(r)− (1/2)r2. The variation of the

energy is an integral over −θ̇F(t), but for the analysis it
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FIG. 3. Variation of the energy. The energy for a cloud
of chaotic trajectories is plotted as a function of time (upper
panel). The spreading is displayed in the lower panel (black
line). Here we define SE as the width of the central region
that supports 50% of the distribution. The blue line is a
moving average.

is more convenient to consider

Q =

∫ t

0

f(r(t))dt ≡
∑
j

Fj (6)

The last equality expresses the integral as a sum over
pulses, whose area is defined in the illustration of Fig.2.

The variation of Q, unlike that of E does not include
θ̇ as a prefactor, and therefore allows, on equal footing,
to compare the fluctuations of the driven system to the
fluctuations that are generated by the time independent
(frozen θ) Hamiltonian.

Simulations.– In the simulations we consider the
following scenario. Initially we launch a narrow cloud in
the middle of the chaotic sea. After a short transient,
keeping θ frozen, this cloud fills most of the chaotic sea.
Some extra time might be required in order to penetrate
into peripheral regions where the dynamics is sticky. We
shall come back to this stickiness issue later on. Subse-
quently, we run the simulation with the time-dependent
Hamiltonian (θ unfrozen). Due to the driving, the cloud
further evolves as follows: (a) Spreading away from the
initial energy surface; (b) Migration between separated
phase space regions. The dissipation aspect (growth of

FIG. 4. Spreading. The dynamics is generated by Eq.(1),
with the same parameters as in Fig.1. The time dependence
of SQ is regarded as a measure for spreading, where Q is
defined by Eq.(6). The black line is SQ for an ensemble of
1-cycle (normal panel) and 10-cycles (log-log panel) trajecto-
ries that were launched in the chaotic sea. In the log-scale
panel, the lower and upper dashed lines indicate ∝ t and ∝ t2
dependence. The red and blue lines are SQ if the control pa-
rameter R were frozen. The selected values are at θ=0 (red)
and θ=π (blue), for which the spreading is relatively fast/slow
respectively. According to the traditional paradigm of quasi-
static processes, the black line should be roughly between the
red and the blue lines, which is clearly not the case. The red
and blue dotted lines (lower data lines in both panels) are
SQ for a signal that is composed of a randomized sequence
of the same pulses, i.e. they provide the variance that would
be expected if the actual signal did not have phase-space cor-
relations. We conclude that correlations are enhanced due to
the time dependence of θ(t).

the average-energy) is directly related to #a and indi-
rectly related to #b.

The spreading measure SQ.– The traditional mea-
sure for phase space spreading is entropy, but we prefer
to adopt a measure that has a direct practical meaning.
The natural choice is to look on the energy. We define SE
as the width of the energy distribution, namely, it is the
range around the median where 50% of the distribution is
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located (third quartile minus first quartile). In Fig.3 we
display E for the trajectories of the cloud, and extract
the spreading SE as a function of time. Both feature
intra-cycle modulation that is mainly related to the h(θ)
of Eq.(5). In order to get rid of this modulation we prefer
to look on Q. In Fig.4 we display SQ as a function of time.
It is defined as the width that holds 50% of the distri-
bution. Its variation in time, unlike that of SE is rather
smooth, and better reflects the systematic spreading of
the distribution over phase-space cells. Another advan-
tage is that we can compare the SQ of the driven system
with the SQ of the forozen-θ Hamiltonian. Clearly in the
latter context SQ is not a measure for spreading, but a
measure for the fluctuations of F .

Optional perspective on SQ.– A very long chaotic
trajectory that explores the whole chaotic sea can be re-
garded as a Poincaré sequence of Fj pulses that is char-
acterized by the SQ(t) of Fig.4. In order to get SQ(t),
the chaotic trajectory can be divided into sub-sequences
of length T (upper panel) or of length 10T (lower panel),
where T is the period of a cycle. Equivalently, as de-
scribed in the previous paragrpah, we start the simula-
tion with a cloud of initial points at the middle of the
chaotic sea, evolve them, and care to exclude the initial
transient.

Detecting correlations.– In order to figure out
whether temporal correlations are important we random-
ize the original Fj sequence, and then divide it again into
sub-sequences. In Fig.4, the spreading of the randomized-
trajectories is displayed too, for sake of comparison. The
ratio between the actual rate of spreading, and that of
the randomized-trajectories, is a robust measure for cor-
relations.

We would like to “see” the correlation by looking
on the “signal”. For this purpose we plot images of
the non-randomized sub-sequences in Fig. 5. The sub-
sequences are ordered according to their average. If the
sub-sequences originated from a randomized-trajectory,
this average would be close to zero, and the ordering
would not result in any visual effect. But sequences of
the non-randomized-trajectory are correlated. The cor-
relations can be identified by inspection of the figure.
Specifically, the sequences of the time-independent θ=0
Hamiltonian exhibit long red stretches, and the Kepler-
driven sequences exhibit also blue stretches. This should
be contrasted with the sequences of the θ=π Hamilto-
nian, that look rather uncorrelated.

Phase space exploration.– Having identified corre-
lations in the ‘signal’, we would like to trace their phase
space origin. For this purpose we point out that the
value F of the pulse provides information about the lo-
cation of the phase space region that supports the pulse,
as demonstrated in Fig.6. Roughly speaking, we can re-
gard F as a radial coordinate for points in the Poincaré
section. Variations in the value of F indicate migration of
the trajectory between different regions. In this specific
example, red pulses originate from peripheral regions of
the chaotic sea, while blue pulses originate from the cen-

tral region of the chaotic sea. Thus, the red and blue
stretches in Fig.5 indicate stickiness in phase-space re-
gions that have distinct typical non-zero value of F .

