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Thermal Equilibrium

[1] The statistical picture of Mechanics
Before we start discussing the canonical formalism of statistical mechanics, we would like to dedicate the first lecture
for some preliminaries regarding: Random variables and probability functions; The statistical picture of classical
dynamics in phase space; The notion of chaos; Stationary states in general; and the canonical state in particular.

This lecture is quite terse, and possibly will be expanded in the future.

====== [1.1] Random variables

Here is a list of topics that should be covered by a course in probability theory:

Random variable/observation x̂ (1.1)

Distribution function ρ(x) (1.2)

for discrete spectrum ρ(x) ≡ Prob (x̂ = x) (1.3)

for continuous spectrum ρ(x)dx ≡ Prob (x < x̂ < x+ dx) (1.4)

Changing variables ŷ = f (x̂) , ρ̃ (y) dy = ρ(x)dx (1.5)

Expectation value of the random variable ⟨x̂⟩ ≡
∑
x

ρ(x)x (1.6)

Expectation value of some other observable ⟨Â⟩ ≡
∑
x

ρ(x)A(x) (1.7)

Variance Var(x̂) = ⟨(x̂− ⟨x̂⟩)2⟩ = ⟨x̂2⟩ − ⟨x̂⟩2 (1.8)

Moment generating function Z(λ) = ⟨eλx̂⟩ (1.9)

Comulant generating function is defined through Z(λ) ≡ exp[g(λ)] (1.10)

Gaussian distribution, definition ρ(x) ∝ exp

[
−1

2

(
x− µ
σ

)2
]

(1.11)

Gaussian distribution, comulant g(λ) = µλ+
1

2
σ2λ2 (1.12)

Legendre transform.– We can write the probability function as ρ(x) = exp(−F (x)), and redefine the comulant
generating function as G(λ) = −g(λ). We have by definition

e−G(λ) =

∫ ∞

−∞
e−F (x) + λx dx (1.13)

If we are allowed to use a saddle point approximation, it follows that G(λ) is related to F (x) by a Legendre transform:

G(λ) ≈ min
x

{
F (x)− λx

}
= F (x̄)− λx̄ (1.14)

where the most probable value x̄ is determined by solving λ = F ′(x). We shall see that this is formally the same
mathematics as going from the Helmholtz to Gibbs free energy. Below we explain that the inverse of this relation is
the large deviation theory.
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====== [1.2] Several random variables

In classical probability theory we can define a joint distribution function for random variables, and then characterize
this distribution by correlation functions.

Joint distribution function of two variables ρ (x, y) (1.15)

Correlation between two variables Cxy = ⟨x̂ŷ⟩ − ⟨x̂⟩⟨ŷ⟩ (1.16)

In the quantum framework, known as “measurement theory”, it is not possible in general to define joint distribution
function. Instead one defines a probability matrix. See the lecture regarding the first and the second quantum
postulates in quant-ph/0605180

If we have a sequence of random variable {x̂j} it is called a stochastic process, and the common notation for the
correlation function is Cij . For time-continuous process the notations is C(t′, t′′) where t′ and t′′ are the two “sampling”
times of the “signal”.

Adding random variables.–
Adding two independent random
variables:

Ŝ = x̂+ ŷ

⟨Ŝ⟩ = ⟨x̂⟩+ ⟨ŷ⟩
Var(Ŝ) = Var(x̂) + Var(ŷ)

gs(λ) = gx(λ) + gy(λ)

Adding N independent and identi-
cally distributed random variables:

Ŝ =

N∑
j=1

x̂j

⟨Ŝ⟩ = Nµ

Var(Ŝ) = Nσ2

gs(λ) = Ng(λ)

The are two useful results for large N . One is the central limit theorem and the other is the large deviation theory.

Central limit theorem.– We define the scaled variable

ŷ ≡
∑

j x̂j −Nµ√
N σ

(1.17)

The statement is that in the large N limit it has a normal distribution with zero average and unit dispersion. This
follows by taking the limit of

gy(λ) = N

[
g

(
λ√
Nσ

)
− λµ√

Nσ

]
(1.18)

Large deviation theory.– Define the scaled variable x̂ = (1/N)
∑
x̂j . Accordingly

gx(λ) = Ng

(
λ

N

)
(1.19)

The sloppy statement regarding its distribution is

ρ(x) ∼ e−Nf(x), f(x) = max
λ
{λx− g(λ)} (1.20)

In order to prove this result note that Θ(x) < eλx for any positive λ. Consequently

Prob(x̂ > x) =
〈
Θ
[(∑

x̂j

)
−Nx

]〉
<

〈
eλ[(

∑
x̂j)−Nx]

〉
= eN(g(λ)−λx) (1.21)

http://arxiv.org/abs/quant-ph/0605180
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A lowest bound is obtained by optimizing the value of λ ∈ [0,∞]. A complementary inequality is obtained for
Prob(x̂ < x), where the value of λ ∈ [−∞, 0] is optimized to get the lowest bound. Thus, the unconstrained optimiza-
tion provides a lowest bound for ρ̃(x) ≡ min{Prob(x̂<x),Prob(x̂>x)}, which is asymptotically similar to ρ(x). Note
that the optimization parameter λ is formally like λ/N , where λ is conjugate to the random variable x̂.

====== [1.3] The statistical description of a classical particle

The statistical state of a classical particle with one degree of freedom is described by a probability function:

ρ(x, p)
dxdp

2πℏ
≡ PROB(x < x̂ < x+ dx, p < p̂ < p+ dp) (1.22)

where the normalization is

x dxdp

2πℏ
ρ (x, p) = 1 [in the next lectures ℏ = 1] (1.23)

The generalization of this definition to the case of d freedoms is straightforward with Planck cell volume (2πℏ)d. The
expectation values of observables are defined in the usual way:

⟨A⟩ =
x dxdp

2πℏ
ρ (x, p) A(x, p) (1.24)

We note that in the quantum context one can define a quasi distribution that corresponds to ρ(x, p), known as

the Wigner function. Furthermore with any observable Â we can associate a phase apace function A(x, p) such
that the expectation value can be calculated using classical look-alike formulas. This is known as the Wigner-Weyl
formalism. This formalism can be regraded as generalization of WKB: Roughly speaking one may say that each
Planck cell in phase space can be regarded as representing a quantum state. The volume of Planck cell is (2πℏ)d
where d is the number of freedoms. Above we have assumed d = 1. Note that the normalization convention allows a
sloppy interpretation of ρ (x, p) as the probability to occupy a Planck cell in phase space. We also remark that the
quantum requirement trace(ρ2) ≤ 1 implies that a wavepacket in space space cannot occupy a volume that is less than
a Planck cell. The probability function of x is

ρ(x) =

∫
dp

2π
ρ (x, p) (1.25)

The ”spreading” of a wavepacket is characterize by

σ2
x ≡ Var(x̂) = ⟨(x̂− ⟨x̂⟩)2⟩ = ⟨x̂2⟩ − ⟨x̂⟩2 (1.26)

σ2
p ≡ Var(p̂) = ⟨(p̂− ⟨p̂⟩)2⟩ = ⟨p̂2⟩ − ⟨p̂⟩2 (1.27)

In the quantum context σxσp > (ℏ/2). The ”energy” of the system is defined as follows:

E = ⟨H (x̂, p̂)⟩ =
x dxdp

2πℏ
ρ (x, p) H(x, p) (1.28)

Later we shall define some other ”spectral” functions that are related to H. Those can be written as an expectation
value of functions of H.

====== [1.4] Dynamics in phase space

The difference between “classical mechanics” and “classical statistical mechanics” parallels the distinction between
“Heisenberg picture” and “Schrodinger picture” in quantum mechanics. The former describes the evolution of the
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system using a set of dynamical variables that obey some equations of motion, while the latter describe the evolution
of the associated probability function. In order to make the above distinction clear we consider the simplest example:
a free particle. The Hamiltonian is

H =
p2

2m
+ V (x), for free particle V (x) = 0 (1.29)

Say that at t = 0 the particle is at (x0, p0). The equations of motion are

ẋ =
∂H
∂p

=
p

m
(1.30)

ṗ = −∂H
∂x

= 0 (1.31)

The solution is x(t) = x0 + (t/m)p0 and p(t) = p0. In the Heisenberg picture we regard x̂0 and p̂0 as random variables
that have some probability function ρ (x, p). Then we define new random variables

x̂t = x̂0 +
t

m
p̂0 (1.32)

p̂t = p̂0 (1.33)

It follows from the composition law of random variables that there is spreading in space as a function of time:

σx (t) =

√
σ2
x +

(
t

m

)2

σ2
p ∼ σp

m
t (1.34)

where (σx, σp) is the initial spreading. It should be clear that “spreading” is a classical effect that originates if we
assume that there is some dispersion in the momentum. In quantum mechanics this effect is unavoidable because
preparations with zero dispersion are non-physical.

In the optional Schrodinger picture we define ρt (x, p) as the probability distribution of x̂t and p̂t. So instead of talking
about the time evolution of x̂ and p̂ we talk about the time evolution of ρ (x, p). In statistical mechanics we prefer
the latter point of view. Evolution takes place in phase space. Liouville theorem applies. Let us see how we use the
“Schrodinger picture” in the above example. Assume that the free particle has been prepared at (X0, P0), namely,

ρt=0 (x, p) =
1

σxσp
exp

(
(p− P0)

2

2σ2
p

)
exp

(
(x−X0)

2

2σ2
x

)
(1.35)

After time t the state is

ρt (x, p) =
1

σxσp
exp

(
(p− P0)

2

2σ2
p

)
exp

(
(x− t

mp−X0)
2

2σ2
x

)
(1.36)

If the preparation is not a “classical pure state”, but say a Gaussian wave-packet that has some finite momentum
spread σp, then one observes spreading as explained previously. More generally we can discuss the spreading of
a wavepacket in the case of a non-linear oscillator. In such case V (x) has either sub-quadratic or super-quadratic
variation, and consequently the oscillation frequency ω(E) depends on the energy: decreases or increases with energy
respectively. If the initial distribution has some finite spread σE in energy, there will be angular spreading that
leads to a quasi-ergodic distribution within the energy shell. It is not really ergodic because if we started with a
mono-energetic distribution (σE = 0) it would not fill uniformly the energy surface: here the energy surface is merely
a one-dimensional “ellipse”. For graphical illustrations see figures in the next section.
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====== [1.5] The route to ergodicity

Let us outline some major observations with regard to the dynamics of classical Hamiltonian systems.

Simple 1D system:– The student is expected to be familiar with the dynamics of harmonic oscillator; potential
well; pendulum. In the case of non-linear oscillations we have the spreading effect. In the case of a pendulum we
have a multi-component phase space with separatrix. The dynamics is not chaotic. One can define the oscillation
frequency ω(E) as a function of energy. In the quantum case ω(E) corresponds to the level spacing at the vicinity of
the energy E.

Chaotic system:– The student is expected to be familiar with the dynamics in simple billiards. The visualization
can be achieved using a Poincare section. In the case of a Sinai billiard (motivated by the discussion of Lorentz gas)
the dynamics is fully chaotic, leading to ergodization. More generally we might have mixed phase space that contains
”chaotic sea” as well as ”islands”.

Ergodization:– The evolution of a chaotic system leads to an ergodization on the energy shell. This can be
mathematically described using the Boltzamnn approach: course graining of phase space by dividing it into cells;
definition of Boltzamnn entropy. Eventually the system will become stationary-like, as if it were prepared in a state
that has maximum entropy.

Driven system:– There is a complicated route to chaos in the case of driven integrable (1D) systems. In contrast
to that in the case of driven globally chaotic systems the picture is qualitatively simple: if we prepare the system
initially within an energy shell, it will ”evolve” with this energy shell, along with diffusion transverse to the energy
shell. This diffusion leads in general to increase of the average energy (heating).

Spreading illustration. – We consider the evolu-
tion of an initial Gaussian distribution (left panels)
in the case of a non-linear oscillator. After a short
time (middle panels) the spreading is like that of a
free particle. After a long time (right panels) one
observes an ergodic-like distribution within the en-
ergy shell. However, this is not really ergodic: if we
started with a mono-energetic distribution, it would
remain localized on the energy shell, as in the case of
an harmonic oscillator.

Convex Billiard Concave Billiard

Phase space illustration. – The dynamics of
a particle in a convex (Sinai) Billiard is completely
chaotic. In contrast to that, in the case of a concave
billiard, we have a mixed phase space that contains
both quasi-integrable regions and chaotic sea. The
phase space is 3-dimensional (x, y, φ) where φ is the
direction of the velocity. It is illustrated in the left
lower panel. The dotted line indicates the normal di-
rection on the boundary. The reflections are specular
with regard to this direction. The right lower panel is
the two-dimensional (s, θ) Poincare section of phase
space: each trajectory is represented by a sequence
of points that indicate successive collisions with the
boundary, where s is the boundary coordinate, and θ
is the collision angle (relative to the normal).
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====== [1.6] Stationary states

The evolution of a statistical state is determined by the Lioville equation of classical mechanics, which becomes the
von-Neumann Lioville equation in quantum mechanics.

