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Abstract
It is possible to condense a macroscopic number of bosons into a single mode. Adding
interactions the question arises whether the condensate is stable. For repulsive interaction the
answer is positive with regard to the ground-state, but what about a condensation in an excited
mode? We discuss some results that have been obtained for a 2-mode bosonic Josephson
junction, and for a 3-mode minimal-model of a superfluid circuit. Additionally, we mention the
possibility to stabilize an unstable condensate by introducing periodic or noisy driving into the
system: this is due to the Kapitza and the Zeno effects.
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1. Introduction

This presentation concerns a system of N spinless bosons in
an M site system, that are described by the Bose–Hubbard
Hamiltonian (BHH) [1]. The explicit form the BHH will be
provided in later sections. At this stage of the introduction it is
enough to say that the bosons can hop from site to site with
hopping frequencyK, and that additionally there is an on-site
interaction U. Accordingly the dimensionless interaction
parameter is

u
NU

K
. (1)=

The model systems of interest are illustrated in figure 1. We
refer to the M = 2 system as the ‘dimer’ or as a bosonics
Josephson junction. We refer to the M = 3 system as the
‘trimer’ [2, 3] or as a minimal model for a superfluid circuit
[4–8]. In the latter case there appears in the BHH an
additional dimensionless parameter Φ that reflects the rotation
frequency of the device.

The term ‘orbital’ is used in order to refer to a single
particle state. The momentum orbitals of the M-site model
systems of figure 1 are

M

1
e j . (2)

j

M
j

1

i⎡⎣ ⎤⎦∑φ = φ

=

These are the eigenstates of a single particle in the system.
The dimer has a lower mirror-symmetric orbital 0φ = , and
an upper anti-symmetric orbital φ π= . The momentum
eigenstates of the trimer are m(2 3)φ π= , with m 0, 1= ± .

Strict condensation means to place all the bosons in a
single orbital. Condensation in a momentum-orbital of the
trimer is known as vortex-state. Condensation in a single site-
orbital is known as self-trapped or as bright-soliton state.
More generally we shall characterize the eigenstates of the
BHH by a purity measure S [0, 1]∈ . Namely, given an
eigenstate we define the reduced one-body probability matrix

N a a(1 )ij j i
†ρ = 〈 〉, where a j

† are the creation operators. From

that we calculate S trace( )2ρ≡ . Accordingly S=1 implies
condensation in a single orbital, also termed ‘coherent state’,
while S M1 ∼ implies a maximally fragmented state. The
purity measure S reflects the one-body coherence of the
many-body state: small value of S implies loss of fringe
visibility in an interference experiment.

The condensation of all the bosons in a single φ orbital is
an eigenstate of the BHH in the absence of interaction. The
other many-body eigenstates are fragmented, meaning that
several orbitals are populated. Once we turn-on the interac-
tion, the possible scenarios are as follows: (1) the interaction
stabilizes the φ condensate. (2) As u is varied a bifurcation is
induced, such that the φ condensate becomes unstable, and
instead we get M stable self-trapped states. (3) The interaction

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. T165 (2015) 014032 (7pp) doi:10.1088/0031-8949/2015/T165/014032

0031-8949/15/014032+07$33.00 © 2015 The Royal Swedish Academy of Sciences Printed in the UK1

mailto:dcohen@bgu.ac.il
http://dx.doi.org/10.1088/0031-8949/2015/T165/014032
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/2015/T165/014032&domain=pdf&date_stamp=2015-10-07
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/2015/T165/014032&domain=pdf&date_stamp=2015-10-07


mixes the unperturbed φ state with other fragmented unper-
turbed eigenstates. In the latter case we shall distinguish
between: (3a) a quantum ‘Mott transition’ scenario; and (3b) a
semiclassical ‘ergodization’ scenario. The last possibility is
relevant if the underlying phase-space is chaotic.