The stickiness to peripheral regions is expected. It has
been studied in past literature. What we find rather sur-
prising is the extra stickiness that we find in the dynamics
that is generated by the Kepler driven system: the ad-
ditional blue stretches indicate excess dwell time in the
central region of the chaotic sea.

A more careful inspection, see Fig.7, reveals that the
stickiness in the central region of the chaotic sea is in
the region that was chaotic also in the absence of driv-
ing. So roughly we have the following regions: (a) Native

FIG. 5. Poincaré sequences of pulses. The rows of each
image displays the color-coded sequences F̄j of the length-T
trajectories for which the spreading has been calculated in the
upper panel of Fig.4. The 3 panels are for θ=π, and for θ=0,
and for the actual θ(t) of the Kepler motion. The trajectories
in each panel are ordered by the average value of F̄j . The red
stretches for θ=0 indicate stickiness in red regions that will be
identified in Fig.6. The additional blue stretches in the lower
panel indicate excess dwell time in the chaotic sea.
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FIG. 6. Poincaré mapping of pulses. The upper
panel displays the Poincaré section for the θ = 0 Hamilto-
nian. Those are the same chaotic trajectories as in Fig.1 (the
quasi-integrable regions are left empty), but the points are
color-coded by the values of F̄j . The black line indicates the
border of the energy surface (the forbidden region is outside).
The lower panel shows a chaotic trajectory (x(t), y(t)). The
color encodes the time. The black stretch indicates motion in
the “red” sticky region of the upper panel. It is characterized
by an ”∞” shaped loops.

chaotic sea region; (b) Swamp chaotic region; (c) Pe-
ripheral chaotic regions; (d) Quasi regular regions. The
swamp regions appear due to the driving. They form in
some sense a barrier between the native chaotic sea and
its periphery. As for the quasi regular regions: they are
excluded from our simulation, and not penetrated by the
chaotic trajectories.

IV. STOCHASTIC MODELLING

Hard-chaos dynamics can be described as a random
hopping between cells in phase space. We have mixed-
chaotic phase space, with tendency for stickiness in e.g.
peripheral regions, and therefore an effective stochastic
description becomes a challenge. We would like to in-

FIG. 7. Driven system dynamics. In the upper panel a
trajectory of the Kepler-driven Hamiltonian is presented us-
ing the same section as that of Fig.6. Gray color is used for
all the points of the trajectory, while red and blue colors are
used for the correlated stretches of Fig.5. Parameters are the
same as in Fig.1. The Hamiltonian is time dependent. Ac-
cordingly, the cloud of trajectories spreads in energy, and can
migrate between different regions. This is demonstrated in
the lower panel, where we use the same presentation method
as in Fig.1. The native chaotic region, that corresponds to
the red areas in Fig.1, is colored in black. The evolving cloud
of the Kepler-driven system is displayed using blue, red and
gray dots. Red color indicates sticking in periphery regions,
while blue indicates sticking in the native chaotic sea. The
non-sticking gray points expand into “swamp” regions that
are located outside of the native chaotic sea. See text for
further details.

troduce a robust procedure for this purpose. First of all
we recall that: (i) chaotic motion is ergodic. (ii) the
pulse strength F is like a radial coordinate. It is there-
fore rather natural to divide phase space into F -cells.
The size of the F -bins is determined such that all the
(binned) values have the same rate of occurrence in the
Fj sequence. In particular we distinguish in Fig.6 the
blue and the red regions, that corresponds to the bins
that contain the smallest and the largest pulses respec-
tively.
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Stochastic Kernel.– Having done the F -binning of
phase space regions, it becomes possible to define a ma-
trix P whose element Pn,m provide the probability to
make a transition form bin m to bin n. Note that the
calculation of P is a straightforward ‘signal analysis’ pro-
cedure that is based solely on the inspection of the Fj
sequence.

An image of the Pn,m matrix is provided in Fig. 8.
Qualitatively, we see that the images reflects our expec-
tation for enhanced probability to stay in red and blue
regions whenever stickiness is observed in Fig.5. But this
is misleading. In fact P is not capable of providing an
explanation for the stickiness. We explain this point in
the subsequent paragraph.

We can generate artificial Fj sequences using P as
the propagator (kernel) for a memory-less Markov pro-
cess. Naively, one might have the hope to get sequences
that have the same statistical properties as the original
Poincaré sequences. But this is not the case: the Markov
process does not reproduce the red/blue stretches that
are seen in Fig. 5. On the quantitative side we define
the probability P(τ) for survival in (say) the “red” re-
gion after τ steps. It is defined as the relative number of
“red” pulses that have at least τ consecutive red pulses.
(In other words, it is the inverse-cumulative distribution
of the dwell time in the the red region). The one-step
survival probability is Ps ≡ P(τ=1). Accordingly, for a
Markov process with Pn,m we get

P(τ)
∣∣∣
Naive

= (Ps)
τ , τ = 0, 1, 2, ... (7)

The actual P(τ) clearly does not agree with exponential
decay, as shown in Fig.9. The naive expectation grossly
underestimates the stickiness.

V. MINIMAL STOCHASTIC MODEL

The failure of Pn,m to reproduce P(τ) is easily un-
derstood by inspection of phase space. For presentation
purpose we focus on the stickiness in the “red” region(s)
of Fig.6. Regarding this region as composed of tiny phase
space cells, we can determine what is the “survival time”
in the red region for each cell. Then we realize that red
cells with large survival time constitute a minority. Ac-
cordingly, Pn,m should be regarded as the coarse-graining
of a finer kernel Pν,µ. Note that the type of index (Ro-
man vs Greek) is used in order to distinguish the coarse-
grained version from the “microscopic” version.