∂ρ

∂t
= [H, ρ]PB (1.37)

We consider non-driven bounded systems, and focus our attention on stationary states that do not change in time.
This means ∂ρ/∂t = 0. In the classical language ρ can be regarded as a mixture of ”energy shells”, while in the
quantum language it means that ρ 7→ diag{pr} is a mixture of energy eigenstates labelled by r. In particular the
classical microcanonical state corresponds to an energy eigenstate, and is formally written as

ρ(x, p) =
1

g(E)
δ(H(x, p)− E) (1.38)

The canonical state is

pr =
1

Z(β)
e−βEr (1.39)

and in a classical context it is written as

ρ(x, p) =
1

Z(β)
e−βH(x,p) (1.40)

The density of states and the partition function are defined as

g(E) = trace(δ(E −H)) =
∑
r

δ(E − Er) (1.41)

Z(β) = trace(e−βH) =
∑
r

e−βEr =

∫
g(E)dE e−βE (1.42)

We note that the probability distribution of the energy can be written as ρ(E) = g(E) f(E), where the occupation
probability function is f(E) ∝ δ(E − E) and f(E) ∝ e−βE in the microcanonical and canonical cases respectively. If
we have a many body system of non-interacting participles we can re-interpret f(E) as the occupation function, and
accordingly ρ(E) becomes the energy distribution of the particles (with normalization N).

====== [1.7] The microcanonical and canonical states

Let us assume the following total Hamiltonian for a universe that consists of system and environment:

Htotal = H (Q) +Henv (Qα) +Hint (Q,Qα) (1.43)

For sake of presentation we do not write the conjugate momenta, so Q stands for (Q,P ) or it may represent spin
freedoms. If one neglect the interaction the eigenenergies are written as Er,R = Er + ER, where r labels system states
and R labels environmental states.

It is argued that the weak interaction with the environment leads after relaxation to a canonical state which is
determined by the parameter

β =
d

dE
log(genv(Ē)) (1.44)
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where genv(Ē) is the density of states of the environment, and Ē is the total energy of the universe. The argument is
based on the assumption that the universe (system+environment) is a closed system with some total energy Ē. This
microcanonical assumption can be relaxed (more generally β can be some averaged value), but for sake of clarity we
take it as a starting point. This means that after ergodization all the states with energy Ē < Er,R < Ē + dE have
equal probability. It follows that the probability to find the system with energy Er is proportional to the number
of states such that (Ē−Er) < ER < (Ē−Er) + dE. The number of such states is genv(Ē−Er)dE and therefore we
conclude that

pr ∝ genv(Ē−Er) ≈ genv(Ē)e−βEr (1.45)

Accordingly

pr =
1

Z
e−βEr (1.46)

where the so-called partition function provides the normalization

Z(β) =
∑
r

e−βEr (1.47)

The partition function may depend on parameters that appear in the system Hamiltonian. Therefore we use in general
the notation Z(β,X).

====== [1.8] Mathematical digression

Sometimes is is more appropriate to expand the log of a function. Specifically this would be the case if the function
is definite positive and span many decades. Let us see what is the error which is involved in such an expansion:

f(x) = xN (1.48)

f (x+ δx) = xN +NxN−1δx+
1

2
N(N − 1)xN−2δx2 (1.49)

δx≪ x/N (1.50)

Optionally we expand the log of the function:

S(x) ≡ ln f(x) = N ln(x) (1.51)

S (x+ δx) = N ln(x) +
N

x
δx− 1

2

N

x2
δx2 (1.52)

δx≪ x (1.53)

Thus we have the recipe:

f (x+ δx) ≈ f(x)eβδx where β ≡ ∂ ln f(x)

∂x
(1.54)

In complete analogy we have:

g (E0 + ϵ) ≈ g (E0) e
βϵ (1.55)

where β is the log derivative of the density of states.
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[2] Spectral functions
Various types of spectral functions are defined in mathematical physics. In the quantum context they characterize
the spectrum {En} of energies of as given Hamiltonian H. In the continuum or classical limit it is essential to define a
measure. Below we focus on the most popular spectral functions in statistical mechanics: the density of states g(E),
and the partition function Z(β). We shall see later that the state equations of a system in equilibrium can be derived
from, say, the partition function. Hence the spectral function serves as a generating function.

In the section below we define g(E) and Z(β), and show how they are calculated using standard examples: Two
level system; Harmonic oscillator; Particle in a box; Particle with general dispersion relation; The effect of A(x), V (x)
potential; Several particles; Identical classical particles, the Gibbs factor; Particles with interactions; In particular
two quantum particles; Molecules of type AA and AB (exercise).

====== [2.1] The definition of counting and partition functions

We consider a time independent bounded system which is described by a Hamiltonian H whose eigenvalues are Er.
We can characterize its energy spectrum by the functions

N (E) ≡
∑
r

Θ(E − Er) =
∑

Er<E

1 (2.1)

Z(β) ≡
∑
r

e−βEr (2.2)

If we have a large system we can smooth N (E), and then we can define the density of states as

g(E) ≡ dN (E)

dE
=

∑
r

δ (E − Er) (2.3)

Note that

Z(β) =

∫
g(E)dE e−βE (2.4)

For a classical particle in 1D we can use the above definitions with the prescription

∑
r

7−→
x dxdp

2πℏ
(2.5)

Each ”Planck cell” in phase space represents a state. Accordingly

N (E) =
x dxdp

2π
Θ(E −H (x, p)) =

x

H(x,p)<E

dxdp

2π
(2.6)

Z(β) =
x dxdp

2π
e−βH(x,p) =

∫
g(E)dE e−βE (2.7)

In what follows the Gaussian integral is useful:

∫
e−

1
2ax

2

dx =

(
2π

a

) 1
2

(2.8)
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====== [2.2] Two level system or spin

The Hamiltonian of spin 1/2 in magnetic field is

H =
1

2
hσz (2.9)

The eigenstates are |+⟩ and |−⟩ with eigenvalues E± = ±h/2. Accordingly

Z(β) = e−β(−h
2 ) + e−β(h

2 ) = 2 cosh

(
1

2
βh

)
(2.10)

Optionally we can write the energies of any two level system as Er = ϵn with n = 0, 1 then

Z(β) =
(
1 + e−βϵ

)
(2.11)

====== [2.3] Two spins system in interaction

If we have N is interacting spins the sum over states can be factorized and we simply get

ZN (β) =
(
Z1(β)

)N
(2.12)

For two spins in the absence of magnetic field we get Z2 = 22 = 4. Let us see what happens if there is an interaction:

H = εσa · σb =
(
2S2 − 3

)
ε, S =

1

2
σa +

1

2
σb (2.13)

The energy levels are Esinglet = −3ε and Etriplet = ε. With and added magnetic field the partition function is

Z(β) = e3βε +
[
eβh + e−βh + 1

]
e−βε (2.14)

which factorized for ε = 0, but not in general.

====== [2.4] Harmonic oscillator

The Hamiltonian of Harmonic oscillator is

H =
p2

2m
+

1

2
mω2x2 (2.15)

The eigenstates are |n⟩ with eigenvalues En =
(
1
2 + n

)
ω. Accordingly

Z(β) =

∞∑
n=0

e−β( 1
2+n)ω =

1

2 sinh
(
1
2ωβ

) (2.16)

Note that if we write the energies as Er = ϵn with n = 0, 1, 2, 3, 4, ... then

Z(β) =
1

1− e−βϵ
(2.17)
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Now let us see how the classical calculation is done.

N (E) =
1

2π
ellipse area =

1

2π
π

(
2E

mω2

) 1
2

(2mE)
1
2 =

E

ω
(2.18)

Z(β) =

∫
dx e−β 1

2mx2

∫
dp

2π
e−β p2

2m =

(
2π

βmω2

) 1
2
(

m

2πβ

) 1
2

=
T

ω
(2.19)

One can verify the validity of WKB quantization.

====== [2.5] Particle in a 1D box

The simplest is to assume periodic boundary conditions

H =
p2

2m
x ∈ [0, L] (ring) (2.20)

The eigenstates are the momentum states |p⟩ with

p =
2π

L
n where n = 0,±1,±2... (2.21)

Hence the eigenvalues are

En =
1

2m

(
2π

L
n

)2

(2.22)

The number of states up to energy E is

N (E) = 2
L

2π
(2mE)

1
2 ≡ 1

π
kEL ≡ 2

L

λE
(2.23)

The density of states is

g(E) =
L

πvE
(2.24)

The 1D case here is pathological because in general the density of states grows rapidly with energy. Nevertheless in
the limit of ”infinite volume” we may treat the spectrum as a continuum:

Z(β) =

∞∑
n=−∞

e−βEn ≈
∫ ∞

−∞
dn e−β 1

2m (
2π
L )

2
n2

= L

(
m

2πβ

) 1
2

≡ L

λT
(2.25)

Let us see how the calculation is carried out classically. We can still consider a ring, or optionally we can write the
Hamiltonian with a box potential VL(x). Then we get

N (E) = rectangle area =
1

2π
× L× 2 (2mE)

1
2 = 2

L

λE
(2.26)

Z(β) =

∫
dx

∫
dp

2π
e−β p2

2m = L

(
m

2πβ

) 1
2

=
L

λT
(2.27)
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One can verify the validity of WKB quantization (but without the 1/2 shift).

====== [2.6] A particle in 3D box, or higher dimensions

Consider a particle in a d=3 box of volume V = Ld.

H =

3∑
i=1

p2i
2m

+ [implicit boundary conditions with volume Ld] (2.28)

The eigenstates are

p⃗ =
2π

L
(n1, n2, n3) (2.29)

En1n2n3 =
1

2m

(
2π

L

)2 (
n21 + n22 + n23

)
(2.30)

The summation over the states factorizes:

Z(β) =
∑

n1n2n3

e−βEn1n2n3 =

(∑
n

e−βEn

)3

=
V

λ3T
(2.31)

The above calculation gives Z = (L/λT )
d in d dimensions. For the counting function we get:

N (E) =
1

(2π)d
Ωd

d
(kEL)

d
=

 2
π

4π/3


(
L

λE

)d

(2.32)

and accordingly

g(E) =
Ωd

(2π)d
(kEL)

d−1 L

vE
∝ E(d/2)−1 (2.33)

The factor (kEL)
d−1

can be interpreted as the number of open modes. For d = 2 the DOS is independent of energy
and reflects the mass of the particle.

As far as the classical calculation is concerned, N particle systems is formally like one particle system with d 7→ Nd.
In the quantum treatment the Fermonic or Bosonic nature of identical particles should be taken into account: see
later how the calculation is done e.g. for two particles).

====== [2.7] Classical particle in magnetic field

For a particle in an arbitrary scalar potential V (r) in 3D we get

Z(β) =

∫
dr dp

(2π)3
e−βH =

(
1

λT

)3 ∫
dr e−βV (r) (2.34)

Let us include also a vector potential:

H =
1

2m
(p−A(r))2 + V (r) (2.35)
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Z =

∫
dr dp

(2π)
3 e−β[ 1

2m (p−A(r))2+V (r)] =

∫
dr dp′

(2π)
3 e

−β
[

1
2m (p

′)
2
+V (r)

]
(2.36)

The result does not depend on A(r). The energy spectrum is not affected from the existence of A(r). The energies are
E = (1/2)mv2 + V (r) irrespective of A(r). This is no longer the case upon quantization. Note the implicit assumption
of having background relaxation processes that make the dynamics irrelevant.

====== [2.8] Gas of classical particles in a box

Let us consider N particles:

H =

N∑
α=1

[
p⃗2α
2m

+ V (rα)

]
+ U(r1, ..., rN ) (2.37)

In the absence of interaction the partition function is

ZN (β) =
(
Z1(β)

)N
=

[
1

λ3T

∫
d3r e−βV (r)

]N
(2.38)

From now on we assume gas of identical particles and therefore include the Gibbs factor:

ZN (β) 7→ 1

N !
ZN (β) (2.39)

For N interacting particles we get

ZN (β) =
1

N !

