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The driven-dissipative Dicke model features normal, superradiant, and lasing steady states that may be
regular or chaotic. We report quantum signatures of chaos in a quench protocol from the lasing states.
Within the framework of a classical mean-field perspective, once quenched, the system relaxes either to the
normal or to the superradiant state. Quench from chaos, unlike quench from a regular lasing state, exhibits
erratic dependence on control parameters. In the quantum domain, this sensitivity implies an effect that is
similar to universal conductance fluctuations.

DOI: 10.1103/PhysRevLett.128.130604

The essence of chaos is often presented as a “butterfly
effect”: a small variation in a control parameter h leads to a
drastically different outcome, with seemingly erratic deter-
ministic dependence. For example, a particle is launched
into a chaotic cavity and is either transmitted (Q ¼ 1) or
reflected (Q ¼ 0). The classical dependence QðhÞ looks
uncorrelated on a scale that is larger than some exponen-
tially small δhc. Alternatively, one may consider a “coin
tossing” experiment that involves a dissipative quench to
the binary final outcome due to the proverbial coin-ground
interaction.
In the present Letter, we consider a “quench from chaos”

(QFC) to bistability for atoms in a lasing cavity. The control
parameter h is a prequench preparation time tprep, and the
postquench outcome is either a normal state (NS) [Q ¼ 0]
or a superradiant (SR) state [Q ≠ 0]. The observable Q is
the number of photons in the cavity, namely, Q ¼ nðtmÞ
where tm is the time to measurement, i.e., the duration of
the quench. Within the framework of a classical (mean-
field) perspective, for an appropriate tuning of the atom-
field interaction, the dependence of Q on h is erratic, as
illustrated in Fig. 1. We seek for the signature of this
dependence in the quantum regime.
The simplest quantum version of QFC is a semiclassical

phase-space picture. The wave packet spreads over the
chaotic sea, and therefore the erratic dependence of
ProbðQ ¼ 1Þ on h is smeared away: in the classical
mean-field context this probability is either 0% or 100%,
while in the semiclassical truncated Wigner approximation
perspective it equals a number p that reflects the relative
volume of the basin leading to the SR state. However,
interference between semiclassical trajectories should
result in irregular dependence on h in the exact quantum
many-body dynamics, see Fig. 1.
Fluctuations due to QFC are analogous to universal

conductance fluctuations (UCFs) [1,2] and chaos-assisted

tunneling (CAT) [3]. In the UCF context, Q is the trans-
mission (conductance) through a chaotic cavity, and h is the
magnetic field, while in the CAT context,Q is the tunneling
rate, and h is the scaled Planck constant. In all those cases
(QFC, UCFs, CAT) the systematic nonsemiclassical fluc-
tuations in the output signal constitute quantum signature
of chaos. However, in QFC we have the extra complication
due to dissipation, and one wonders whether any memory
of chaos survives after the quench. The availability of both
regular and chaotic lasing steady states in the driven-
dissipative Dicke model [4–12] offers an opportunity to
directly contrast the QFC with a quench from a quasiperi-
odic regular orbit and show how the h dependence of the
quench outcome indicates whether the prepared state was
regular or chaotic.
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FIG. 1. Quantum fluctuations in QFC. In the classical (mean-
field) limit, the outcome of the measurement (blue line) is binary
and erratically depends on the parameter that controls the
preparation protocol (in our demonstration it is the preparation
time tprep). In the semiclassical (truncated Wigner) approxima-
tion, this erratic dependence is smoothed away (black line). The
measured hQi reflects the relative volume of the basin that leads
to the Q ¼ 1 attractor. In the proper quantum treatment, the
outcome (red line) manifests fluctuations that arise from inter-
ference of trajectories. However, any mesoscopic system even-
tually relaxes, such that for t ¼ ∞ the expectation value hQi
reflects a thermal equilibrium that does not depend on the initial
preparation.
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Outline.—We first review the regime diagram of the
dissipative Dicke model, highlighting NS, SR, and regular
and chaotic lasing regions. Relaxation toward the NS-SR
bistability is then considered as a measurement protocol. In
the full QFC scheme, we choose the prequench preparation
time (tprep) as a control parameter. This QFC scenario is
contrasted with the quench from dynamically regular
motion. In particular, we aim to clarify the significance
of the quench duration (tm).
The Dicke model.—The model describes N two level