We would like to construct a minimal version for Pν,µ,
that corresponds to Pn,m, such that P(τ) is reproduced
correctly. Using this model we would like to relate the
rate of spreading to the stickiness. The calculation of
P(τ), given a Markov kernel P , is done as follows:

P(τ)
∣∣∣
Markov

=

(
1

p†p

)
p†(QP )τp (8)

In this expression p is a vector that contains the ini-
tial distribution within the bins. Specifically, we assume

FIG. 8. Transition probability matrix. The matrix
element Pn,m is the probability to make a transition form
bin m to bin n. The images of the matrix are for the frozen
θ = 0 dynamics, and for the Kepler-driven dynamics. In both
cases one observes high probability to stay in the red region
(last bin). In the Kepler-driven case there is also enhance
probability to stay in the blue region (first bin).

uniform distribution within the “red” bins. Note that
(p†p)−1 is the number of participating red bins. The
matrix Q is a projector on the red bins, and the final
projection provides the total survival probability after τ
iterations with QP . We can adopt the area of P(τ) as a
measure for stickiness. For a given Markov process it is
calculated as follows:

S =
∑
τ

P(τ) =

(
1

p†p

)
p†
[

1

1−QP

]
p (9)

Note that the naive expression Eq.(7) gives a rather low
value S = 1/(1− Ps).

We already saw in Fig.9 that a naive 2-region model
is not enough to reproduce the stickiness. So the mini-
mum is apparently 3-regions. We assume that we have
n0 phase space cells in the non-red region, and n1 + n2

cells in the red region. Consider the possibility of fully-
connected chaos with N = n0 + n1 + n2 cells with equal
transition probabilities. Then the reduced P that de-
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FIG. 9. Survival probability P(τ). The probability to
find a pulse that has at least τ consecutive pulses at the same
region. The red and blue colors refer respectively to survival
in the red and in the blue regions. The + symbols are for the
time-independent θ=0 Hamiltonian, and the ∗ symbols are
for the Kepler-driven time dependent Hamiltonian. The solid
lines are the analytic results based on the minimal stochastic
model (the thicker lines are for the Kepler-driven Hamilto-
nian). The dashed lines illustrate the naive exponential decay
for the time-independent θ=0 Hamiltonian.

scribes the transitions of probabilities between the 3 re-
gions would be

P =
1

N

n0 n0 n0

n1 n1 n1

n2 n2 n2

 (10)

The survival probability in the red region would
be P0 = (n1 + n2)/N , that is characterized by
S0 = 1/(1− P0).

We now turn to consider a mixed phase-space, where
the chaotic sea is connected, but not fully-connected.
Specifically, we assume that the transition probabilities
from the n0 cells to the n1 cells are all equal to p1, while
all the transition probabilities between the n1 cells and
the n2 cells equal q. Then the reduced P that describes
the transitions of probabilities between the 3 regions is

P =

1− n1p1 n0p1 0
n1p1 1− n0p1 − n2q n1q

0 n2q 1− n1q

 (11)

The model is characterized by 4 parameters

P0 =
(n1 + n2)

n0 + (n1 + n2)
≡ Nred

N
(12)

Rs =
n2

n1
(13)

Ps = 1−
(

n1

n1 + n2

)
n0p1 (14)

Qs = n1q (15)

The parameters P0 and Rs reflect the relative size of the
regions. Namely, P0 is the relative size of the red region

(and hence would equal the survival probability in the
red region if we had fully connected chaos), and Rs is
fraction of sticky red cells. The parameters Ps and Qs
reflect the transitions between the regions. We could have
added also direct transitions with probability p2 between
the n0 and the n2 cells, but it turns out that this would
be a redundancy for our purpose. Also the total number
of cells is insignificant for the analysis.

All the probabilities in the P matrix must be less
than 1. This imposes some constraints over the valid
range of the model parameters. In particular one realizes
that if Rs > 1 then Ps > (1/2). Therefore, in order to
describe a model that exhibits stickiness (small Ps) we
have to assume Rs < 1, and then the same constraints
imply that Ps > [Rs/(Rs + 1)].

In practice the effective parameters (Ps, Rs, Qs) are de-
termined from P(τ), as explained in Appendix D. These
parameters determine the stickiness measure of Eq.(9),
namely,

S =
1

1−Ps
+

[
Rs

Rs + 1

]
1

Qs
(16)

For Rs = 0 we get the naive result S = 1/(1− Ps). In the
limit Qs → 0 there is no decay from the n2 cells, and then
the survival probability approaches P(∞) = Rs/(1+Rs),
and S diverges. The minimal value S = S0 = 1/(1−P0)
is obtained for a fully connected chaos.

On the basis of the simulations, we have determined
P(τ) for the blue and for the red regions, for both the
θ=0 Hamiltonian and for the Kepler-driven Hamiltonian.
The results are displayed in Fig.9. The effective model
parameters have been extracted and are listed in Ap-
pendix D.

VI. STICKINESS AND RATE OF SPREADING

We would like to relate the rate of spreading to the
stickiness. Within the framework of the stochastic pic-
ture, the spreading is determined by the time dependent
diffusion coefficient

D(t) ≡ 1

2

t∑
τ=−t

C(τ) (17)

with the correlation function

C(τ) = 〈FτF0〉 =
1

N

∑
µ,ν

fµ[P τ ]µ,νfν (18)

where N is the number of cells, and fµ is the F value
that is associated with the phase space cell that is in-
dexed as µ. Note that a finite result for P(τ) is obtained
provided

∑
fµ = 0, reflecting that the correlation func-

tion is defined after subtraction of the average (i.e. for a
zero average signal).