(
1

λ3T

)N ∫
dr1...drN e−βU(r1,...,rN ) (2.40)

====== [2.9] Two quantum identical particles

Let us see what is the partition function for a system that consists of two identical particles, say in a box. The total
energy is written as Eab = Ea + Eb. The partition function is

Z(β) =
1

2

∑
a̸=b

e−β(Ea+Eb) +

{
1
0

}∑
a

e−β(2Ea) (2.41)

=
1

2

∑
a,b

e−β(Ea+Eb) ±
∑
a

e−2βEa

 =
1

2

[
Z1(β)

2 ± Z1 (2β)
]

(2.42)

For a particle in a d dimensional box

Z1 =

(
L

λT

)d

(2.43)

Z2 =
1

2

(
Z2
1 ± 2−d/2Z1

)
(2.44)

Note that for d = 3 we get

Z2(β) =
1

2
Z2
1 ×

[
1± 1

23/2

(
λ3T

volume

)]
(2.45)
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The Fermi case is similar to hard sphere:

Z2(β) =
1

2
Z2
1 ×

[
1−

(
sphere volume

box volume

)]
(2.46)

====== [2.10] Two quantum particles in a box with interaction

The calculation of the partition function Z2 for two identical quantum particle in a box, is both interesting and later
on useful for the purpose of calculating the second virial coefficient of an N particle gas. The Hamiltonian is:

H =
P 2

4m
+
p2

m
+ V (r) (2.47)

In order to be able to do the calculation using separation of variables we cheat with the boundary conditions as
follows: The center of mass motion is confined to a box of volume V = (4π/3)R3, and the relative motion is confined
by |r| < R independently. Accordingly the partition function is factorizes as follows:

Z2 =

(
23/2

V

λ3T

) ′∑
nℓm

e−βEnℓm

 =

(
23/2

V

λ3T

)[∑
b

e−βEb +

∫ ∞

0

g(k)dk e−(β/m)k2

]
(2.48)

where (n, ℓ,m) are the good quantum numbers for the relative motion. Ignoring the possibility of spin, the sum is
over even or odd values of ℓ, for Bosons or Fermions respectively. In the second equality we separate the bond states
from the scattering (continuum) states. In order to determine the DOS of the latter we recall that the radial wave
functions are phase shifted spherical Bessel functions. Accordingly the box quantization condition for the allowed kn
values is

kR− π

2
ℓ+ δℓ = nπ (2.49)

From here one deduce a formula for the effect of the phase shifts on the DOS:

g(k)− g(0)(k) =
1

π

1∑
ϱ

(2ℓ+ 1)
∂δℓ
∂k

(2.50)

Using this result we get after integration by parts the following expression for the interaction effect on the partition
function:

Z2 − Z(0)
2 =

(
23/2

V

λ3T

)∑
b

e−βEb +
λ2T
π2

′∑
ℓ

∫ ∞

0

kdk δℓ(k) e
−(β/m)k2

 (2.51)
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[3] The canonical formalism

====== [3.1] The energy equation of state

Consider some system, for example particles that are confined in a box. The Hamiltonian is

H = H(r,p;X) (3.1)

where X is some control parameter, for example the length of the box. Assuming that we are dealing with a stationary
state, the energy of the system is

E ≡ ⟨H⟩ = trace(Hρ) =
∑
r

prEr (3.2)

If the system is prepared in a canonical states, then it is a mixture of energy eigenstates with probabilities

pr =
1

Z
e−βEr (3.3)

where the partition function is

Z(β,X) =
∑
r

e−βEr (3.4)

One observes that the energy of a system that is prepared in a canonical state can be derived from the partition
function as follows:

E = ⟨H⟩ = − 1

Z

∂

∂β
Z = − ∂

∂β
lnZ (3.5)

Also one can find expressions for the higher moments, for example

⟨H2⟩ =
1

Z

∂

∂β

∂

∂β
Z (3.6)

In particular one deduces the relation

Var(E) = ⟨H2⟩ − ⟨H⟩2 =
∂2

∂β2
lnZ = T 2 ∂E

∂T
= T 2C (3.7)

where in the latter equality we have defined the temperature as T = 1/β and the heat capacity as C = dE/dT . The
notion of temperature will be discussed further below.

====== [3.2] The Equipartition theorem

In the classical context the Hamiltonian might be a sum of quadratic terms

H =
∑
j

cjq
2
j (3.8)
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where qj are either coordinates of conjugate momenta. The partition function factorizes, where each quadratic term

contributes a ∝ T 1/2 term. It follows that each quadratic term contributes T/2 to the energy, and hence 1/2 to the
heat capacity.

This observation can be applied to the analysis of ”balls connected by springs”. We can always go to normal
coordinates. The center of mass degree of freedom contributes T/2 to the energy, while each vibrational mode
contributes T .

A formal extension of this so-called ”Equipartition Theorem” is as follows:

〈
qi
∂H
∂qj

〉
= Tδij (3.9)

The proof is as follows: The measure of integration over phase space can be written as dqidqjdq
′, where q′ represents

all the other coordinates. Applying integration by parts we have

∫
dqidqjdq

′ qi
∂H(q)
∂qj

e−βH(q) = − 1

β

∫
dqidqjdq

′ qi
∂

∂qj

[
e−βH(q)

]
= δij

1

β

∫
dqidqjdq

′e−βH(q) (3.10)

and form here follows the Equipartition Theorem. This generalized version is useful in discussing particles that have
interaction u(xi − xj) ∝ |xi − xj |α, which constitutes a generalization of the harmonic (α = 2) case.

====== [3.3] Heat capacity

From the Equipartition Theorem one deduce that the heat capacity of an ”ideal” system equals to the effective number
of freedoms: Each independent quadratic term in the Hamiltonian contributes 1/2 to the heat capacity. This simple
prescription should be refined for two reasons: (i) Degrees of freedom can ”freeze” in the quantum treatment; (ii) In
general a many body system is not ideal due to interactions. We first discuss the quantum issue referring to spins
and oscillators.

Spin and oscillator.– For spin (+) or oscillator (-) with level spacing ω we have

ln(Z(β)) = ± ln(1± e−βω) (3.11)

E = −∂ lnZ
∂β

=
ω

eβω ± 1
(3.12)

C(T ) =
dE

dT
=

1[
2csnh

(
ω
2T

)]2 (ωT )2 , ”csnh” is cosh or sinh (3.13)

In both case the low temperature behavior of C is identical, namely, for T ≪ ω it is dominated by the Boltzmann
factor e−βω. At high temperature C of the spin drop down because energy reaches saturation, while C of the oscillator
approaches unity reflecting the classical prediction E ≈ T . Since E = ωn it is more illuminating to re-write the above
results as follows:

⟨n⟩ =
1

eβω ± 1
≡ f(ω) (3.14)

Var(n) = [1∓ f(ω)]f(ω) (3.15)

where f(ω) is known as the occupation function. In the case of an oscillator the result for the number variance can be
regarded as a sum of a shot-noise particle-like term Var(n) = ⟨n⟩, and a classical term Var(n) = ⟨n⟩2. In the case of a
spin the fluctuations go to zero in both the ”empty” and ”full” occupation limits. It is customary in quantum-optics
to characterize the fluctuations by g(2) = (⟨n2⟩ − ⟨n⟩)/⟨n⟩2 and to say that the bosonic (oscillator) result g(2) = 2
corresponds to bunching, while the fermionic (spin) result g(2) = 0 corresponds to anti-bunching. The value g(2) = 1
reflects Poisson statistics and would apply in the case of coherent state preparation.
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Debye model.– Let us refer further to a system that can be described as consisting of many harmonic freedoms, e.g.
modes of vibrations. The spectral density of the modes might be ∝ ωα−1. For example in Debay model α = d = 3,
with some cutoff frequency ωc. Then we get for the heat capacity

C(T ) = const

∫ ωc

0

1[
2 sinh

(
ω
2T

)]2 (ωT )2 ωα−1dω = const TαF
(ωc

T

)
(3.16)

where

F (ν) ≡
∫ ν

0

ex

(ex − 1)2
xα+1dx (3.17)

The quantum result can be described as emerging from ”freezing” of freedoms due to the quantization of energy. This
phenomena has lead to the birth of quantum mechanics in the context of blackbody radiation (Planck law).

Glasses.– The standard model for glasses regard them as a large collection of ”two level” entities with splitting ω
that has roughly uniform distribution. Hence the calculation of the heat capacity is formally as in the Debye model
model with sinh replaces by cosh, and α = 1, leading to a linear dependence C(T ) ∝ T .

Quantum gases.– In the classical treatment, disregarding prefactors of order unity, a gas of N particles have total
energy E ∼ NT , hence the heat capacity is C ∼ N . If we have a gas of Fermions in low temperatures, then the number
of excited particles is Neff ∝ T , hence the energy is E ∝ T 2, and the heat capacity is C(T ) ∝ T . In contrast to that
Bosons in 3D condense into the ground states. Hence the occupation of an excited state of energy ϵr is formally the
same as the occupation of an oscillator with the same frequency. Consequently one observes C(T ) ∝ Tα as in Debye
model.

Phase transitions.– We shall discuss phase transitions in later lectures. As the temperature is lowered towards
a critical temperature Tc the system becomes ”correlated”, which means that the effective number of freedoms is
reduced. We assume T > Tc and note that similar picture applies if one approaches Tc from below. We can easily
explain why the heat capacity diverges as Tc is approached. For an ideal gas, or better to think about a collection
of non-interacting oscillators, the partition function is Z = gN , where N is the number of freedoms, and g ∝ T is
the number of accessible states for a single freedom at temperature T . For a correlated system Z = gNeff , where
Neff = N/ξd is the effective number of independent regions, and ξ is called the correlation length. The prototype Ising
model consist of spins (g = 2) rather than oscillators and ξ ∝ |T − Tc|−ν where ν ≈ 1/2. Either way we can write the
expression for the heat capacity as follows:

C(T ) = β2 d
2 lnZ

dβ2
≡ Cg(T ) + Cξ(T ) (3.18)

where the non-singular Cg(T ) originates from the temperature dependence of g, and equals N for non-interacting
oscillators, reflecting the effective number of freedoms. The singular term Cξ(T ) originates from the temperature
dependence of ξ. For an Ising system its divergence near the critical temperature is described by |T − Tc|νd−2. Note
the significance of the space dimension d.

exp

 ε

spin

wc

N

T α

Debye
(α=d=3)

N Fermi

fF

N

Tα

Tcondensation

Bose

w

exp

1

OSC

Tcritical

Phase transition
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====== [3.4] Generalized forces

Assume that X is a parameter that appears in the Hamiltonian. We define the generalized force F which is associated
with the parameter X as

F = −∂H
∂X

(3.19)

This definition will be motivated later on when we discuss the notion of work. We shall explain that for an isolated
system that undergoes a quasi-static adiabatic process the change in energy is dE = −⟨F⟩ dX, meaning that the work
that has been dome by the system is dW = ⟨F⟩ dX. Here are some examples for generalized forces:

parameter generalized force

piston displacement in cylinder with gas Newtonian force

volume of a box with gas Newtonian pressure

length of a polymer Newtonian force (tension)

homogeneous electric field total polarization

homogeneous magnetic field total magnetization

magnetic flux through a ring electric current

Flux and Current.– We would like to better clarify why the magnetic flux and the electrical current are conjugate
variables. Note that for an homogeneous magnetic field the flux through a ring is Φ = AB, and the magnetization is
ad-hock defined asM = AI, where A is the area of the ring. Using the notation X = Φ, the direct identification of
the conjugate force as the current, is rationalized in a simple-minded manner as follows: If we make a change dX of
the flux during a time dt, then the electro-motive force (EMF) is −dX/dt, leading to a current I in the ring. The
energy increase of the ring is the EMF times the charge, namely dE = (−dX/dt)× (Idt) = −IdX. Optionally, if we
set X = B, the conjugate force is the magnetization, and we get dE = −MdB.

Magnetic field.– Usually we shall denote the applied magnetic field not by B as above, but by the letter h, possibly
absorbing into it the coupling constant. For example we write the interaction of a spin with a vertical magnetic field
as −hσz. But there are circumstance in which the sample affects the the magnetic field in a way that cannot be
ignored. For example: if we place a typeI superconductor inside a solenoid, it expels sideways the magnetic field,
such that the total magnetic field is B = 0 inside the sample. We therefore have to be careful in how we write the
Hamiltonian. Schematically we write

Htotal =
∑

j∈system

1

2mj
(pj − ejA)2 + U(r1, r2, ...) (3.20)

+
[
similar expression for the solenoid

]
+

1

8π

∫
B(x)2 d3x (3.21)

Our focus is on the system, so we keep only the interaction of the system with the solenoid:

Htotal = Hsystem(rj , pj ;A) +
1

8π

∫
B(x)2 d3x −

∫
A · Jsolenoid d3x (3.22)

The current density of the solenoid defines the applied magnetic field through the relation

∇× h = 4π Jsolenoid (3.23)

Substitution of this definition into the last term, and doing integration by parts, the Hamiltonian that described the
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interaction of the system with the applied magnetic field takes the following form:

Htotal = Hsystem(rj , pj ;B) +
1

8π

∫
B(x)2 d3x − 1

4π

∫
h(x)B(x)d3x (3.24)

For pedagogical clarity we write B instead of A in Hsystem. Schematically the interaction with the external field h
is described by a term that looks like −hB. We emphasize that h is the control parameter, while B is the conjugate
dynamical variable. The expression for the work takes the form

dW =
V

4π
B(h) dh ≡ V

4π
h dh + M̃(h) dh (3.25)

Note that the electromagnetic field is regarded as part of the sample. If we excluded the electromagnetic field, and
regarded B as a control parameter, we would define the magnetization as M̃ ≡ ⟨−dHsystem/dB⟩. This is consistent
with the above, because the equilibrium value of B is determined by the equation ⟨−dHtotal/dB⟩ = 0, leading to

B = h+ 4πM̃ . In the next lecture, regarding thermodynamics, Htotal will be identified as a ”grand Hamiltonian”
with which a ”Gibbs” free energy can be associated.