In the next sections we shall discuss the stability of the φ
condensates. The outline is as follows: in section 2 we discuss
the simplest examples for quantum quasi-stability and quantum
scarring [9]. In section 3 we explain that an unstable state can be
semiclassically stabilized by introducing high frequency peri-
odic driving or noise into the system. In section 4 we consider
the trimer system, and discuss the possibility to witness a
metastable vortex-state. In the latter context we would like to
clarify that the essence of ‘superfluidity’ is the possibility to
witness a metastable vortex-state. The term ‘metastability’
rather than ‘stability’ indicates that the eigenstate is located in
an intermediate energy range. Using a simple-minded phrasing
this implies that there is a possibility to observe a current-
carrying stationary-state that is not decaying. The stability of
such stationary state is due to the interaction. This presentation
is based on [10–16] and further references therein1.

2. The dimer—a minimal model for self trapping and
Mott transition

The BHH of an M site system is

( )U
a a a a

K
a a a a

2 2
, (3)

j

M

j j j j

j

M

j j j j

1

† †

1

1
† †

1 ∑ ∑= − +
= =

+ +

where j M1= ⋯ is the site index, a j
† are the creation

operators, and n a aj j j
†= are the occupation operators. The

total number of particles N n n1 2= + is a constant of motion
hence the dynamics of an M = 2 dimer is reduced to that of
one degree-of-freedom

J n n n
1

2
( ). (4)z 1 2= = −

An optional way to write the dimer Hamiltonian is to say that
Jz is like the Z component of a j N 2= spin entity. Using this

language the hopping term of the BHH merely generates Rabi
rotations around the X axis. This means that the population
oscillates between the two wells. The full BHH, including the
interaction term, is written as follows

UJ KJˆ ˆ . (5)z xdimer
2 = −

Semiclassically the spin orientation is described by the
conjugate coordinates ( , )θ φ , or equivalently by n( , )φ , where
n N( 2)cos( )θ= . With each point in phase-space we can
associate a spin-coherent-state n, φ∣ 〉 that is obtained by SU(2)
rotation of the North-pole condensation state a( ) vaccumN

1
† ∣ 〉.

An arbitrary quantum state can be represented by the Husimi
phase-space distribution n n t( , ) , ( ) 2ρ φ φ ψ= ∣〈 ∣ 〉∣ . In the
following paragraphs we describe how the UJz

2 term of the
dimer Hamiltonian affects the Rabi rotations that are generated
by KJx.

Bifurcation scenario

For u 1< the dynamics that is generated by  is topologi-
cally the same as Rabi rotations: the phase-space trajectories
around X are merely deformed. This means that there are two
stable fixed-points, both located on the Equator ( 2θ π= ).
The ground-state fixed-point is 0φ = , and the upper-state
fixed-point is φ π= . For u 1> the ground-state fixed-point
remains stable but the upper fixed-point bifurcates. Instead
phase-space can support condensation in the North or in the
South fixed-point. See figure 2 for illustration. This is an
example for the 2nd scenario that has been mentioned in the
introduction.

Mott transition

The dimer constitutes a minimal model also for the demon-
stration of the Mott transition, which is the third scenario that
has been mentioned in the introduction. Namely, if we
increase u beyond N2 the the area of the Rabi region in phase-
space becomes smaller than Planck cell. This means that the
ground-state is no longer a coherent state. Rather it becomes a
Fock state with 50–50% occupation of the two wells. Semi-
classically it is represented by a strip along the Equator, with
uniform φ distribution.

3. Quasi-stability of an unstable preparation

Having figured out that for u 1> the φ π= fixed-point is not
stable, the question arises what happens if initially we con-
dense all the bosons in the upper orbital. Semiclassically such
preparation is represented by a Gaussian-like distribution at the
φ π= fixed-point, see figure 2(b). It is useful here to make a
connection with the Josephson Hamiltonian. Namely, in the
vicinity of the Equator equation (5) can be approximated by

Un
NK

2
cos( ), (6)Josephson

2 φ= −

where 1 2φ φ φ= − is the conjugate phase. This is formally
like the Hamiltonian of a mathematical pendulum. The φ π=

Figure 1. Illustrations of the dimer (left) and of the trimer (right)
model systems. Namely, we consider N bosons that are described by
an M = 2 or by an M = 3 site BHH. The hopping frequency is K, and
the on-site interaction is U. In the case of a trimer the hopping
frequencies acquire phases whose sum Φ reflects the Coriolis force.