Without the sticky red region, the correlation func-
tion is of the form C(τ) = C0δτ,0. With the red region
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included, we get correlations due the stickiness. To eval-
uate the contribution of the latter we use the reduced
matrix of Eq.(11), where all the cells are grouped into
3 regions. In such case the sum over µ in Eq.(18) is re-
placed by a sum over regions, and the number of cells
in each region should be introduced as a weight factor.
Then one obtains

C(0) = C0 + P0S0f
2
red (19)

where fred is the average F value of the red region, and it
is implied that the average F value of the non-red region
is −P0S0fred. The summation over τ leads to Eq.(18)
with P τ replaced by 1/(1− P ). The zero mode has to
be excluded from the inversion. Including C0 we get

∞∑
τ=0

C(τ) = C0 + P0Sf2
red (20)

We define the correlation factor as follows:

cs =

∑
τ C(τ)

C(0)
= 2

(∑∞
τ=0 C(τ)

C(0)

)
− 1 (21)

It is the correlation “time” in terms of iterations with
the Poincaré map. For the minimal model of Eq.(11) one
obtains

cs = 2

(
S
S0

)
− 1, for C0=0 (22)

Note that for fully connected chaos we get cs = 1 as
expected.

For the Kepler-driven system we observed an addi-
tional “blue” sticky region. Therefore we have to gen-
eralize the minimal model, such as to have two sticky
regions, “red” and “blue”. The total number of cells is
N = N0 +Nred +Nblue. We define P red

0 = Nred/N and
P blue

0 = Nblue/N . Each of the regions has its own P(τ),
with effective parameters that have been determined in
Appendix D. The implied average F value of the N0 re-
gion is f0 = −(1/N0)[Nredfred +Nbluefblue]. Then one
obtains

C(0) = C0 +
N0

N
f2

0 + P red
0 f2

red + P blue
0 f2

blue (23)

and
∞∑
τ=0

C(τ) = C0 + P red
0 Sredf2

red + P blue
0 Sbluef2

blue (24)

For Nblue = 0 these equations lead back to Eq.(22).
The correlation factor can be extract numerically from

the SQ plots of Fig.4. Namely, it is the ratio between the
slope of S2

Q for the true pulse sequence, and that of the

randomized sequence (of the same pulses). By inspection
of Fig.10 we see that the true S2

Q exhibits a super-diffusive
transient, indicating long-time correlations that are not
captured by our simplified model. The agreement with
the minimal model is qualitative rather than quantita-
tive. Some extra details about the quantitative aspect
are provided in Appendix D.

FIG. 10. Stochastic modelling of spreading. The
solid lines are Var(Q) for the Fj digitized sequences. See
Appendix D for technical details regarding the ‘digitization’.
Note that the “time” (τ) is the number of Poincaré steps. The
red lines are for the θ=0 Hamiltonian, and the black lines are
for the Kepler-driven Hamiltonian. The lower dashed lines are
the prediction of the effective stochastic model. The dotted
lines are for a randomized Fj sequence, namely, the expected
result if the pulses were uncorrelated. The lower and upper
dashed lines indicate ∝ t and ∝ t2 dependence (the former
cannot be resolved from the dotted lines).

We see that a model that faithfully reproduces P(τ) is
not enough for the determination of C(τ). In principle
we could have introduced a more elaborated stochastic
model, that features a hierarchy of red and blue regions,
but such an approach has no practical value, and does
not allow the derivation of analytical results.

VII. CYCLE VS MODULATION

It is important to distinguish between Cycle and Mod-
ulation. Consider an Hamiltonian HR where R is a set
of control parameters. In a time dependent scenario, we
can say that the Hamiltonian varies along a curve in a
parametric manifold. A modulation can be parametrized
by a single non-cyclic parameter, say R(t) = A cos(Ωt),
while a cycle requires an angle parameter, say θ(t) = Ωt,
where θ is defined modulo 2π. A prototype example for
cyclic driving is presented in Fig.11.

It is sometimes difficult to determine whether the time
dependence in the Hamiltonian should be regarded as
Constant or as Modulated or as Cyclic driving. For ex-
ample: the time dependence for particle in a rotating box
can be removed by transforming into a rotating frame.
Similarly, the time dependence for a particle in an ex-
panding box can be removed via a dilation transforma-
tion. In the case of a cycle, the outcome depends in
general on the sense of the cycle, and furthermore, for
a mixed phase space, we expect difference in the rate of
spreading.
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FIG. 11. The billiard paradigm. This caricature clarifies
the mechanism of dissipation in the quasi-static limit. The
control parameters are R = (X,W ), where X is the position
of the piston, and W is the height of a dividing barrier. Con-
sider the “blue” quasi-static cycle: The barrier is turned on
(W = ∞); The piston is pushed in; The barrier is turned off
(W = 0); The piston is pushed out. Such cycle, unlike the
“red” modulation, raises the average energy of the system
(E 7→ αE with α > 1). Note that the blue and red E(t) plots
reflect the average over an ensemble of trajectories.

At first glance, one may naively think that a Kepler-
driven system qualifies as Cyclic driving. The two param-
eters might be (X(t), Y (t)) or equivalently (R(θ),K(θ)) as
in Eq.(1). But it turns out that for a proper Kepler driv-
ing the cycle degenerates into a modulation. In order to
avoid such ‘degeneracy’, we have to assume an asymmet-
ric R(θ), for example R(θ) ∝ [1 + ε cos(θ) + ε′ sin(2θ)]−1,
that is illustrated in Fig.12.