atoms (excitation energy E) that interact with a single cavity
mode (frequency Ω) [13,14]. The Hamiltonian involves,
respectively, the bosonic field operator â and the Pauli
matrices σ̂i, with the common subscripts i ¼ x; y; z;�. The
couplings g and g̃ denote the strength of the corotating and
counterrotating terms of atom-photon interaction. Namely,

ĤD ¼ Ωâ†âþ E
2

XN

r¼1

σ̂rz þ
gffiffiffiffi
N

p
XN

r¼1

ðσ̂rþâþ σ̂r−â†Þ

þ g̃ffiffiffiffi
N

p
XN

r¼1

ðσ̂r−âþ σ̂rþâ†Þ: ð1Þ

We define the mode occupation operator n̂ ¼ â†â and
the collective excitation operators Ŝli ¼ ð1=2ÞPr σ̂

r
i ;

ði ¼ x; y; zÞ that generate a spin algebra with angular
momentum l ≤ N=2.
It is well known [14–17] that the ground state of the

Dicke model undergoes a quantum phase transition from a
NS with hni ¼ 0 to a pair of SR states with hni ≠ 0.
Moreover, depending on ðg; g̃Þ, the model exhibits an
excited state quantum phase transition [18,19].
Dissipative dynamics.—Several loss and incoherent

processes are associated with the Dicke system [5–12].
The corresponding dissipative dynamics can be studied
within the framework of a Lindblad master equation,

_ρ ¼ −i½ĤD; ρ� þ κL½â� þ
XN

r¼1

ðγ↓L½σ̂r−� þ γ↑L½σ̂rþ�Þ

þ 1

N

XN=2

l

ðγc↓L½Ŝl−� þ γc↑L½Ŝlþ�Þ; ð2Þ

whereL½Ô�≡ ÔρÔ† − 1
2
ðÔ†Ôρþ ρÔ†ÔÞ. The incoherent

dynamics in Eq. (2) arises from the cavity-photon loss L½â�
with a rate κ and from local incoherent decay and pumping
transitions L½σ̂r−� and L½σ̂rþ� with rates γ↓ and γ↑, respec-
tively. Apart from the local incoherent processes, there are
also incoherent collective processes L½Ŝl−� and L½Ŝlþ�, with
rates γc↓ and γc↑, respectively. Below, we focus on collective
incoherent transitions and neglect local incoherent pro-
cesses. The collective decay and pumping for the Dicke
model is justified when the atoms are concentrated in a
spatial region much smaller than the wavelength of the

coupled cavity modes [5]. The total spin l then becomes a
constant of motion. Per our preparation, we focus on the
l ¼ N=2 multiplet. The reduced Hamiltonian can be
written in terms of the Ŝi operators. For large N the
classical approximation is obtained by treating them as
classical coordinates. We define scaled variables s ≔ Ŝ−=N
and sx;y;z ≔ Ŝx;y;z=N, such that s2x þ s2y þ s2z ¼ 1=4. We
also scale the bosonic coordinates as a ≔ â=

ffiffiffiffi
N

p
.