====== [3.5] Susceptibility and fluctuations

Given X and assuming that the system is prepared in a canonical state characterized by some β, we can derive the
average value y of the generalized force F from the partition function as follows:

y(X) ≡ ⟨F⟩X =
∑
r

pr

(
−dEr

dX

)
=

1

β

∂ lnZ

∂X
(3.26)

The generalized susceptibility describes the dependence of y(X) on the the parameter X, namely,

χ(X) ≡ ∂y

∂X
=

1

T
Var(F) (3.27)

The second equality requires few lines of algebra. Let us illuminate this relation, and re-derive it, by considering a
prototype example: the dependence of of the length of a polymer, or the volume of a gas, on the applied tension or
pressure. In this example the total Hamiltonian can be written as

H(λ) = H− λV (3.28)

where the parameter λ is the applied field, and V is the conjugate dynamical variable (length or volume in the above
mentioned examples). Consequently we get in the presence of the applied field

⟨V ⟩λ =
trace [V exp (−βH(λ))]
trace [exp (−βH(λ))]

= ⟨V ⟩+ βλ
[
⟨V 2⟩ − ⟨V ⟩2

]
+ higher orders (3.29)

where both numerator and denominators have been expanded, without much caring about commutation relations.
From the above we deduce the following classical relation between the compressiblility and the fluctuations:

κ ≡
[
∂⟨V ⟩λ
∂λ

]
λ=0

=
1

T
Var(V ) (3.30)

In a later lecture we shall introduce generalizations of this relation that are known as the ”Onsager regression theorem”
and as the ”Fluctuation dissipation relation”.

The relation κ = (1/T )Var(V ) parallels the relation C = (1/T 2)Var(E) between the heat capacity and the fluctuations
in energy. It automatically implies that these constants have to be positive. Another way of looking on it is to say
that C > 0 and κ > 0 are stability conditions. Negative value means that that the system will undergo a ”phase
separation” process. See discussion of the ”Maxwell construction” is the ”Interactions and phase transitions” lecture.
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====== [3.6] Empirical temperature

In practice we would like to be able to probe the β of the environment. For this purpose we use a thermometer. The
simplest thermometer would be an ideal gas in a box, for which the partition function is

Z (β,V) = VN

(
m

2πβ

) 3N
2

(3.31)

P =
1

β

∂ lnZ

∂V
=
N

V
β−1 (3.32)

The empirical temperature is defined as follows:

θ =
PV

N
=

1

β
(3.33)

We can of course define different thermometers. The idea is simply to identify a measurable quantity that reflects the
parameter β.

====== [3.7] The Virial theorem

Somewhat related to the equipartition theorem, is the Virial theorem. It is used to relate the expectation value of
the “kinetic” and “potential” terms in Hamiltonian of the type H = K(p) + U(r).

Consider any observable G. It is clear that if the system is prepared in a stationary (not necessarily canonical) state,
then the expectation value ⟨G⟩ is constant in time. By the rate of change equation of motion it follows that

〈
[H, G]

〉
= 0 (3.34)

In particular let us consider the generator of dilations

G =
1

2

∑
j

(rj · pj + pj · rj) [the symetrization is required in the quantum case] (3.35)

For the Hamiltonian H = K(p) + U(r) we get

〈
p · ∂K

∂p

〉
−
〈
r · ∂U

∂r

〉
= 0 (3.36)

with implicit summation over j. If the classical equipartition theorem applies, each term equals T multiplied by the
number of freedoms. For quadratic K(p) and U(r) the first term equals 2⟨K⟩, and the second term equals −2⟨U⟩.
More generally, for two-body interaction of the type

U(r) =
∑
⟨ij⟩

u(ri − rj) =
∑
⟨ij⟩

|ri − rj |α (3.37)

the second term in the Virial theorem equals −α⟨U⟩. This is a meaningful statement for α > 0, otherwise there should
be a “box” that confines the particles. Writing the full Hamiltonian as H = K(p) + U(r) + VL(r) we deduce that

〈
p · ∂K

∂p

〉
−
〈
r · ∂U

∂r

〉
−
〈
r · ∂VL

∂r

〉
= 0 (3.38)
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In the next section we shall see how this relation helps us to derive an expression for the “pressure” on the walls of
the box.

====== [3.8] Pressure on walls

Possibly the simplest point of view about pressure is to regard it as arising from collisions of particles with the walls.
This is the so called the kinetic picture point of view. However, within the framework of the canonical formalism
the pressure is defined as the generalized force that is associated with the volume, such that d̄W = PdV. It is quite
puzzling that in the formal classical calculation the kinetic part factors out and the mass of the particles does not
appear in the result:

ln(Z(β,V)) = −3N

2
lnβ + N lnV + const (3.39)

E = −∂ lnZ
∂β

=
3

2
NT (3.40)

P =
1

β

∂ lnZ

∂V
=

NT

V
(3.41)

With interactions we have to calculated a complicated configuration (dr1dr2...drN ) integral. This calculation will be
discussed in later sections. In the absence of interactions we see that the pressure is related to the kinetic energy,
namely P = (2/3)E/V. Below we generalize this relation using the Virial theorem: we shall see that quite generally,
both classically and quantum mechanically, the pressure is related to the kinetic and potential energy of the gas.

The volume deformation of a box is represented by a deformation fieldD(r). To be specific let us write the Hamiltonian
of N gas particles in a box as follows:

H = K(p) + U(r) + VL(r − λD(r)) (3.42)

Here K(p) is the kinetic term, and U(r) are the interactions, and VL(r) is box defining potential, and λ is the
deformation parameter. We want λ to equal the extra volume due to the deformation, such that V = V0 + λ. We
therefore normalize the displacement field such that

{
D · ds = 1, standard choice: D(r) =

1

3V0
r (3.43)

Accordingly the definition and the expression for the pressure are

P =

〈
−∂H
∂V

〉
=

〈
−∂H
∂λ

〉
λ=0

=
1

3V

〈
r · ∂VL

∂r

〉
=

1

3V

[〈
p · ∂K

∂p

〉
−
〈
r · ∂U

∂r

〉]
(3.44)

where in the last equality we have used the Virial theorem. Note that this extends the discussion of the Virial theorem
in previous section. The case of inter-atomic interactions with α > 0 (bounded system with no walls) can be regarded
formally as a special case of the above relation with P = 0. If α < 0 there is non-zero pressure. We can use the
equipartition theorem to obtain in the classical case

P =
1

V

[
NT − 1

3

〈
r · ∂U

∂r

〉]
(3.45)

where the first term is the same as in the law of ideal gases, while the second is due to the interactions, and can be
expressed using moments of the inter-particle separation.
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====== [3.9] Tension of a polymer

The calculation of a tension of a polymer is very similar to the calculation of pressure. The parameter in the
Hamiltonian is the length X of the polymer, which is analogous to the length or the volume of the box that contains
the gas particles. In both cases the formal result depends only on the configuration integral, while the kinetic term
factors out. Thus in both cases the result does not depend on the mass of the particles. The partition function for a
polymer that is composed of N monomers is

Z(β,X) = [kinetic term]×
∑
conf.

δ(X − (r1 + r2 + ...+ rN )) e−βU(configuration) (3.46)

For simplicity we assume a one-dimensional configuration, such that each monomer is like a link of a chain or small
spring with potential energy u(r), such that the total potential energy is U = u(r1) + u(r2) + ...+ u(rN ). For hard-
links, in analogy with the case of hard-spheres, the potential energy merely restricts the space of allowed configurations.
A one-dimensional chain that is composed of hard-links is illustrated in the figure below. For this ring u(r) = 0 for
r = ±a, and u(r) =∞ otehrwise.

Without the extra X restriction the summation would give a value Z(β). One observes that the ratio Z(β,X)/Z(β)
would be the probability of observing length X if the polymer were unconstrained at its endpoints. According to the
central limit theorem, for toy model that is illustrated in the figure

P(X) =
Z(β,X)

Z(β)
∝ exp

[
−1

2

(
X

L0

)2
]

(3.47)

Above we assumed that the polymer can stretch either sides, hence its average algebraic length is ⟨X⟩ =
∑
⟨rj⟩ = 0,

while the RMS average is L0 =
√
⟨X2⟩ =

√
Na. From the partition function Z(β,X) we can derive the force that is

exerted on the endpoint, aka Hooke’s law:

⟨F⟩X =
1

β

∂ lnZ

∂X
= −(T/L2

0) X (3.48)

Considering the more general case, with arbitrary u(r), one would like to have a procedure for the calculation of the
partition function. Technically this can be done as follows:

Z(β,X) =

∫
dk

2π

∫
dr1dr2...drN ei(X−(r1+r2+...+rN ))k e−βU(r1,r2,...,rN ) ≡

∫
dk

2π
ei k X Z̃(β, k) (3.49)

Above the we have omitted the irrelevant kinetic term. The integral over all possible configurations factorizes Notably
for hard-links it is the “volume” of the possible configurations that have zero potential energy. In the rest of this
section we expalin how to carry out this calculation in a more physically appealing way.

Gibbs procedure.– Assume that a tension f is applied on the polymer: this can be regarded as an “electric” field
that is applied on the endpoint of the polymer, or as an applied “weight”. The Hamiltonian becomes

HG(r̂; f) = H+ fX̂ = KineticTerm +

N∑
j=1

[u(rj) + frj ] (3.50)

where X̂ =
∑
rn. In the new configuration X̂ is an un-constrained dynamical variable, and the equilibrium point Xeq

is determined by the condition F(X) = f . Note that in order to keep sign consistency we have defined the applied
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field in the negative direction. If fluctuations are neglected we expect ⟨X⟩f = Xeq that is derived from HG, to be

consistent with ⟨F⟩X = f that is derived from H. If we blur the distinction between the tension ⟨F⟩ in the sense
of expectation value, and the tension f in the sense of an external parameter (applied force), then, under the same
assumption, the relation dEG = Xdf is consistent with dE = −fdX. In other words: if the conjugate of X is f , then
in the Gibbs-Hamiltonian framework the conjugate of f is −X. The Gibbs partition function is

ZG(β, f) =

∫
dr1dr2...drN e−β[U(r1,r2,...,rN )+(r1+r2+...+rN )f ] =

[∫
dre−β[u(r)+fr]

]N
(3.51)

The factorization of this partition function implies that the total length ⟨X⟩ of the polymer, for a given applied field f ,
is the sum of lengths of the monomers for the same field (the field determines the tension of the polymer).

We realize that Z(β,X) and ZG(β, f) are related by a Fourier transform.

ZG(β, f) =

∫
Z(β,X) e−βf X dX (3.52)

In a formal mathematical perspective the former is like the probability function, and the latter is like the associated
moment generating function. What we were doing is in fact a generalization of the ”convolution theorem”, as used in
the derivation of the central limit theorem.

Finally, in the large N limit the relation between ZG(β, f) and Z(β,X) can be formulated as a Legendre transfor-
mation. We shall encounter the Legendre transformation in the next section, in a formally identical context, as the
relation between the Gibbs free energy G(T, P ) and the Helmholtz free energy F (T,V). Later we use the same trick
in the analysis of quantum gases, when we go from the canonical to the so called “grand-canonical” framework.

====== [3.10] Polarization

The polarization is the generalized force that is associated with electric field. Let us assume that we have a bounded
system of particles with an added uniform electric field:

H =
∑
α

p2α
2mα

+ interactions + potential −
∑
α

qαExα (3.53)

P̂ = −∂H
∂E

=
∑
α

qαx̂α (3.54)

The polarization P̃ is the expectation value of P̂ . One simple example is the calculation of the polarization of an
”atom”, where we have (say) a negative particle that is bounded by a ”spring” to a positive charge. Another simple
example concerns a diatomic molecule that has a permanent dipole moment µ. Here the Hamiltonian is

H(θ, ϕ, pθ, pϕ) =
p2θ
2I

+
p2ϕ

2I sin2(θ)
− µE cos(θ) (3.55)

where I is the moment of inertia. For the polarization we get

P̃ =
1

β

∂ lnZ

∂E
= µ

[
coth

(
µE
T

)
−
(
µE
T

)−1
]

(3.56)

Note that expansion for weak field implies the electric susceptibility χ = (1/3)µ2/T .
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====== [3.11] Magnetization

The magnetization is the generalized force that is associated with magnetic field. It is either due to having spin degree
of freedom (Pauli) or due to the orbital motion. Here we clarify the definition using the three simplest examples.

Pauli magnetism.– Consider a collection of N spins. We denote the magnetic filed by h. The Hamiltonian is

H = −
N∑

α=1

gαhS
α
z (3.57)

M̂ = −∂H
∂h

=

N∑
α=1

gαS
α
z (3.58)

The magnetization M̃ is the expectation value of M̂ . For a single spin 1/2 entity we get the following result:

M̃ =
1

β

∂ lnZ

∂h
=

g

2
tanh

(
gh

2T

)
(3.59)

Note that expansion for weak field implies the magnetic susceptibility χ = (1/4)g2/T . Note also that in the classical
limit (”large spin”) the problem becomes formally identical to that of calculating polarization of electric dipoles.

Orbital magnetism (classical).– In the following we shall identify what is the magnetization M̂ for charged spinless
particles, using the formal definition −∂H/∂h. In the 1D case (ring) it is identified as arising from a circulating current.

In the 2D case it is more convenient to bypass the question what is M̂ and to go directly to the M̃ calculation via the
partition function. In the classical case one obtains ˜M = 0. But in the quantum calculation one obtains finite result.
The classical result is puzzling because we would like to interpret M̂ as arising from circulating currents as in the
1D case. Indeed such interoperation is possible. The point to realize that within the bulk we indeed have circulating
electrons that give rise to a diamagnetic response. But this is compensated by ”Hall currents” that flow along the
boundary. The exact cancellation of these two contributions is spoiled upon quantization, instead we get the de Haas
van Alphen (dHvA) oscillations. Details below.