If we have a non-degenerate cycle, we can ask whether
the rate of spreading depends on its sense (cycle vs re-
versed cycle). For a system with mixed-chaotic phase
space indeed we can have such dependence, as discussed
for e.g. the mushroom billiard in [11]. A different illus-
tration of the same idea is provided in Fig.11. During
the cycle the space is divided by a barrier (that serves
as a “valve”) into two regions. This is done periodically,
and out-of-phase with respect to the piston movement.
Specifically, in the plotted illustration, the splitting ratio
of the cloud is roughly 1:2 for forward cycle, and roughly
1:1 for reversed cycle. Changes of energy due to changes
in the volume obey a simple “ideal gas” multiplicative
law E 7→ αE, where α is given by Eq.(E7). The value
of α depends on the sense of the cycle, due to the dif-
ferent splitting ratio, and we get α = 10/9 and α = 9/8
respectively.

However, the billiard examples are rather artificial.
They are based on construction that allows a sharp dis-
tinction between regions in (phase)space. Generic sys-
tems, such as the Hill’s Hamiltonian, do not feature dra-
matic splitting and merging of well defined (phase)space
regions. Consequently, dependence on the sense of the
cycle is not a prominent effect, and careful numerical
procedure is required to detect it. This motivates the

FIG. 12. Cyclic driving. An example for a generic
driving cycle in (R,K) is illustrated by the blue line, where
R(θ) ∝ [1 + ε cos(θ) + ε′ sin(2θ)]−1, and K is determined by
Eq.(2), with ε=0.2 and ε′=0.1. For Kepler driving we set
ε′=0 and get the black line, which is a single-parameter mod-
ulation.

following discussion of directionality dependence.
Directionality.– The dependence on the sense of

the cycle is related to the directionality dependence of a
modulation. The argument is as follows: A modulation
can be encoded by a sequence AĀAĀ · · ·AĀ · · · . The in-
verse modulation is clearly the same sequence. A cycle
can be encoded as AB̄AB̄ · · ·AB̄ · · · . The reversed cycle
BĀBĀ · · ·BĀ · · · is distinct if the cycle is not degener-
ated (A 6= B), and provided A and Ā are not character-
ized by the same spreading rate. It is therefore enough
to establish dependence on directionality.

Regarding the sequence Fj as a ‘signal’, we ask whether
it looks statistically the same during the ‘forward’ half
period when R(θ) changes from R(0) to R(π), and the
‘backward’ half period when it changes from R(π) to
R(0). In the standard paradigm of quasi-static processes
the directionality has no significance. In Fig.13 we plot
the distribution of the F values for the two groups of
pulses. For the full signal the distribution of the Fj over
the bin is uniform by definition. But if we look only
on the pulses that belong to the ‘backward’ half-periods
we see that the small values (blue pulses) become slightly
more frequent, as opposed to the large values (red pulses)
that become slightly less frequent. The difference is very
small. Still, it indicates that the steady state is not the
same for “forward” and “backward” driving.

VIII. DISSIPATION

Dissipation is associated with energy spreading. The
standard theory [2–4] assumes a globally chaotic energy
surface that instantly ergodizes at any moment. It fol-
lows that the phase-space volume N (E; θ) is an adiabatic
invariant, where θ(t) is a slowly varying control param-
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FIG. 13. Directionality dependence. The probability
distribution of the Fj over the bins is uniform by definition.
It can be regarded as the sum of ‘forward’ pulses distribution,
and ‘backward’ pulses distribution. Here we plot the devia-
tion of the cumulative probability distribution of the back-
ward pulses, from a uniform distribution. The horizontal axis
is the indexed F value (smallest value is indexed as 1, largest
value is indexed as 38516). We see that the small values (blue
pulses) become slightly more frequent, as opposed to the large
values (red pulses) that become slightly less frequent.

eter. For a closed cycle, the conservative work is zero.
Still, beyond the zero-order adiabatic result, there is dif-
fusion in energy with coefficient DE = νθ̇2, where ν is
the intensity of the fluctuations, i.e. the algebraic area of
C(t). From the Fokker-Plank description of the spread-

ing process, one deduces the rate of absorption Ė = µθ̇2,
aka the Kubo formula, with dissipation coefficient µ that
is related to ν via a fluctuation-dissipation relation [5–
8], namely µ = (1/2)βν, where β(E) is some version of
microcanonical inverse temperature, as defined in Ap-
pendix E. Consequently, for periodic driving with fre-
quency Ω ≡ θ̇ one expects an amount Q = 2πµΩ of dissi-
pated energy per cycle, which vanishes in the quasi-static
limit (Ω→ 0).

For a driven mixed-chaotic system, we expect para-
metric dissipation, meaning that the dissipated energy
per cycle (Q) approaches a finite non-zero constant in
the limit (Ω → 0), and depends on the directionality of
the driving as discussed in the previous paragraph. Bil-
liard examples that have been discussed in the past, as
well as that of Fig.11, are illuminating, but do not fully
reflect some complications that are encountered once we
deal with a generic system, such as Hill’s. In what fol-
lows we highlight those zero-order subtleties, and also
generalize the first-order formulation.

Zero order dissipation.– In systems with mixed-
chaotic dynamics, we can get irreversibility due to phase
space spreading (aka growth of the entropy), as well as
dissipation (growth of the average energy), even in the
quasi-static limit. The derivation of this claim requires
phase-space generalization of [11]. This generalization is

presented in Appendix E. We write the phase space area
as A =

∑
µAµ, where µ distinguishes different regions.