Consequently, the classical equations of motion are

_a ¼ −ðiΩþ κ=2Þa − iðgsþ g̃s�Þ;
_s ¼ −ðiE þ fcszÞsþ 2iðgaþ g̃a�Þsz;
_sz ¼ fcjsj2 − i½gðas� − a�sÞ þ g̃ða�s� − asÞ�; ð3Þ

where the net incoherent pumping is fc ¼ γc↑ − γc↓, while
the total incoherent rate of transition is γc ¼ γc↑ þ γc↓. In
Fig. 2 we present phase diagrams obtained by stability
analysis and numerical long-time propagation of Eq. (3).
The phase diagram includes NS and SR, as well as regular
and chaotic lasing phases. Moreover, there is a bistable
NS-SR phase that we are going to utilize for the measure-
ment protocol.
The NS-SR bistability.—An energy landscape Eðn; szÞ

for the cavity can be obtained by minimizing HD for a
given ðn; szÞ under the constraint s2x þ s2y þ s2z ¼ 1=4, see
Supplemental Material [20]. For small g this landscape
exhibits a stable NS minimum at n ¼ 0 and sz ¼ −1=2 that
becomes an attractor for κ > 0. For ðgþ g̃Þ > ffiffiffiffiffiffiffi

ΩE
p

, the NS
becomes an energetic saddle point rather than a local
minimum, but if g̃=g < 1 − ½ ffiffiffiffiffiffiffi

ΩE
p

=g� it maintains dynami-
cal stability and remains an attractor. The transition of the
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FIG. 2. Steady-state phase diagram. The vertical axis is the g̃=g
ratio that reflects coherent pumping. In (a) the horizontal axis is
the normalized incoherent collective pumping. We assume Ω ¼
E ¼ 1 and g ¼ 2, while κ ¼ 2 and γc ¼ 0.5. The label NS�
indicates a stable all-atom-excited state. The labels “LC” and
“Chaos” indicate a regular limit cycle and a chaotic lasing state,
respectively. With vanishing dissipation, bistability appears for
g̃=g ≤ 0.5, and the energy landscape has three attractors (NS and
two SR fixed points), while with finite dissipation this range is
shifted. (b) Dependence of the bistability region on κ, for g ¼ 2,
while fc ¼ γc ¼ 0. The symbols are based on numerical analysis,
while the lines are based on stability analysis (see Supplemental
Material [20]).
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NS to a saddle point is accompanied by the appearance of a
pair of broken symmetry n ≠ 0 SR minima. These two SR
states remain attractors provided κ is not too large. For
quantitative details, including a ðκ; g̃=gÞ regime diagram,
see the Supplemental Material [20] and Fig. 2(b).
Relaxation toward bistability.—In Fig. 3 we inspect

the distribution PðnÞ of the cavity mode’s occupation. In the
quantum simulation, we start with all the atoms in the ground
state, while n ∼ 0. In the semiclassical simulation, we
prepare an initial cloud centered near the south pole of
the Bloch sphere sz ∼ −1=2, with photon number n ∼ 0, and
let the cloud relax. We compare the outcome of relaxation
toward a SR steady state to the relaxation in the bistable
NSþ SR phase. In the latter case, PðnÞ exhibits two distinct
peaks that exhibit broadening in the quantum simulation.

The quantum SR=NS peak ratio is tilted toward the NS with
respect to the classical one due to the quantum spilling from
the metastable SR state. It is important to realize that this
broadening and peak-ratio tilting are not a signature of true
quantum interference: similar broadening would have been
captured semiclassically, if Langevin noise terms were
included [21]. By contrast, the quantum-interference signa-
ture we seek cannot be captured by means of stochastic
semiclassical simulations.
Quench from chaos.—Having gathered all the necessary

ingredients, we turn to discuss the full scenario, including a
preparation stage and a quench stage. The purpose of the
measurement is to detect chaos in the preparation stage.
The quench is to a bistable phase in order to amplify small
fluctuations in the prepared state.
The preparation of the chaotic state is demonstrated in

Fig. 4. Figure 4(a) demonstrates qualitatively the rather
good correspondence that we have between the quantum
distribution and the semiclassical cloud. The points are
color coded according to which basin they belong: upon
quench the blue points will reach the NS fixed point, while
the red and magenta points will reach the two SR fixed
points. The phase-space location of the basins is better
resolved in the Poincaré section of Fig. 4(b).
The quench is an abrupt change in the model parameters.