Orbital magnetism (1D).– Consider a spinless particle in a ring of length L, and area A. The magnetic flux is
Φ = hA. The Hamiltonian, the velocity-operator, the current-operator and the magnetization-operator are

H =
1

2m

(
p− eΦ

L

)2

+ V (x) (3.60)

v̂ = i[H, x] =
1

m

(
p− eΦ

L

)
(3.61)

Î = −∂H
∂Φ

=
e

L
v̂ (3.62)

M̂ = −∂H
∂h

= AÎ (3.63)

The magnetization M̃ is the expectation value of M̂ , or optionally we can refer to the circulating current I, which is
the expectation value of Î.

Orbital magnetism (2D).– The more interesting case is the magnetization of electrons in a 2D box (3rd dimension
does not play a role) due to the formation of Landau levels. We recall again that classically the energy spectrum of
the system is not affected by magnetic field. But quantum mechanically Landau levels are formed (see ”Lecture notes
in Quantum mechanics”). Let us consider a box of area A that contains N spinless electrons. In the bulk, the energy
of a Landau state that belongs to the ν level is εν = (ν + (1/2))ωB where ωB = eB/m is the cyclotron frequency. The
degeneracy of each Landau level is gB = eBA/2π. The calculation of the single particle partition function is the same
as that of harmonic oscillator (multiplied by the degeneracy). Assuming N electrons that can be treated as an ideal
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Boltzmann gas we get

M̃ = −N
12

( e
m

)2 B
T

+ O(B3) (3.64)

This result does not hold for a low temperature electron gas, because the Fermi statistics of the occupation becomes
important. Assuming zero temperature we define Bn with n = 1, 2, 3, ... as the threshold value for which n Landau
levels are fully filled. This values are determined by the equation ngB = N . Considering first strong field B > B1, the
energy of the system is E

(N)
0 = NωB/2 and hence

M̃ = −∂E
(N)
0

∂B
= −N e

2m
, for B > B1 (3.65)

This result has a simple interpretation using ”Bohr picture” of an orbiting electron: each electron performs a minimum
energy cyclotron motion with unit angular momentum L, and associated magnetic moment −(e/2m)L. If the magnetic
field is Bn+1 < B < Bn, one has to sum the energy of the electrons in n filled Landau levels, where the upper one is
only partially filled. One obtain a quadratic expression from which it follows that the magnetization grows linearly
from −N(e/2m) to +N(e/2m). Hence there is saw-tooth dependence of M̃ on the field, which is known as the de
Haas van Alphen (dHvA) oscillations.

Semiclassical interpretation.– There is a simple way to understand the dHvA result. For this purpose assume
that A looks like a circle. Each ”Landau state” occupies a thin strip that has a finite width. Within each strip there
is a diamagnetic cyclotron motion whose net effect is like having an inner anticlockwise current (I⟲ > 0), and an
outer clockwise current (I⟳ < 0). In the bulk the net current of a strip is zero, but nevertheless it has a diamagnetic
contributions to the magnetization, because I⟳ encloses a larger area compared with I⟲. As we come close to the
boundary, near the potential wall, the net current of the strip becomes positive, and its value is determined by the
potential gradient. This is known as Hall effect. In the case of hard wall there is a nice semi-classical illustration of the
trajectories that bounce along the boundary. Upon quantization the ”strips” support so-called ”edge states”. When
B crosses Bn we get a jump in the magnetization that corresponds to the occupation of an additional edge states: The
total Hall conductance of n Landau levels is GH = (e/2π)n, residing in a region that experiences a potential difference
ωB . Hence the drop in the magnetization is (GHωB)× A = N(e/m). It is now easy to understand why in the classical
limit we do not have magnetization: the Hall current along the edges compensates the diamagnetic currents of the
bulk. It is only upon quantization that the balance is violates, and instead we have the dHvA oscillations as a function
of B.
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[4] Thermodynamics

====== [4.1] Absolute temperature and entropy

Let us formally vary the parameters X and β. The implied change in the energy is

dE =
∑
r

dprEr +
∑
r

prdEr =

[(∑
r

dpr
dβ

Er

)
dβ +

(∑
r

dpr
dX

Er

)
dX

]
+

[(∑
r

pr
dEr

dX

)
dX

]
(4.1)

The second term in the formal dE expression is identified as the work d̄W that would be done on the system during
a reversible quasi-static process:

∑
r

prdEr =

(∑
r

pr
dEr

dX

)
dX = −y(X) dX (4.2)

In the next section we shall identify the first term in the formal dE expression as the heat d̄Q that would be absorbed
during a reversible quasi-static process. This expression is not an “exact differential”, but it has an integration factor
that depends only on the empirical temperature. In fact this integration factor turns out to be β, hence we define the
the absolute temperature:

T = inverse integration factor =
1

β
(4.3)

such that (1/T )d̄Q is the differential of a so-called entropy function:

∑
r

dprEr =

(∑
r

dpr
dβ

Er

)
dβ +

(∑
r

dpr
dX

Er

)
dX = TdS (4.4)

The implied definition of the thermodynamic entropy is

S = −
∑

pr ln pr (4.5)

Note that the thermodynamic entropy is an extensive quantity in the thermodynamic limit. It should not be confused
with other types of “entropy”. In particular we shall discuss the ”Boltzmann entropy” in a later section with regard
to the 2nd law of thermodynamics.

We see that the formal expression for dE can be written as follows:

dE = TdS − ydX (4.6)

It is important to emphasize that the above formal expression is a valid mathematical identity that holds irrespective
of whether it reflects an actual physical process. However, it is only for a reversible quasi-static process that ydX is
identified as the work, and TdS as the heat. For a non-reversible process these identifications are false.

====== [4.2] The Thermodynamic potentials

From the basic relation dE = TdS − ydX one concludes that if E is formally expressed as a function of S and X, then
we can derive from it the state equations T (S,X) and y(S,X). Accordingly ee say that E(S,X) is a thermodynamic
potential. At this stage it is convenient to define also the Helmholtz thermodynamic potential:

F (T,X) ≡ − 1

β
lnZ(β;X) (4.7)



27

Within the framework of the canonical formalism the energy is obtained taking to the derivative of Z with respect
to β. This translates to the relation E = F + TS. The relation between F (T,X) and E(S,X) is formally a Legendre
transform. Consequently dF = −SdT − ydX and the associated state equations are

S = −∂F
∂T

, y = − ∂F
∂X

, (4.8)

Within the framework of the thermodynamic formalism state equations that describe physical systems are derived
from thermodynamic potentials. The latter should be expressed using their canonical variables. The common ther-
modynamic potentials are:

E (S,X) dE = TdS − ydX (4.9)

F (T,X) = E − TS, dF = −SdT − ydX (4.10)

G (T, y) ≡ F + yX, dG = −SdT +Xdy (4.11)

S (E,X) , dS =
1

T
dE +

y

T
dX (4.12)

The derivatives of the state equations are know as the ”thermodynamic constants” though they are not really con-
stant...

C ≡ T ∂S
∂T

χ ≡ ∂y

∂X
(4.13)

In the context of gases

Compressibility ≡ − 1

V

∂V

∂P
[common notation - ”beta” or ”kappa”] (4.14)

ExpansionCoeff ≡ 1

V

∂V

∂T
[common notation - ”alpha”] (4.15)

====== [4.3] The Gibbs Hamiltonian approach

It is customary in thermodynamics to define “thermodynamic potentials” that are obtained from the Helmholtz free
energy by means of Legendre transform. This can be regarded as a formal mathematical trick for switching the role of
conjugate variables, but it also can be motivated physically. It is the same procedure that we had discussed regarding
the calculation of the tension of a polymer. Here we repeat it with regard to a gas in a box with piston.

Let us regard the position of the piston (the parameter X) as a dynamical variable (let us call it x). We can apply
force, say “electric” field f on the piston. Accordingly the “Gibbs Hamiltonian” of the system is

HG = H(· · · , x) + fx + [optional kinetic term] (4.16)

The optional kinetic term is required if the piston has finite mass, but its inclusion will not affect the analysis because
it factors out of the calculation. Given x = X the force that the system exerts on the piston is y(X) = ⟨−∂H/∂x⟩X .
Once x becomes a dynamical variable, and f is introduced, the equilibrium point of the piston is determined by the
equation f = y(x), hence the sign convention for the second term in HG.

The partition function of HG is related to that of H by Laplace transform:

ZG(β, f) =
∑
x,r

e−βEx,r =
∑
x

Z(β, x) e−(βf)x (4.17)
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This can be written as

e−G(T,f)/T =
∑
x

exp

[
−F (T, x) + fx

T

]
(4.18)

In the thermodynamic limit fluctuations can be neglected, and a saddle point approximation implies

G(T, f) ≈ min
x

{
F (T, x) + fx

}
= F (T, x̄) + fx̄ (4.19)

where the most probable value x̄ is determined by solving the state equation f = −F ′(x). Accordingly we realize that
G(T, f) is the Legendre transform of F (T,X). The roles of the conjugate variable X and f have been switched. If X
and f are the volume V and the pressure P , then G(T, P ) is known as the Gibbs function.

====== [4.4] The chemical potential

Consider a gas that consists of N identical particles. This can be either classical or quantum gas (contrary to prevailing
misconception, quantum mechanics is irrelevant to this issue - this will be explained in the ”chemical equilibrium”
lecture). Within the framework of the canonical formalism we define the chemical potential as follows:

µ (T,V, N) ≡ ∂F

∂N
(4.20)

Accordingly we have

dF = −SdT − PdV + µdN (4.21)

dG = −SdT + VdP + µdN (4.22)

The above definition of the chemical potential can be motivated by adopting a ”grand Hamiltonian” perspective. Let
us define a ”grand system” that consists of the system and of a reservoir of particles. This reservoir consists of a
huge collection of sites that hold a huge number of particles with binding energy µ. If we transfer N particle from
the reservoir to the system the energy of the ”grand system” becomes

HG = H − µN (4.23)

The so called grand partition function ZG(β, µ) of the Grand system will be discussed in future lecture.

====== [4.5] The extensive property

At this stage it is appropriate to remark on a relation between the Gibbs function and the chemical potential that
holds is the so-called thermodynamic limit. In this limit the system acquires an extensive property that can be
formulated mathematically. Relating to the Gibbs function G(T, P ;N), one observes that if N is multiplied by some
factor, then the volume V and the entropy S for the same (T, P ) are expected to be multiplied by the same factor,
and hence also G should be multiplied by the same factor. We therefore write

G(T, P,N) = N G(T, P, 1) (4.24)

From µ = −dG/dN we deduce that the chemical potential is merely the Gibbs energy per particle. Consequently
from the expression for dG it follows that

dµ = − S
N
dT +

V

N
dP (4.25)
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====== [4.6] Work

In the definition of work the system and the environment are regarded as one driven closed unit. If we change X in
time then from the “rate of change formula” we have the following exact expression:

dE

dt
=

〈
∂H
∂t

〉
= −⟨F⟩t Ẋ (4.26)

it follows that

W ≡ work done on the system = Efinal − Einitial = −
∫
⟨F ⟩t dX (4.27)

This is an exact expression. Note that ⟨F⟩t is calculated for the time dependent (evolving) state of the system. In
a quasi-static adiabatic process one replaces ⟨F⟩t by ⟨F⟩X(t), where the notation ⟨F⟩X implies that the system is
assumed to be in a canonical state at any moment. More generally, within the framework of linear response theory

⟨F⟩t ≈ ⟨F⟩X − ηẊ = y(X)− ηẊ (4.28)

The first terms is the conservative force, which is a function of X alone. The subscript implies that the expectation
value is taken with respect to the instantaneous adiabatic state. The second term is the leading correction to the
adiabatic approximation. It is the “friction” force which is proportional to the rate of the driving. The net conservative
work is zero for a closed cycle while the “friction” leads to irreversible dissipation of energy with a rate

Ẇirreversible = ηẊ2 (4.29)

More generally it is customary to write

W = −W +Wirreversible (4.30)

where the first term is the conservative work, or so to say “the work which is done by the system”

W =

∫
⟨F⟩X dX =

∫ XB

XA

y(X) dX (4.31)

The two main examples that illustrate the above discussion are:

Example 1: box with piston

X = position of a wall element (or scatterer)

Ẋ = wall (or scatterer) velocity

⟨F⟩ = Newtonian force

−ηẊ = friction law

ηẊ2 = rate of heating

Example 2: ring with flux

Φ

X = magnetic flux through the ring

−Ẋ = electro motive force

⟨F⟩ = electrical current

−ηẊ = Ohm law

ηẊ2 = Joule law
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In the first example instead of having a displaceable wall (”piston”) we can have a moveable object inside the box
(”scatterer”). In the latter case there is friction while the conservative force is zero (because the volume of the box is
not changing).