Each region might have a different “inverse temperature”
βµ. Then we obtain the following result:

〈Q〉0 ≈ −
∑
steps

∑
µ

δAµ
βµA

+O(δA2) (25)

This expression is obtained from Eq.(E6) after expan-

sion with respect to δA = Aµ −A(0)
µ . Based on Eq.(25)

our observation is that we can get an O(δA) non-zero
result provided the βµ are non-identical. In such case
〈Q〉0 can switch sign for a reversed cycle. This should be
contrasted with a Billiard system for which the βµ = 1/E
are identical, and 〈Q〉0 is always positive.

First order Dissipation.– We define F = −∂H/∂θ.
For a periodically driven Hamiltonian with θ̇ = Ω we
have Ė = −ΩF(t). Integrating over a cycle, squaring,
and averaging over an ensemble, we get Var(Q) = 2πνΩ,
where ν is the intensity of the fluctuations (the area of
the F autocorrelation function). This assumes a glob-
ally chaotic energy surface. If we have a fragmented
phase-space (as in the previous Billiard example) we get
Var(Q) = Var0(Q) + 2πνΩ, where Var0(Q) is the vari-
ance that is associated with 〈Q〉0. Using the above ex-
plained fluctuation-dissipation reasoning we deduce that
the energy increase per cycle is

〈Q〉 = 〈Q〉0 +
1

2
βeff [Var0(Q) + 2πνΩ] (26)

This expression goes beyond Kubo, because the zero or-
der spreading is taken into account. Note that if corre-
lations persist over a time duration that is longer than
a cycle, the result is a long super-diffusive transient as
in Fig. 4. In any case the appropriate correlation fac-
tor cs has to be incorporated in the calculation of ν, as
discussed in Sec. (VI).

IX. SUMMARY AND OUTLOOK

We have introduced an effective stochastic theory for
quasi-static spreading in systems with mixed chaotic
phase space. The main objective was to provide tools
for the analysis of phase space spreading. More specifi-
cally, the spreading of the energy, which is useful for the
calculation of the average energy growth (dissipation),
and possibly for estimating the rate of “evaporation”.

For demonstration of our approach we have selected
Hill’s Hamiltonian. This toy model, by itself, has phys-
ical significance, as discussed in the Introduction. The
problem of interest has possibly direct relevance to stud-
ies that concern the long-term stability of planets in bi-
nary systems [44–46]. Furthermore, it illuminates the rel-
evance of mixed-chaotic dynamics in the context of the
3 body problem. The model has all the essential ingredi-
ents for our analysis. However, in retrospective, we have
to admit that stickiness, rather than a zero-order dissipa-
tion effect, is the dominant feature that determines the
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rate of spreading. This stands in contrast to the anal-
ysis of energy spreading due to quasi-static driving of
specially-designed Billiard systems [9–11], that has mo-
tivated the present study.

Our agenda was, on the one hand, to characterize
the multi-dimensional phase space dynamics via “signal-
analysis” of a single chaotic trajectory. On the other
hand, we wanted to reproduce the essential statistical
features of the ‘signal’ using a minimal Markovian model.

For the characterization of the chaotic motion, we rep-
resent the chaotic trajectory as a Poincaré sequence of
pulses (Fj). The value of F is regarded as a ‘radial’
phase space coordinate, that is used in order to divide
phase space into regions (indexed by n). We realize that
this coarse-graining is too rough: we cannot build on it
a Markov process that reproduces the observed sticki-
ness. We therefore have to define a refined version of
the Markov process that reflects the hierarchic structure
of phase space. Consequently, we constructed a minimal
model that allows to reproduce the observed stickiness.
This model suggests a relation between the stickiness and
the enhancement that is observed is the rate of spread-
ing. Unfortunately, in the present model, the quantita-
tive agreement is poor due to long range correlations that
were neglected.

Specifically, for the frozen dynamics, we have identi-
fied stickiness in peripheral regions of the chaotic sea.
A minimal stochastic model for such configuration re-
quires 3 regions (central chaotic region; non-sticky pe-
ripheral chaotic region; sticky peripheral chaotic region).
Surprisingly in the Kepler-driven system extra stickiness
manifests in the native chaotic sea. This extra stickiness
is related to the appearance of an additional “swamp
chaotic region”, where chaos penetrates due to the time-
dependence of the Hamiltonian. Nevertheless, it can be
treated on equal footing using the same stochastic model
(with extra regions).

We also looked for directionality dependence, imply-
ing that the rate of spreading is not the same if a cycle
is reversed. We have clarified that also this effect can be
identified from the “signal analysis” of the Poincaré se-
quence. For the model system that we have studied, the
finding was that it is a very weak effect (a few percent
difference).

Finally, for sake of generality, we have explained how
the Kubo theory of dissipation can be generalized in or-
der to incorporate both the zero-order and first-order
irreversibility. This picture implies exponential energy
growth if 〈Q〉 of Eq. (26) is proportion to E. This is
indeed the case for Billiard systems if 〈Q〉0 6= 0 as dis-
cussed originally by [9–11]. More generally we can get

from Eq.(26) different energy dependence, say Ė = λEα.
Note that for α > 1 one obtains hyperbolic-like growth
that leads to escape E ∼ 1/(t− te)1/(α−1) within a finite
time te. The exploration of such scenario requires further
study of possibly different model systems.