1 For a more comprehensive list of references see [10–15], in particular [10]
(dimer) and [15] (trimer).
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preparation is like trying to position the pendulum in the
upper unstable point. Our classical intuition tells us that such
state should decay exponentially. Using a phase-space
picture, the wavepacket is expected to squeeze in one
direction and stretch in the other (unstable) direction, along
the separatrix. This is demonstrated in the upper panel of
figure 3 using the Husimi representation.

However, it turns out that the naive classical intuition
with regard to the stability of the φ π= preparation fails once
longer time are considered. In the upper panel of figure 4 we
plot the time evolution of the length SSB = ∣ ∣ of the Bloch
vector for various coherent preparations

( )S
N

J J J
2

, , . (7)x y z=

Note that the reduced probability matrix is expressible in
terms of S, hence the purity measure that has been defined in
the introduction is S S(1 ) 2B

2= + . The initial length S 1B =
of the Bloch vector reflects the coherence of the initial
preparation. If the initial state is located along the Equator at

0φ = , it remains there (stable). If it starts elsewhere it
typically decays. But if it starts at φ π= , the motion is
dominated by recurrences: it becomes quasi-periodic, hence
this preparation is quasi-stable.

In order to explain this quasi-stability we expand the
initial coherent state in the basis of  eigenstates. Then we
determine the participation number (PN) of the preparation.
The PN tells how many eigenstates ‘participate’ in the
superposition. If the superposition involved all the eigenstates
we would get PN N∼ . For a coherent-state, which is like a
minimal wavepacket, the naively expected result is PN∼1 if it
is located in the vicinity of a stable elliptic fixed-point, and
PN N∼ otherwise. Figure 5 provided an image of PN for all
possible coherent-preparation. The color of a given point

Figure 2. The dimer BHH is formally like that of a spin j N 2=
entity. Its spherical phase-space ( , )θ φ is illustrated in the upper
panel in the case u 1> . It is similar to the cylindrical phase-space
n( , )φ of a mathematical pendulum (lower panel). We have three
types of motion separated by a separatrix: Rabi oscillations between
the two wells (blue curves); and self-trapped motion either in the left
or in the right well (green curves). In the lower panel the three
shaded Husimi distributions represent the following preparations:
low-energy 0φ = coherent-state; separatrix-energy φ π= coherent-
state; and another coherent-state with the same energy.

Figure 3. The dynamics of the dimer is illustrated in phase-space.
For numerical details see [13]. The upper panels simulate the
evolution in the absence of external driving: The left panel shows the
classical phase-space portrait, and the right panel provides the
Husimi representation of a quantum-mechanically time-evolved π
preparation (red means high probability). The 2nd row panels show
what happens if one adds high frequency periodic driving that
converts the hyperbolic fixed-point into a stable elliptic fixed-point.
The 3rd row panels show what happens if the driving frequency is
comparable with the natural frequencies of the dynamics: one
observes a chaotic sea within which the quantum state ergodizes.
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( , )φ θ reflects the PN of a ‘minimal wavepacket’ that is
launched at that point. We see in the left panel that the PN of
a φ π= preparation is of order unity (color-coded in blue)
contrary to the naive expectation. An analytic calculation
using a WKB approximation [10, 11] provides the estimate
PN Nlog( )∼ . This explains the quasi-stability of the unstable
fixed-point: the PN is typically small hence the motion
is qusi-periodic. A huge value of N is required to get the
irreversible decay that would be observed in the classical
limit.

The low PN of a ‘minimal wavepacket’ that is launched
at the vicinity of an hyperbolic point can be regarded as an
extreme example for ‘quantum scarring’. The latter terms is
reserved to the case where an hyperbolic point is immersed in
a chaotic sea. Figure 5 provides an example for a PN calcu-
lation for a kicked dimer [13]. The middle panel is for a
mixed phase-space system where the low PN regions simply
reflect quasi-integrable motion. The right panel is for a
strongly chaotic system where the blue region at (π/2, π/2)
indicates the presence of a classical hyperbolic point. Stran-
gely enough in a classical simulation the hyperbolic point
cannot be detected because it has zero measure. But quantum
mechanics is generous enough to acknowledge its existence.
We note that in this ‘quantum scarring’ example PN N∼ for
any preparation: the low PN is due to a prefactor is the

quantum scarring formula, and not due to a different func-
tional dependence on N.