====== [4.7] Heat

In order to understand which type of statements can be extracted form the canonical formalism we have to discuss
carefully the physics of work and heat. We distinguish between the system and the environment and write the
Hamiltonian in the form

Htotal = H(r,p;X(t)) +Hint +Henv (4.32)

It is implicit that the interaction term is extremely small so it can be ignored in the calculation of the total energy.
The environment is characterized by its temperature. More generally we assume that the environment consists of
several “baths” that each has different temperature, and that the couplings to the baths can be switched on and off.
Below we consider a process in which both the initial and the final states are equilibrated with a single bath. This
requires that at the end of the driving process there is an extra waiting period that allows this equilibration. It is
implied that both the initial and the final states of the system are canonical. Now we define

W = work ≡
(
⟨Htotal⟩B − ⟨Htotal⟩A

)
(4.33)

Q = heat ≡ −
(
⟨Henv⟩B − ⟨Henv⟩A

)
(4.34)

Efinal − Einitial ≡ ⟨H⟩B − ⟨H⟩A = W + Q (4.35)

It is important to emphasize that the definition of work is the same as in the previous section, because we regard
Htotal as describing an isolated driven system. However, E is redefined as the energy of the system only, and therefore
we have the additional term Q in the last equation.

Note.– It is possible to treat work and heat on equal footing. For this purpose one should define “work agents”
in analogy to “heat baths”. The work agent is described by an Hamiltonian Hagent(X,P ), and W is defined as the
change of its energy. For example, a piston is described by [1/(2M)]P 2 + fX, where f is a weight. Assuming a large
mass M , the work is stored in the form of potential energy of the weight.

====== [4.8] Quasi static process

In general we have the formal identity:

dE =
∑
r

dprEr +
∑

prdEr (4.36)

We would like to argue that for an ideal (reversible) quasi-static process we can identify the first term as the heat
d̄Q and the second term is the work −d̄W . One possible scenario is having no driving. Still we have control over the
temperature of the environment. Assuming a volume preserving quasi-static process we have

dX = 0 (4.37)

dE =
∑

dprEr = TdS (4.38)

d̄Q = TdS (4.39)

d̄W = 0 (4.40)

Q = [E(B)− E(A)] (4.41)

W = 0 (4.42)
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A second possible scenario is having an isolated system going through an adiabatic process:

dpr = 0 (4.43)

dE =
∑
r

prdEr = −ydX (4.44)

d̄Q = 0 (4.45)

d̄W = ydX (4.46)

Q = 0 (4.47)

W = −[E(B)− E(A)] (4.48)

Any general quasi-static process can be constructed from small steps as above, leading to

Q =

∫ B

A

TdS (4.49)

W =

∫ B

A

y(X)dX (4.50)

In particular for isothermal process we get

Q = T × [S(B)− S(A)] (4.51)

W = −[F (B)− F (A)] (4.52)

If a process is both isothermal (constant T ) and isobaric (constant P ) we can still get work being done by changing
some other parameter X. For example X might be a ”reaction coordinate”. Then we get

Q = T × [S(B)− S(A)] (4.53)

W = −[G(B)−G(A)] (4.54)

====== [4.9] The reversibility of a quasistatic process

Consider for a gas in an isolated box with a movable piston. During a cyclic process the piston is displaced from XA

to XB and then back to XA. For a microcanonical preparations, assuming that the system is quasi-ergodic at any
moment, the final state of the system is similar but not identical to the initial state, namely it will have larger
dispersion in energy. In a future lecture we shall use the “Boltzmann entropy” as a measure for this dispersion, and
we shall argue that the entropy tend to increase. Considering a canonical preparation the same observation holds,
but now we can identify the “Boltzmann entropy” with the “Thermodynamic entropy”. Accordingly we deduce a
change ∆E = T∆S in the energy of the system. aka dissipation. Within the framework of linear response theory the
dissipation rate is ηẊ2, and therefore ∆E = 2η|XB −XA|Ẋ. In the quasi-static limit Ẋ → 0 this dissipation effect
vanishes. We therefore conclude that a cyclic process becomes reversible in the quasistatic adiabatic limit.

We now turn to the process of heat exchange. We fix X and would like to change the temperature from TC
to TH . Here we should regard the system and the baths as one closed unit. We first note that if we couple
weakly a system that has temperature T with a bath that has temperature TC , then, assuming T = TC , the cou-
pled system remains in the same equilibrium state. Note that this assumes canonical states and use the property
exp[−β(Esys + Ebath)] = exp[−βEsys] exp[−βEbath]. If we couple the cold system to the hot bath, we initiate a re-
laxation process towards the temperature TH , that involves heat transfer Q = C · (TH − TC), where for simplicity we
assume constant heat capacity C. To get a full cycle we connect again the system to the cold bath. The same amount
Q flows from the system to the cold bath. Accordingly, the net outcome of the cycle is the transfer of energy Q from
the hot bath to the cold bath, which is associated with an entropy change ∆S = [(1/TC)− (1/TH)]Q. This is clearly

irreversible. If the rate of heat flow is Q̇ = K · (TH − TC), the time of the cycle is t = 2C/K.
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In order to change the temperature of the system in a reversible way, we have to assume that we have a set of baths
(n = 0, 1, 2, ..., N), with temperatures Tn = TC + ndT , where dT = (TH − TC)/N . Each step of the cycle involves
infinitesimal heat transfer dQn = CdT , and hence an entropy change dSn = C(dT/Tn)

2. The total entropy change
per cycle is ∆S = [(1/TC)− (1/TH)]CdT . This residual irreversibility diminishes for N →∞. In this limit the process
become quasistatic because the time required for the heat exchange with all the baths is t = 2N · (C/K).

====== [4.10] Cycles

It is possible to design cycles in (X,T ) space, such that the net effect is to convert heat into work (engine) or in reverse
(heat pump). Consider for example a gas in a cylinder with a piston. If there is no restriction on the availability of
baths the simplest engine could work as follows: Allow the gas to expand at high temperature; Lower the temperature;
Compress the gas back by moving the piston back to its initial position; Raise back the temperature. The net effect
here is to convert heat into work. This is known as the Stirling cycle. A traditional version of a Stirling engine is
displayed in the following figure [left panel taken from Wikipedia]:

In order to see the relation between the engine and the cycle it is proposed to analyze the operation as follows. Denote
by XH and XC the volumes of the hot and cold cylinders. As the wheel is rotated it defines a cycle in (XC, XH)
space. The XH > XC segment of the cycle represents expansion of gas during the stage when most of it is held in
high temperature. The XH < XC segment represents the compression of the gas during the stage when most of it is
held in low temperature.

The disadvantage of the Stirling cycle is that in order to realize it in a reversible manner we need infinitely many
intermediate baths in the heating and cooling stages. The way to do it in practice is to use a “heat exchange” device.
This device can be regarded as layered structure that is attached in one end to the hot bath and in the other end to
the cold bath. As a result each layer is held in a different temperature. We assume that the layers are quesi-isolated
from each other. The trick is to couple the pipes that lead the gas between the hot and the cold cylinders to this
layered structure, such that they can exchange heat with the layers without net effect on the temperature of the layer.

If we want to use a reversible cycle that uses two baths only, we can consider the Carnot cycle. See block diagram
above [taken form Wikipedia]. Note that if we operate this cycle in reverse we get a heat pump instead of an engine.
Let us analyze what happens during a Carnot cycle. Assuming that the levels become more dense as X is increased,
it follows that the result of an adiabatic process would be a lower temperature (adiabatic cooling). To make this point
clear consider just two levels E1 and E2 with occupation probabilities p1 and p2 respectively. The implied temperature
is T = (E2 − E1)/[− ln(p2/p1)]. In an adiabatic process the probabilities do not change, hence as the level get closer
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the implied temperature become lower. If the process is isothermal rather than adiabatic there will be heat absorption
(isothermal absorption) and re-distribution of the probabilities such that p2/p1 = exp[−(E2 − E1)/T0] . These “rules
of thumb” allow to gain intuition with regard to the operation of engines and heat-pumps.

Besides the piston example, the other simplest example for a thermodynamic cycle concerns spin S ≫ 1 in magnetic
field. In order to be consistent with the piston example we defineX = −|h|, so largerX is like larger volume, i.e. higher
density of states. We consider a cycle that consists of 4 stages: adiabatic cooling to lower temperature; isothermal
absorption stage (QC > 0); adiabtic heating to higher temperature; and isothermal emission stage (QH < 0). The net
effect is is to transfer heat from the cold bath to the hot bath, which requires to invest work.

At each stage the workW is positive or negative depending on whether the occupied levels go down or up respectively.
The inclination is to say that during the adiabatic cooling stage the work is positive. This is true in the piston example,
but not in general, as can be verified with the spin example. It should be clear that doing work on the system does
not imply that its temperature becomes higher: the simplest demonstration would be to take an isolated container
with gas to the top of Eifel Tower: it requires work but the temperature is not affected. What is essential for the
operation of the cycle is the variation in the density of the levels, irrespective of whether they go up or down during
the cycle.
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[5] Chemical equilibrium and the Grand Canonical state

====== [5.1] The Gibbs prescription

In this lecture we are going to discuss chemical equilibrium. We shall see that the condition of chemical equilibrium
involves the chemical potentials of the participating gases. For the purpose of calculating µ it is essential to find how
the partition function depends on the number of particles. Classically the calculation of ZN for a gas of identical
particles is done using the Gibbs prescription:

ZN [Gibbs] =
1

N !
ZN [distinguishable particles] (5.1)

We shall motivate this prescription in the following discussion of chemical equilibrium. For an ideal gas we get

ZN =
1

N !
ZN
1 , where Z1 =

V

λ3T

∑
e−βεbound ≡ g0

V

λ3T
(5.2)

The summation is over the non-translational freedoms of the particle. Hence we get

µ =
∂F

∂N
= T ln

(
N

Z1

)
= ε0 + T ln

(
N

V
λ3T

)
(5.3)

where in the last equality we have assumed that the particle has a single well defined binding energy. The inverse
relation is

N = Z1 eβµ =
V

λ3T
e−(ε0−µ)/T (5.4)

The notion of identical particles:– The notion of identical particles does not require extra explanations if they
are indistinguishable as in the quantum mechanical theory. Still we can ask what would happen if our world were
classical. The answer is that in a classical reality one still has to maintain the Gibbs prescription if one wants to
formulate a convenient theory for Chemical equilibrium. Namely, the condition for ”chemical equilibrium” that we
derive below has a simple form if we adopt the Gibbs prescription. Without the Gibbs prescription one would be
forced to formulate an equivalent but non-friendly version for this condition.

====== [5.2] Chemical equilibrium

Consider the following prototype problem of chemical equilibrium:

A[a] ⇌ A[b] (5.5)

where ”a” and ”b” are two phases, say to be in one of two regions in space, or to be either in the bulk or on the
boundary of some bounded region. Given N identical particles we characterize the macroscopic occupation of the two
phases by a reaction coordinate n, such that N − n particles are in phase [a] and n particles are in phase [b]. The
partition function is

Zab
N =

∑
n

{
N !

(N − n)! n!

}
Za
N−nZb

n (5.6)

The combinatorial ”mixing” factor in the curly brackets counts the number of possibilities to divide N particles into
two groups. It should be excluded if the particles are indistinguishable, as in the quantum theory. In the classical
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theory, where the particles are distinguishable it should be included, but it can be absorbed into the definition of the
partition function. This is what we call the “Gibbs prescription”. Using the Gibbs prescription the above sum can
be re-written as follows:

Zab
N =

∑
n

Za
N−nZ

b
n (5.7)

The probability to have (N−n, n) occupation is proportional to the nth term in the partition sum:

p(n) =

{
N !

(N − n)!n!

}
×

Za
N−nZb

n

Zab
N

=
Za
N−nZ

b
n

Zab
N

= C exp
[
−β
(
F a (N − n) + F b (n)

)]
(5.8)

One should appreciate the usefulness of the Gibbs prescription. It is thanks to this prescription that the Free Energy
is additive. If we did not use the Gibbs prescription we would be compelled to add in F a term that reflects ”mixing
entropy”. The most probable value n̄ is determined by looking for the largest term. This leads to the Chemical
equilibrium condition:

F a (N − n) + F b (n) = minimum (5.9)

; −µa (N − n) + µb (n) = 0 (5.10)

Let us consider the case of ideal gases. Using the expression for µ we get

n

N − n
=
Zb
1

Za
1

; n̄ = N
Zb
1

Za
1 + Zb

1

(5.11)

This example is simple enough to allow a determination of the average value ⟨n⟩ too. The probability distribution of
the reaction coordinate is

p(n) =
N !

(N − n)!n!
(Za

1 )
N−n (

Zb
1

)n
(Za

1 + Zb
1)

N
(5.12)

leading to

⟨n⟩ =
∑
n

p(n) n = n̄ (5.13)

We see that the expectation value of n coincides with its typical (most probable) value. In the more general case of
chemical equilibrium, as discussed below, this is an approximation that becomes valid for N ≫ 1 in accordance with
the central limit theorem.