Appendix A: Basic formulas for Kepler motion

The constant of motion in Kepler problem is the angu-
lar momentum. In terms of polar coordinates (θ,R) we

define ` = R2θ̇. Kepler’s area law is the statement

d

dt
Area =

1

2
` (A1)

The Kepler motion is along an ellipse with major axes
a and b =

√
1− ε2a. We also define c =

√
ab. From the

area law it follows that T = 2πab/`. Accordingly the
frequency is Ω = `/(ab). So we have the relation

` = abΩ = c2Ω (A2)

For a circular motion of radius R=a=b=c, the frequency
the motion is determined by the equation

Ω2a3 = G(M1 +M2) ≡ GM (A3)

This result applies also if the motion is along an ellipse.
The equation of the ellipse is

R(θ) =
(1− ε2) a

1 + ε cos(θ)
≡ cR(θ) (A4)

Note that with this definition R(θ) is square-normalized
to unity. The equation of motion for the radial motion is

R̈ =
`2

R3
− GM

R2
(A5)

which implies conservation of energy (here we are in the
non-rotating “lab” frame):

E =
1

2
Ṙ2 +

`2

2R2
− GM

R
= −1

2
a2Ω2 (A6)

Given (GM,E, `), the orbit, up to orientation, is de-
scribed by (Ω, a, c). The Ω and the a are determined by
Eq.(A3) and Eq.(A6), while c is determined by Eq.(A2),
and we have the ratio c/a = (1− ε2)1/4.

Appendix B: The generalized Hill Hamiltonian

We use the notations r = (x, y) and p = (px, py). We
consider time dependent R(t) and θ(t). Without loss of
generality, we set m=1 for the mass of the satellite. The
Hamiltonian is:

H =
1

2
p2 + U(r;R(t), θ(t)) (B1)

In order to transform the Hamiltonian we use a se-
quence of canonical transformations. For clarity we use
below “quantum language”. Given a transformation
T = exp[−iα(t)G] that is generated by G, we use be-
low the formula

H = T †HT − iT † ∂T
∂t

(B2)

= T †HT − α̇G (B3)
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The first transformation is to a rotating reference frame
with T = exp[−iθ(t)L] where L = r ∧ p = xpy − xpy

H =
1

2
p2 − θ̇L+ U(r;R(t), 0) (B4)

The second transformation is a time dependent dilation
with T = exp[−i(lnR)K] where K = r · p = xpx + ypy.
Note that T †xT = Rx and T †pT = (1/R)p. Using the
notation U(r) = U(r; 1, 0) we get

H =
1

2R2
p2 − Ṙ

R
K − θ̇L+

1

R
U(r) (B5)

=
1

2R2
p2 − Ṙ

R
r · p− θ̇L+

1

R
U(r) (B6)

The third transformation is a time dependent Gauge
with T = exp[−iΛ] where Λ = −(1/2)RṘr2. Note that
T †xT = x and T †pT = p− ∂Λ. Accordingly we get

H =
1

2R2
(p +RṘr)2 − Ṙ

R
r · (p +RṘr)− θ̇L

+
1

R
U(r) +

1

2
[Ṙ2 +RR̈]r2

=
1

2R2
p2 − θ̇L+

1

R
U(r) +

1

2
RR̈r2

=
1

2R2
(p−A)2 +

1

R
U(r)− 1

2

[
R2θ̇2 −RR̈

]
r2

where A = R2θ̇r⊥ with r⊥ = (−y, x). Given R(t) and
θ(t), the above Hamiltonian can be written schematically
as

H(r,p; θ(t), R(t)) =

1

R(t)2

{
1

2
(p− `(t)r⊥)2 +R(t)U(r)− 1

2
K(t)r2

}
where `(t) ≡ R2θ̇, and K(t) ≡ (R2θ̇)2 − R3R̈. If we
assume Kepler motion we get K(t) = Ω2a3R(t) from the
radial equation of motion.

Appendix C: Hamiltonian for a Kepler system

Due to the dilation transformation, the coordinate r
is dimensionless, and the distance between the stars is
unity, while p has the same units as `. We now assume
that ` is constant for the cycles of interest. Consequently
we can re-scale the momentum p := `p. It is convenient
to define the characteristic radius c of the orbit through
` ≡ Ωc2, where Ω is the frequency of the cycle. We also
define the notation R(t) = cR(θ(t)). By definition of c

and from θ̇ = `/R(t)2 it follows that∮
|R(θ)|2 dθ

2π
= 1 (C1)

Given R(θ) we have the identity

R̈

Ω2
R3 = −

(
1

R

)′′
R (C2)

where dot (.) is for time derivative and prime (’) is for
theta derivative.

We write the attraction constant between the satellite
and the stars as G0M , such that U(r) = G0Mu(r). The
Hamiltonian takes the form

H =
Ω

R2

{
1

2
(p− r⊥)2 + gRu(r)− 1

2
Kr2

}
(C3)

where

K = 1 +

(
1

R

)′′
R (C4)

and

g =
G0M

c3Ω2
≡ Ω2

0

Ω2
(C5)

For a Kepler driven system we use the notation

gε =
GM

c3Ω2
= (1− ε2)−3/4 (C6)

and get the simpler Hamiltonian

H =
Ω

R2

{
1

2
(p− r⊥)2 + R

(
gu(r)− 1

2
gεr

2

)}
(C7)

Given R(θ) and Ω and c we have θ̇ = Ω/R2. Conse-
quently, if we use θ as time variable, we get the Hamil-
tonian Eq.(C7) without the Ω/R2 term.

The simple minded slowness condition is Ω� Ω0,
which can be written as 1� g. In analogy with the
piston paradigm, we have to assure that Ṙ� ṙ where
the typical velocity of the dust particles is ṙ ∼ cΩ0. For
Kepler motion, the maximum velocity of the “piston” is
Ṙ ∼ cεgεΩ. Consequently, the slowness condition takes
the form εgε � g, which always breaks down if ε is too
close to unity.