4. Stabilization—the Kapitza and the Zeno effects

The φ π= preparation is qusi-stable rather than stable. The
question arises whether in an actual experiment it can be
stabilized such that S 1∼ for a long duration of time. The
answer is positive. It can be stabilized by introducing hight-
frequency or noisy driving. The Hamiltonian becomes

f t W( ) . (8)total = +

The coupling is via someW. In the present context we assume
that the hopping amplitude K is modulated, accordingly
W Jx= .

By periodic driving we mean

f t A t( ) sin( ). (9)Ω=

One should be aware that if Ω is comparable with the
natural frequency of the system, we merely get chaotic
dynamics as demonstrated in the lower panels of figure 3.
This means that stability is completely lost. But if we have
high-frequency driving, its effect is averaged, and we get
quasi-integrable motion with an effective Hamiltonian

V eff + , where

V
A

W W
4

[ , [ , ]]. (10)eff
2

2


Ω
= −

See [13] for derivation. It turns out that the additional term
converts the hyperbolic point into a stable elliptic point as
demonstrated in the middle panels of figure 3. This is known
as the Kapitza effect. We merely generalized here the
standard analysis of the canonical mathematical pendulum.

By noisy driving we mean that f (t) looks like ‘white
noise’ with zero average and correlation function

f t f t D t t( ) ( ) 2 ( ). (11)δ′ = − ′

Using standard elimination technique one concludes that the
dynamics is described by the following Fokker–Planck
equation:

t
D W W

d

d
i[ , ] [ , [ , ]]. (12)ρ ρ ρ= − −

The analysis [14] shows that the decay is described by the
expression

{ }( )S
N

D texp
1

exp 8 1 , (13)B w
⎡⎣ ⎤⎦= − −

where the radial diffusion coefficient is

D
w

D8
, (14)w

J
2

=

The stronger the noise, the slower the radial diffusion.
Looking at figure 4 we see that we have achieved S 1B ∼ for a
long duration. In the remaining paragraphs of this section we
shall provide a heuristic explanation for this effect.

There is related stabilization method that comes under the
misleading title ‘quantum Zeno effect’. The idea is to ‘watch’

Figure 4. The length S∣ ∣ of the Bloch vector is a measure for one-
body coherence. We follow the time evolution of a coherent state. In
the upper panel each curve is for a different preparation (see text). In
the lower panel the evolution of a φ π= preparation is simulated in
the presence of noise (thick black curve) and compared with
noiseless evolution (orange curve). For more details see [14].
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the pendulum. Due to successive ‘collapses’ of the wave-
function the decay is slowed down. Using a standard Fermi-
golden-rule analysis one deduces the expression

{ }S
N

D texp
1

8 . (15)B w= −

This expression coincides with equation (13) for very short
times, and fails for longer times, as demonstrated in the lower
panel of figure 4, where it is plotted as a thin black line. What
is misleading here, is the idea that the Zeno effect is a spooky
quantum effect. In fact to ‘watch’ a pendulum is formally the
same as introducing noise. The effect of the noise is to
stabilize the pendulum, and this would happen also if Nature
were classical...

So what is the essence of the Zeno effect? The most
transparent way to explain it is to use a phase-space picture.
Let us regard the wavepacket as an ellipse with area

r r .a bA π= The effect of  is to squeeze it in one direction
and stretch it in the other direction. Note that the area A is not
affected (Liouville’s theorem). The effect of f t J( ) x is to
induce random rotation of its orientation. Thanks to the ran-
dom rotations the stretching process is slowed down. Sche-
matically we can write the length of the the randomly rotating
major axis as

r t r( ) ... (0), (16)t 2 1λ λ λ=

where λ is either smaller or larger than unity depending on the
orientation of the ellipse. The net effect is diffusion of rlog( ),
leading to equation (13). Now we can also understand what is
the reason for the failure of equation (15). The first-order
treatment involves the substitution 1λ ϵ= + , and then the
product is expanded. Hence r(t) becomes a sum

...t 2 1ϵ ϵ ϵ+ + + , rather than a product of random variables,
and one deduces wrongly that r(t) diffuses, leading to
equation (15).