====== [5.3] The law of mass action

This procedure is easily generalized. Consider for example

2C ⇌ 5A+ 3B (5.14)

Given that initially there are NA particles of type A, NB particles of type B, and NC particles of type C we define a
macroscopic reaction coordinate n such that NC−2n is the number of particles of type C, and NA+5n is the number
of particles of type A, and NB+3n is the number of particles of type B. Accordingly

Zabc =
∑
n

Zc
NC−2nZ

a
NA+5nZ

b
NB+3n (5.15)
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and

p(n) = const e−β(F c(NC−2n)+Fa(NA+5n)+F b(NB+3n)) (5.16)

leading to the equation

−2µc(NC−2n) + 5µa(NA+5n) + 3µb(NB+3n) = 0 (5.17)

which with Boltzmann/Gibbs approximation becomes

(NA+5n)5(NB+3n)3

(NC−2n)2
=

(Za
1 )

5 (
Zb
1

)3
(Zc

1)
2

(5.18)

or, assuming that [a],[b],[c] are all volume phases,

(
NA+5n

V

)5 (NB+3n
V

)3(
NC−2n

V

)2 = κ(T ) (5.19)

where the reaction rate constant κ(T ) ∝ e−ε/T depends on the reaction energy ε = 5εa + 3εb − 2εc. In this sign
convention ε < 0 means exotermic reaction.

====== [5.4] Equilibrium in pair creation reaction

Consider the reaction

γ + γ ⇌ e+ + e− (5.20)

This can be analyzed like a chemical reaction C ⇌ A+B, which is of the same type as considered in the previous
version. The important point to notice is that Zc is independent of n, and therefore the chemical potential of the
electromagnetic field is formally µc = 0. The electromagnetic field is like a ”bath”, and we can regard it as part of
the environment, hence we could have written vacuum ⇌ e+ + e−. In any case we get at equilibrium

µe+(n1) + µe−(n2) = 0 (5.21)

where in the Boltzmann/Gibbs approximation

µ(n) ≈ mc2 + T ln

(
nλ3T
V

)
(5.22)

leading to

n1n2 =

(
V

λ3T

)2

e−2mc2/T (5.23)

This problem is formally the same as that of a semiconductor where e+ and e− are the holes and the electrons,
and 2mc2 corresponds to the energy gap between the valance and the conduction bands. Accordingly, an optional
derivation of the latter equilibrium condition can be based on a grand-canonical perspective (see next lecture) with
regard to the occupation of the electrons.
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====== [5.5] Equilibrium in liquid-gas system

The equilibrium between a liquid phase and a gaseous phase is just another example for a chemical equilibrium. We
can write the equation that determines the coexistence curve in (T, P ) diagram as [µa(T, P )− µb(T, P )] = 0. By
implicit differentiation of this equation with respect to T we get the Clausius-Clapeyron relation

dP

dT

∣∣∣∣
coexistence

= −∂T [µa − µb]

∂P [µa − µb]
=

∆S

∆V
=

1

T

[Latent heat]

[Volume change]
(5.24)

Outside of the coexistence curve either µa or µb are smaller, and accordingly all the particles occupy one phase only.

====== [5.6] Site system

The chemical potential can be calculate easily for a system of N identical particles that occupy a set of M sites (or
modes) that have the same binding energy ε. Since we assume that the biding energy is the same for all sites, it follows
that estimating Z1 is essentially a combinatorial problem. We assume n≫ 1 so we can approximate the derivative of
ln(n!) as ln(n). We also write the result for the most probable n which is obtained given µ. Note that the result for
n̄ is meaningful only for large M .

Fermionic site:– Each site can have at most one particle

Zn =
M !

n!(M − n)!
e−βεn (5.25)

µ = ε+ T ln

(
n

M − n

)
(5.26)

n̄ = M(eβ(ε−µ) + 1)−1 (5.27)

Bosonic site:– Each site can have any number of particles. The combinatorial problem is solved by asking how
many ways to divide n particles in a row with M − 1 partitions. If the particles were distinct the result would be
(n+ (M − 1))!. Taking into account that the particles are indistinguishable we get

Zn =
(n+M − 1)!

n!(M − 1)!
e−βεn (5.28)

µ = ε+ T ln

(
n

(M − 1) + n

)
(5.29)

n̄ = (M − 1)(eβ(ε−µ) − 1)−1 (5.30)

Electromagnetic mode:– Each mode of the electromagnetic field can be regarded as a Bosonic site that can occupy
photons with binding energy ω. Since n is not constrained it follows formally that

µ = 0 (5.31)

n̄ = (eβω − 1)−1 (5.32)
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Boltzmann approximation:– Assuming dilute occupation (1 ≪ n ≪ M) we get a common approximation for
both Fermi and Bose case:

Zn =
Mn

n!
e−βεn (5.33)

µ = ε+ T ln
( n
M

)
(5.34)

n̄ = Me−β(ε−µ) (5.35)

General system of sites:– If we want to consider the partition function of N particles inM sites that have different
binding energies we have to calculate

ZN (β) =
∑

n1+...+nM=N

e−β(ε1n1+...+εMnM ) (5.36)

Because of the constraint the sum cannot be factorized. We therefore adopt the ”Grand Hamiltonian” strategy and
calculate the Grand partition function Z(β, µ) that corresponds to HG = H− µN . In principle we can get ZN (β)
from Z(β, µ) via an inverse transform, but in practice it is more convenient to stay with the Grand Hamiltonian
framework.

====== [5.7] The grand canonical formalism

We can regard the grand canonical formalism as a special case of the canonical formalism, where the Grand Hamilto-
nianHG = H− µN describes a Grand system that consists of the gas particles and a hypothetical reservoir. Optionally
we can motivate the introduction of a the grand canonical formalism following the same justification strategy as in
the case of the canonical formalism. First we have to specify the many body eigenstates R of the system:

N̂ |R⟩ = NR|R⟩ (5.37)

Ĥ|R⟩ = ER|R⟩ (5.38)

Then we assume that the system can exchange particles as well as energy with the environment. The probability of
a many body eigenstate R is

pR =
e−βERZenv

N̄−N

Zsys+env
, with Zenv

N̄−N ∝ eβµN (5.39)

We deduce that

pR =
1

Z
e−β(ER−µNR) (5.40)

where the normalization constant is

Z(β, µ) ≡
∑
R

e−β(ER−µNR) (5.41)

The Grand Canonical Z(β, µ) is defined in complete analogy with the canonical case as sum over the many body
states ”R”. For some purposes it is convent to write is as a function Z(z;β) of the fugacity:

z ≡ eβµ,
1

β

∂

∂µ
= z

∂

∂z
(5.42)
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The Grand Canonical Z(β, µ) can serve as a generating function as follows:

N ≡ ⟨N̂⟩ =
∑
R

pRNR =
1

β

∂ lnZ
∂µ

(5.43)

E − µN = −∂ lnZ
∂β

(5.44)

P ≡
〈
−∂H
∂V

〉
=

1

β

∂ lnZ
∂V

(5.45)

Equivalently

FG(T,V, µ) ≡ −
1

β
lnZ (5.46)

N = −∂FG

∂µ
(5.47)

P = −∂FG

∂V
(5.48)

S = −∂FG

∂T
(5.49)

E = FG + TS + µN (5.50)

In the thermodynamic limit FG is extensive, also in the case of non ideal gas. Consequently

FG(T,V, µ) = −VP (T, µ) (5.51)

dP =
S

V
dT +

N

V
dµ (5.52)

In other words rather then using the notation FG, we can regard P (T, µ) as the generating function. Note that this
is the ”Grand canonical” version of the ”canonical” Gibbs function relation

dµ = − S
N
dT +

V

N
dP (5.53)

For constant T , a variation in the chemical potential is related to a variation dP = ndµ in the pressure, where n = N/V
is the density. In the canonical setup N is fixed, while in the grand-canonical setup V is fixed. The compressibility of
the gas can be expressed as follows:

κT = − 1

V

dV

dP

∣∣∣∣
N

=
1

N

dN

dP

∣∣∣∣
V

=
1

n

dn

dP
=

1

n2
dn

dµ
(5.54)

====== [5.8] Fermi occupation

A site or mode can occupy n = 0, 1 particles. The binding energy is ϵ. the site is in thermochemical equilibrium with
a gas in temperature β and chemical potential µ.

Nn = n (5.55)

En = nϵ (5.56)

pn =
1

Z
e−β(ϵ−µ)n (5.57)
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and accordingly,

Z(β, µ) =
(
1 + e−β(ϵ−µ)

)
(5.58)

N(β, µ) = ⟨n̂⟩ =
∑
n

pnn =
1

eβ(ϵ−µ) + 1
≡ f(ϵ− µ) (5.59)

E(β, µ) = ⟨n̂ϵ⟩ = ϵf(ϵ− µ) (5.60)

We have defined the Fermi occupation function 0 ≤ f(ϵ− µ) ≤ 1

====== [5.9] Bose occupation

A site or mode can occupy n = 0, 1, 2, 3... particles. The binding energy is ϵ. the site is in thermochemical equilibrium
with a gas in temperature β and chemical potential µ.

Nn = n (5.61)

En = nϵ (5.62)

pn =
1

Z
e−β(ϵ−µ)n (5.63)

and accordingly,

Z(β, µ) =
(
1− e−β(ϵ−µ)

)−1

(5.64)

N(β, µ) = ⟨n̂⟩ =
∑
n

pnn =
1

eβ(ϵ−µ) − 1
≡ f(ϵ− µ) (5.65)

E(β, µ) = ⟨n̂ϵ⟩ = ϵf(ϵ− µ) (5.66)

We have defined the Bose occupation function 0 ≤ f(ϵ− µ) ≤ ∞. If ϵ < µ then ⟨n⟩ → ∞. If ϵ = µ then the site may
have any occupation. If ϵ < µ then ⟨n⟩ is finite.

====== [5.10] Bosonic mode occupation

The occupation of a mode of vibration, say the number photons in an electromagnetic mode, or the number of
phonons in a vibration mode, are described by the canonical ensemble, by can be optionally regarded as described by
the grand-canonical ensemble with µ = 0. With slight change in notations we have:

Nn = n (5.67)

En = nω (5.68)

pn =
1

Z
e−βωn (5.69)

and accordingly,

Z(β) =
(
1− e−βω

)−1
(5.70)

N(β) = ⟨n̂⟩ =
∑
n

pnn =
1

eβω − 1
≡ f(ω) (5.71)

E(β) = ⟨n̂ω⟩ = ωf(ω) (5.72)
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[6] Quantum ideal gases

====== [6.1] Equations of state

In what follows, unless written otherwise ϵ = 0 is the ground state and

∑
r

→
∫ ∞

0

g(ϵ)dϵ (6.1)

The stationary states of the multi particle system are occupation states

|n⟩ = |n1, n2, n3, ..., nr, ...⟩ (6.2)

where nr = 0, 1 for Fermi occupation and nr = 0, 1, 2, 3, 4, ... for Bose occupation. For these states we have

Nn =
∑
r

nr (6.3)

En =
∑
r

nrϵr (6.4)

pn ∝ e−β
∑

r(ϵr−µ)nr (6.5)

which can be factorized. This means that each site or mode can be treated as an independent system. We use E
and N without index for the expectation values in an equilibrium state. For the Fermionic and Bosonic case we have
respectively (±)

lnZ = ±
∑
r

ln(1± e−β(ϵr−µ)) = β

∫ ∞

0

N (ϵ)dϵ f(ϵ− µ) (6.6)

N =
∑
r

⟨n̂r⟩ =
∑
r

f(ϵr − µ) =
∫ ∞

0

g(ϵ)dϵ f(ϵ− µ) (6.7)

E =
∑
r

ϵr⟨n̂r⟩ =
∑
r

f(ϵr − µ)ϵr =

∫ ∞

0

g(ϵ)ϵdϵ f(ϵ− µ) (6.8)

P =
1

β

lnZ
V

=
1

V

∫ ∞

0

N (ϵ)dϵ f(ϵ− µ) (6.9)

It is good to remember that P (T, µ) can serve as a generating function for all other state equations. This would be
true also if the gas were not ideal. In particular N/V = dP/dµ relates the density to the chemical potential, which
implies a relation between the the pressure P and the density N/V.

====== [6.2] Explicit expressions for the state equations

We assume one particle states |r⟩ that have the density

g(ϵ) = Vc ϵα−1, N (E) =
1

α
ϵ g(ϵ) (6.10)

For a particle in d dimensional box α = d/ν where ν is the exponent of the dispersion relation ϵ ∝ |p|ν , and c is a
constant which is related to the mass m. For example, in the case of spin 1/2 particle in 3D space we have

g(ϵ) = 2× V
(2m)3/2

(2π)2
ϵ

1
2 (6.11)



42

The following integral is useful (upper sign for Bose, lower sign for Fermi):

Fα(u) ≡
∫ ∞

0

xα−1 dx

ex−u ∓ 1
≡ ±Γ(α)Liα(±z), z ≡ eu (6.12)

where the upper/lower sign refers to the Bose and the Fermi case respectively. Details of the Polylogarithm function
Liα(z) can be found in Wikipedia. In the physics community it is commonly denoted as gα(z). Note that

Liα(z) ≡
∞∑
ℓ=1

1

ℓα
zℓ = z + ..., Liα(1) ≡ ζ(α),

d

dz
Liα(z) =

1

z
Liα−1(z) (6.13)

As u becomes larger the function Fα(u) grows faster in the case of a Bose occupation, and it either diverges or attains
a finite value as u→ 0. The finite value Fα(0) = Γ(α)ζ(α) is attained for α > 1. In particular we have Γ(3/2) =

√
π/2

and ζ(3/2) ≈ 2.612. For α = 1 one obtains Li1(z) = − ln(1− z), which has logarithmic divergence as z → 1. For α < 1
it is easily shown that Fα(u) ∼ [1/(1−α)](−u)−(1−α) as u approach zero from below. In the Fermi case the integral
is always finite. Using the step-like behavior of the Fermi occupation function we obtains for z ≫ 1 the so-called
Sommerfeld expansion:

Fα(u) =
1

α
uα

[
1 + α(α−1)π

2

6

(
1

u

)2

+ ...