Specifically, we force the system to relax toward bistability
by setting the parameters ðg; g̃; κ; γc; fcÞ to the values
specified for Fig. 3(b). This is followed by a wait timeFIG. 3. Relaxation toward NS=SR attractors. we start with all

the atoms in the ground state, while n ∼ 0. (a),(c),(e) g̃=g ¼ 0.75,
and the relaxation is toward the SR state. (b),(d),(f) g̃=g ¼ 0.48,
and the relaxation is toward NS-SR bistability. The other
parameters are g ¼ 2, κ ¼ 2, γc ¼ 0.5, and fc ¼ 0.04. In the
quantum simulation, we have N ¼ 16 atoms (meaning l ¼ 8)
and use Nb ¼ 80 truncation for the bosonic mode. The semi-
classical results of (a),(b) and the quantum results of (c),(d) are
compared in (e),(f). The waiting time up to the measurement is
t ¼ tm ¼ 20. The solid black line is the semiclassical distribution,
while the dashed red line is the quantum distribution. The
classical SR fixed points are marked by horizontal dashed lines
in (a)–(d) and by arrowheads in (e),(f). Note the n ¼ 0 peak at (f).

FIG. 4. The prepared state. The system is prepared in a
nondissipative chaotic state with g ¼ 1 and g̃ ¼ 0.48. This is
done by launching a coherent state with sz ¼ sx ¼ 1=

ffiffiffi
8

p
, and

sy ¼ 0, while n ≈ 0, followed by a long waiting time
50 < tprep < 1000. In the quantum simulation, we have N ¼
16 atoms (meaning l ¼ 8) and use Nb ¼ 80 truncation for the
bosonic mode. (a) The quantum Husimi distribution of the
prepared state in the ½ReðaÞ − ImðaÞ� plane at t ¼ tprep ¼ 50.
On top we display the corresponding cloud of classical points.
The latter are color coded based on the postquench outcome: blue
for those that belong to the NS basin and red and magenta for
those of the SR basins. (b) The associated sz ¼ 0 Poincaré section
(the sy; a > 0 branch) projected on the ðn − sxÞ plane, with added
blue, red, and magenta circles that indicate the attractors. For the
quench we assumed g ¼ 2, but kept the same g̃=g, with
dissipation parameters κ ¼ 2 and γc ¼ 0.5 and with incoherent
pumping fc ¼ 0.04.
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tm, during which the system evolves under the dissipative
dynamics with the new parameters. At the end of the
waiting time, a measurement of Q ¼ n̂ðtmÞ is preformed.
Zero quench time (tm ¼ 0) formally means that there
is no quench process, and accordingly, the observable
is Q ¼ n̂ð0Þ ¼ n̂.
For sufficiently large tm, disregarding the quantum-noisy

broadening effect, the measured quantity is a sum of a
projector on the NS basin and a projector on the SR basin,
weighted by nNS ¼ 0 and nSR ≠ 0,

Q ¼ n̂ð∞Þ ¼
X

r∈NS
jrinNShrj þ

X

r∈SR
jrinSRhrj: ð4Þ

Figure 5 contrasts the outcome of a QFC with the outcome
of a quench from quasiperiodic regular dynamics. The time
to measurement is intermediate (tm ¼ 2). We clearly see
that chaos is reflected in the outcome of the QFC scenario,
in accordance with the discussion of Fig. 1. In contrast, the
fluctuation due to quench from a regular state is nonerratic
and merely reflects the spectral context of the quasiregular
dynamics.
Memory loss.—In a mesoscopic device, the information

is eventually blurred due to noisy hopping between the
fixed points. The outcome of the measurement is presented
in Fig. 6(a) for several choices of tm. We observe memory

loss gradually with increasing tm. For short tm the system-
atic variation of Q as a function of tprep is apparent.
Furthermore, due to our choice of observable, the out-
come is partially correlated with the tm ¼ 0 measurement
of hni. This is demonstrated in Fig. 6(b). We would like to
provide a semiclassical procedure for the analysis of this
correlation.
In the semiclassical simulation, the ergodized cloud does

not show any fluctuations, and therefore, the postquench
dynamics does not depend on the preparation time.
However, we can mimic the quantum fluctuations by
giving each “point” of the semiclassical cloud a weight
wj ∝ ð1þ CnjÞ, where the proportionality constant is
determined such that