5. The trimer—a minimal model for a superfluid
circuit

The BHH of the trimer is the same as equation (3), but for
sake of generality we add in the kinetic term hopping phases
that reflect the Coriolis field:

( )K

2
e a a e a a . (17)

j

M
M

j j
M

j j

1

i( )
1

† i( ) †
1∑− +Φ Φ

=
+

−
+

Note that this is formally like having an Aharonov–Bohm
magnetic flux through the ring. The classical energy land-
scape of the BHH always has a lowest fixed-point that might
support a vortex-state, and an upper fixed-point that might
support either a vortex-state or (due to bifurcation) a set of
self-trapped states. Note that the upper-state can be regarded
as a ground-state of the U U↦ − Hamiltonian. The u( , )Φ
regime diagram of this model is displayed in the left panel of
figure 6. As in the case of the dimer we have here two familiar
scenarios: with regard to the ground-state, if u becomes larger
than N2 it undergoes a Mott-transition and looses its purity
(green line in figure 6). With regard to the upper-state, if u
crosses the solid red line, it bifurcates, and replaced by an
quasi-degenerate set of three self-trapped states.

The inverse purity S1 of the upper state is imaged as a
function of u( , )Φ in the right upper panel of figure 6. The
dashed line is the classical stability border of the vortex-state
beyond which we have self-trapping. Clearly the numerical
results agree with the classical prediction.

The question arises whether it feasible to find a (meta)
stable vortex-state, that is immersed in the ‘continuum’. The
‘continuum’ is formed of states that are supported by the
chaotic sea. There are two possibilities here: the traditional
possibility is to have a state that is supported by a stable fixed-
point in an intermediate energy; The exotic possibility is to
have quasi-stability in the vicinity of an unstable fixed-point.
Looking at the right lower panel of figure 6 we find that
superfluidity survives beyond the classical (Landau) border of

Figure 5. An image of PN( , )φ θ . The left panel, taken from [11], is for the integrable non-driven dimer with N 100= bosons, and u 2.5= .
The color code goes from PN ∼ 1 (deep blue) to PN ∼ 30 (red). The middle and right panels are for a kicked dimer that has a mixed or a fully-
chaotic phase-space, respectively. For extra details see [12]. In the latter (chaotic) case one observes scarring (blue region) in the vicinity of
the classical hyperbolic point (π/2, π/2).
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stability. In particular we observe that superfluidity is feasible
for a non-rotating device ( 0Φ = ), contrary to the traditional
expectation that is based on the classical stability analysis.
The full explanation of the superfluidity regime-diagram
requires a thorough ‘quantum chaos’ analysis of the under-
lying mixed phase-space structure [16].

6. Concluding remarks

The dimer is a minimal model for demonstrating the classical
instability that leads to self-trapping, and the quantum Mott
transition of the ground-state. It also provides an illuminating
example for quasi-stability at the vicinity of an unstable
hyperbolic point. Classical stabilization is feasible by intro-
ducing high-frequency periodic driving (Kapitza effect) or
noise (Zeno effect).

From a topological point of view a triangular trimer is the
minimal model for a superfluid circuit. Due to the extra
degree of freedom this model is no longer integrable, unlike
the dimer. The question arises whether such circuit can sup-
port a metastable vortex-state. This is what one call ‘super-
fluidity’. We find that a quasi-stable superfluid motion
manifests itself beyond the regime that is implied by the
traditional stability analysis. The full explanation of the
superfluidity regime-diagram of a low-dimensional circuit

requires a thorough ‘quantum chaos’ analysis of the under-
lying mixed phase-space structure.

Low dimensional superfluid circuits are of current
experiment interest [17]. Periodically driven BEC circuits and
the stabilization of nonequilibrium condensates is of special
interest too [18, 19].
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