Appendix D: Determination of effective parameters

The Fj values have been grouped into 10 bins. The
pulses that belong to a given bin define a region n in
phase space. It is implied that the same number of pulses
is associated with each region. In our jargon n = 1 is the
“blue” region and n = 10 is the “red” region, and it is
implied that for fully connected chaos the probability to
stay in a red bin is P0 = 0.1. The matrix Pn,m of Fig.8
characterizes the statistics of the transitions between re-
gions. Additionally, we determine numerically the proba-
bility P(τ) to stay in a given region as a function of τ , see
Fig.9. Specifically, we have obtained P(τ) for [θ=0, red],
for [θ=0,blue], for [Kepler,red], and for [Kepler,blue].
From that we have extracted (in each case) the staying
probability Ps = P(τ=1), and the stickiness measure S.
The latter is the ‘area’ of P(τ). The additional effective
parameters (Rs, Qs) are deduced via Eq.(16), with value
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of 1/Qs that fits the stretched tail of P(τ). The results
were respectively:

Ps = 0.27, 0.06, 0.24, 0.23 (D1)

Rs = 0.15, 0.0003, 0.092, 0.067 (D2)

Qs = 0.65, 0.83, 0.42, 0.26 (D3)

S = 1.57, 1.06, 1.52, 1.53 (D4)

The main difference between the Kepler-driven Hamilto-
nian and the frozen Hamiltonian is related to the sticki-
ness in the blue region.

The ‘digitized’ signal is obtained as follows. We de-
fine fn as the average value that characterizes the n-th
bin. Then we set digitized[Fj ] = fn, if Fj belongs to
the n-th bin. In order to analyze the stickiness-related
correlations, we have regarded all the intermediate bins
(n = 2 · · · 9) as one region that is characterized by an
average value f0, while bins n = 1, 10 are characterized
by fblue and fred respectively. Due to this digitization
the noise is reduced by factor ∼ 2.5. We are left with
a signal that contains information that is related to the
stickiness, and we can set C0 = 0 in Eq. (19). Conse-
quently, this digitization procedure allows a meaningful
comparison between the numerical results and the mini-
mal model in Fig.10.

The correlation factor cs can be extract numerically
by inspection of Fig.10. For the Kepler-driven system
we get cs = 18, while for the θ=0 Hamiltonian we get
cs = 9. This is consistent with what we observed in
Fig.4. The minimal model does not take into account
the observed long-time correlations, and therefore pre-
dicts much smaller values, namely, cs = 2.0 and cs = 1.7
respectively.

Appendix E: Quasi-static energy spreading

The energy landscape of phase space is described by
the function E = H(r,p; θ). The drdp/(2π)dof vol-
ume of an energy surface is denoted N (E; θ), and cor-
responds to the number of phase space cells in semiclas-
sical mechanics. The area of the energy surface is de-
fined as A(E; θ) = ∂EN , and corresponds to the density
of states. The microcanonical-like inverse temperature
is β = ∂E lnN = A/N . For a particle in a billiard of
area A, setting appropriate units for the mass, we get
N = AE, and β = 1/E. For a mixed phase space the
total area is written as

A(E; θ) ≡ ∂EN =
∑
µ

Aµ(θ) (E1)

This assumes that there is a way to identify distinct re-
gions as in the billiard example of Fig.11 where µ = L,R
distinguishes the left and right regions, and Aµ(θ) is the
respective geometric area of the µ-th region, while θ is
a parameter that is used to specify the position of the
piston. Without any approximation we always have

Ė =

〈
∂H
∂θ

〉
t

θ̇ ≡ −ΩF(θ(t)) (E2)

In the Ott-Wilkinson-Kubo formulation of linear re-
sponse theory [2–8], it is assumed that for a quasi-static
process the instantaneous average can be replaced by an
evolving microcanonical average due to quasi-ergodicity.
Accordingly, the variation of the energy becomes param-
eteric:

dE =

〈
∂H
∂θ

〉
E,θ

dθ = −
(
∂θN
∂EN

)
dθ (E3)

From the last relation it is implied that dN = 0, meaning
that N (E; θ) is an adiabatic invariant. With the defini-
tion of phase space area this can be written as

dE = − 1

β
[∂θ lnN ] dθ ≡ − 1

βeff
[∂θ lnA] dθ (E4)

where the latter equality defines βeff. Adjusting notations
to mixed phase space we write the change of the energy
per-cycle as

dE = −
∑
µ

Pµ(θ)
1

βµ
[∂θ lnAµ] dθ (E5)

where Pµ(θ) is the probability at region µ of the energy
surface, and it is assumed that the regions are well de-
fined. Ref [11] consider a more complicated case where
the borders between regions is affected by θ. But such
complication does not affect the big picture.

For a Billiard system that undergoes a multi-step pro-
cess of the type that is illustrated in Fig.11, the dissipated
energy per cycle is

〈Q〉0 = − 1

β

∑
steps

∑
µ

A(0)
µ

A(0)
ln

[
Aµ
A(0)
µ

]
(E6)

where β = 1/E assumes a narrow distribution around E.
Here the outer summation is over steps of the cycle. We
assume global chaos at transitions between steps. The
superscript ”0” indicates the area at the beginning of a
step. Without ”0” it is the area at the end of the step.

Billiard systems are simple enough to allow an im-
proved (exact) version of Eq.(E6) that does not assume
a narrow distribution around a fixed energy. Changes
of energy due to changes in the volume obey the simple
“ideal gas” multiplicative law E 7→ αE, with

α =
∑
steps

∑
µ

(A(0)
µ )2

A(0)Aµ
(E7)

One can easily verify that 〈Q〉0 of Eq.(E6) is consistent
with (α− 1)E. Note that we always have α > 1.
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