P
wj ¼ 1. Using the semiclassical

equations of motion, we can determine the mapping
nj ↦ njðtmÞ. Then we can calculate

hQi ¼ hnðtmÞisc ¼
X

j

wjniðtmÞ: ð5Þ

For each tprep the parameter C is adjusted such that
hnð0Þisc ¼ hniqm. Then we can predict the outcome for
finite tm. The result of this phenomenological theory is
incorporated in Fig. 6(b). The departure of the symbols
from the calculated lines (e.g., blue as opposed to red
symbols) is the signature that fluctuations over the Q of
Eq. (4) do not reflect trivially fluctuations of n. On the other
hand, the memory loss due to noisy hopping between the
fixed points is reflected by the “flattening” of the outcome
(e.g., green symbols).
Discussion.—A realistic measurement, unlike an ideal-

ized projective measurement, involves a dissipative quench
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FIG. 5. QFC contrasted with nonchaotic dependence. The
outcome of a quench versus the control parameter tprep. The
preparation assumes dissipation-free dynamics. (a),(c) For a
quench from a g ¼ 0.1 quasiregular; (b),(d) for a quench from
g ¼ 1 chaos. (a),(b) The prequench dynamics of sxðtÞ. The inset
displays the associated classical power spectrum (function of
jωj). (c),(d) The dependence of the quench outcome on tprep. The
quench parameters are the same as in Fig. 3, with measurement
time tm ¼ 2. Solid blue and black lines are the classical and
semiclassical, respectively, while the dashed red line is the
quantum. (d) The fluctuations that were caricatured in Fig. 1.
The solid, dotted, and dash-dotted blue lines in (d) are repre-
sentative trajectories of the semiclassical cloud in Fig. 4(a)
exhibiting uncorrelated fluctuations.
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FIG. 6. Suppression of quantum fluctuations. (a) The depend-
ence of hnðtmÞi on the control parameter tprep for several values of
tm. For tm ¼ 0 it is merely the conventional calculation of hni
versus t for the dissipation-free system. For tm ¼ ∞ (in practice,
tm ¼ 10) it is formally a measurement of the final equilibrium
state. The intermediate value tm ¼ 2, which has been used in
Fig. 5, reflects the outcome of a realistic measurement protocol. It
exhibits the fluctuations that were caricatured in Fig. 1. The inset
shows the variance σn of those fluctuations versus tm. The partial
correlation between hnðtmÞi and hni is inspected in (b), where the
data points (symbols) of (a) are connected by thin lines. The thick
lines are based on a semiclassical procedure that is explained in
the main text. The departure of the data points from the latter is
due to relaxation.
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process. In a macroscopic reality a tossed coin, or a
ferromagnetic pointer, will always point “up” or “down”
at the end of the quench. For a nonviolent quench, a
relatively large tm is required in order to reach the attractor,
allowing differentiation between initially similar states.
Thermal and quantum fluctuations can be ignored. But
in a mesoscopic context, the time of the quench (tm) should
be optimized in order to keep the information about the
measured (prequench) state (it should be large, but not too
large). Our emphasis was on QFC, looking for the quantum
signature of chaos and clarifying the physical significance
of tm. Per our construction, the “large” tm measurement was
strongly correlated with the tm ¼ 0 measurement, but
clearly this is not a general feature. In general, the “basins”
of Q are not correlated with a simple observable of the
system. Either way, we have demonstrated the manifesta-
tion of irregular quantum fluctuations in the outcome,
providing signature for chaos in the “measured” state.
These fluctuations resemble CAT and UCFs. They are
completely diminished in the semiclassical picture and
come instead of the classical exponential sensitivity that
one would expect if reality were not quantum mechanical.
However, unlike UCFs and CAT, they are endangered by
memory loss due to relaxation.
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