]
(6.14)

α
F

1
z

Fermi

   Bose

α>1

We can express the state equations using this integral, where z is identified as the fugacity. We get

N

V
= cTα Fα

(µ
T

)
(6.15)

E

V
= cTα+1 Fα+1

(µ
T

)
(6.16)

while P is related trivially to the energy:

P =
1

β

(
lnZ
V

)
=

1

α

(
E

V

)
(6.17)

The grand-canonical free-energy is FG = −V P , from which one can derive the entropy S = −(dFG/dT )µ. Optionally
the canonical free energy for N particles can be calculated via Legendre transform F = FG + µN . The specific results
in the case of a spinless non-relativistic Bose particles are [see also Huang p.231-232;242]:

N

V
=

1

λ3T
Li3/2(z) (6.18)

E

V
=

3

2

T

λ3T
Li5/2(z), P =

2

3

(
E

V

)
=

T

λ3T
Li5/2(z) (6.19)
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====== [6.3] Ideal gases in the Boltzmann approximation

We take ϵ = 0 as the ground state energy of the one-particle states. The Boltzmann approximation is

f(ϵ− µ) ≈ e−β(ϵ−µ) (6.20)

It holds whenever the occupation is f()≪ 1. If it is valid for the ground state ϵ = 0, then it is valid globally for all the
higher levels. Accordingly the validity condition is z ≪ 1, meaning eβµ ≪ 1. Under such condition one can make the
approximation Li(z) ≈ z. In the case of standard 3D gas the Boltzmann approximation condition can be rewritten as

Nλ3T ≪ V ; T ≫ 1

mℓ2
; T ≫ Tc (Bosons), ; T ≫ TF (Fermions) (6.21)

where ℓ = (V/N)1/3 is the typical distance between particles. Is later sections we shall defined the condensation
temperature (Tc) and the Fermi energy (TF). Within the framework of the Boltzmann approximation we can re-
derive the classical equation of an ideal gas:

N

V
=

1

λ3T
z =

1

λ3T
eµ/T (6.22)

E

V
=

3

2

T

λ3T
z =

3

2

N

V
T (6.23)

P =
T

λ3T
z =

N

V
T (6.24)

Note that within this approximation E and P do not depend on the mass of the particles.

bose

boltzman

fermi

E

f(E−µ )11/2

E

0

g(E)

µ

====== [6.4] Bose Einstein condensation

Let us write again the general expression for the occupation of the orbitals:

N(β, µ) = ⟨n0⟩+
∑
r>0

⟨nr⟩ =
1

e−βµ − 1
+ cV

∫
ϵα−1dϵ

(
1

eβ(ϵ−µ) − 1

)
(6.25)

In the limit µ→ 0− this expression always diverges, so we can invert it and find µ as a function of N . But the physics
is more illuminating if the ground-orbital occupation (n0) is dropped from the above expression. Then we realize
that for α > 1, notably for α = 3/2, the total occupation remains finite, namely N(µ→ 0−) = cVΓ(α)ζ(α)Tα. It is
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implied that the excited states can accommodate only a finite fraction N/V of particles in the thermodynamic limit
(V → ∞). Any additional amount of particles forces µ = 0, and has to condense into the ground state orbital. The
conclusion if different for α < 1. For clarity we change notation to V = Ld and α = d/2. The integral is dominated
by the implicit lower cutoff k ∼ 1/L. Hence we get N(µ→ 0−) ∝ Ld(L2)1−(d/2)T . It is implies that the excited
states can accommodate any fraction N/Ld of particles in the thermodynamic limit (L → ∞). So in the latter case
condensation is not forced. The figure below illustrates the reasoning of extracting µ versus T for a given N in both
cases .

for  1<α

T1 <T2<T3

N

V

µµ

N

VΤ1<Τ2<Τ3

for α <1

T

µ

(α < 1)

µ

TΤc

(1< α )

Considering α > 1, having “µ = 0” implies that

N = n0 + cVΓ(α)ζ(α)Tα (6.26)

E = cVΓ (α+1) ζ (α+1)Tα+1 (6.27)

P =
1

α

(
E

V

)
(6.28)

In particular the standard results for condensation in 3D are

N = n0 + Vζ

(
3

2

)(m
2π

) 3
2

T
3
2 (6.29)

P = ζ

(
5

2

)( m

2π

) 3
2

T
5
2 (6.30)

The pressure P is independent of the total number of particles, because the condensate does not have any contribution.
Hence the compressibility κ ∝ (∂P/∂V)−1 =∞. If we change the volume the extra/missing particles just come from
the ground state, which is like a reservoir of µ = 0 particles.

Given T , if we pushN particles into a box, the condition to have condensation isN > N(β, µ→ 0−). The condensation
temperature, below which µ = 0, is

Tc =

(
1

cΓ (α) ζ (α)

N

V

)1/α

∼ 1

mℓ2
(6.31)

where ℓ is the average distance between the particles. Given N , if one tries to eliminate µ, and writes it as a function
of T , then one observes that below the condensation temperature µ is forced to become zero. Under such circumstances
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all the particles that cannot be occupied in the excited states have to condense in the ground state:

⟨n0⟩ = N − N
(
β, µ→ 0−

)
=

(
1−

(
T

Tc

)α)
N (6.32)

The common phrasing is that a macroscopic fraction of the particles occupies the ground state. This fraction is
determined by (T/Tc)

α or equivalently by [V/λ3T ]/N . Note that T ≫ Tc is an optional way to write the Boltzmann
condition.

====== [6.5] Fermi gas at low temperatures

At zero temperatures the Fermi function is a step function. At finite temperatures the step is smeared over a range T .
In order to find explicit expressions for the state functions we have to perform an integral that involves the product
of f(ϵ) with a smooth function g(ϵ). The latter is the density of states g(ϵ) if we are interested in N , or ϵg(ϵ) if we
are interested in E. The Sommerfeld expansion is a procedure to get an approximation, say, to second-order in T .
For this purpose we first define the zero temperature result

G(µ) ≡
∫ µ

−∞
g(ϵ)dϵ (6.33)

And then proceed with the finite temperature calculation using integration by parts:

∫ ∞

−∞
dϵ g(ϵ) f(ϵ− µ) =

∫ ∞

−∞
dϵ G(ϵ) [−f ′(ϵ− µ)] ≡

∫ ∞

−∞
dϵ G(ϵ) δT (ϵ− µ) (6.34)

=

∫ ∞

−∞
dϵ

[
G(µ) +G′(µ)(ϵ− µ) + 1

2
G′′(µ)(ϵ− µ)2 + ...

]
δT (ϵ− µ) (6.35)

= G(µ) +
π2

6
T 2G′′(µ) + O(T 4) (6.36)

We can apply this formula to the N = N (µ) calculation. First we do the zero temperature integral, and from it
eliminate µ as a function of N . This zero temperature result is known as the Fermi energy µ = ϵF . Then we
substitute µ = ϵF + δµ in the above second order expression, expand G(µ) ≈ G(ϵF ) + g(ϵF )δµ , and find

µ(T ) ≈ ϵF −
π2

6

g′ (ϵF )

g (ϵF )
T 2 + O(T 4) (6.37)

E

f(E−µ )

E

g(E)

µ

0
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The specific result for N fermions in system with ϵα−1 density of orbitals, and in particular for spinless non-relativistic
fermions in 3D box is:

N =
1

α
cVµα

[
1 + α (α− 1)

π2

6

(
T

µ

)2

+ ...

]
= V

1

6π2
(2m)

3
2 µ

3
2

[
1 +

π2

8

(
T

µ

)2

+ ...

]
(6.38)

leading after elimination to

ϵF =

(
α

c

N

V

) 1
α

=
1

2m

(
6π2N

V

) 2
3

(6.39)

µ =

[
1− (α−1) π

2

6

(
T

ϵF

)2

+ ...

]
ϵF =

[
1− π2

12

(
T

ϵF

)2

+ ...

]
ϵF (6.40)

For the energy we get

E = V
3

5

1

6π2
(2m)

3
2 µ

5
2

[
1 +

5π2

8

(
T

µ

)2

+ ...

]
=

[
1 +

5π2

12

(
T

ϵF

)2

+ ...

]
3

5
NϵF (6.41)

The pressure is given by the equation

P =
2

3

(
E

V

)
=

1

5

(
6π2
) 2

3
1

m

(
N

V

) 5
3

+ O(T 2) (6.42)

The grand-canonical free-energy is FG = −V P from which one can derive the entropy S = −(dFG/dT )µ ∝ T . The
canonical free energy for N particles can be calculated via Legendre transform F = FG + µN leading to

F (T, V,N) =

[
1− 5π2

12

(
T

ϵF

)2

+ ...

]
3

5
NϵF (6.43)

From here one can recover the expression for the entropy S = −(dF/dT )N , and additionally calculate the heat capacity
CV = T (dS/dT )V,N ∝ T for a closed system of fermions.
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Systems with interactions

[7] Interactions and phase transitions
Energy scales:– With regard to the prototype models of systems with interactions there are generically two energy
scales. One is the interaction strength ε, and the other is the temperature T . For T ≫ ε a perturbative treatment is
appropriate. See below the cluster expansion. For T ≪ ε it is advised to re-model the system with Hamiltonian that
describes its collective excitations. The interesting regime is T ∼ ε where the phase transition takes place.

Models of interest:– It is natural to start with the discussion with the phenomenology of the gas-liquid phase
transition, as implied by the Van-der-Waals equation of state. Later one realizes that the essential physics is captured
by the ”lattice gas” version, which is formally equivalent to the ”Ising model” that describes a ferromagnetic phase
transition. Its generalization is known as the ”Potts model”. The system consists of N sites. At each site there is
a ”spin” that can be in one of s possible states. The Ising model is a special case with s = 2, and the interaction
is σiσj , where σ = ±1. The ”Ising model” has a discrete up/down symmetry. Its Field theory version is known as
the Landau model. The Heisenberg model is a different lattice model that has Si · Sj interaction. This interaction
has a continuous symmetry with respect to rotations. Its 2D version is known as the XY model. There are also
corresponding Field theory models that are known as non-linear sigma models.

First order phase transition.– There are systems where there are (say) two families of states, such that each
family has different DOS with different minimum. In such case a control parameter (call it h) might induce a crossover
from the dominance of one family to the dominance of the second family. This crossover is reflected in the partition
function and hence in the heat capacity and in the state equations. In the thermodynamic limit the crossover might
be abrupt. In such case it is a ”first order phase transition”. If a change in a parameter leads to a bifurcation in the
calculation of the partition function, it is called a ”second order phase transition”. The prototype example for phase
transition is ferromagnetism where the magnetization might be ”up” or ”down”.

Order parameter.– In order to analyze a second order phase transition it is useful to identify the ”order parameter”,
which is a field φ(x) that describes the coarse grained state of the system. In the prototype example of ferromagnetism
it is the magnetization density in the sample. Defining an entropy functional S[φ] that reflects the number of
microscopic states that have the same field configuration, we can express the partition function as

Z =
∑
φ

e−A[φ], A[φ] =
1

T

[
E[φ]− TS[φ]

]
(7.1)

Symmetry breaking.– Second order phase transition is due spontaneous symmetry breaking leading to long range
order. At T = 0 the definition of symmetry breaking is very simple. It means that E[φ] attains (say) two distinct
minimum that are described by different field configurations (different ”order”). However, at finite temperature the
canonical state is not the minimum of the energy functional E[ρ] but of the free energy functional F [ρ] = E[ρ]−TS[ρ].
Accordingly entropic contribution may wash away the broken symmetry.

There is an implicit assumption with regard to the possibility to observe ”symmetry breaking”. It is assumed that
φ(x) has slow dynamics. If a magnet is prepared (say) with ”up” magnetization then it takes a huge time until it
flips to the quasi degenerate ”down” magnetization.

Long range order.– In the prototype examples at high temperatures there is no ”order” meaning that the correlation
function g(r) = ⟨φ(r)φ(0)⟩ decays exponentially. As the critical temperature is approached from above the correlation
length diverges. Below the critical temperature there is ”long range order” and the correlation function should be
re-defined with respect to the new order. There is a possibility to witness ”infinite order phase transition” where
below the critical temperature there is no long range order, but instead the correlation function become powerlaw.
See discussion of the XY model.

Formal analysis.– Disregarding a few models that possess exact solutions, the analysis of the partition function
can be done by adopting the following stages: (1) Primitive mean field theory evaluates the partition function by
calculating A[φ] for the field configuration that minimizes it. This corresponds mathematically to an inferior saddle
point approximation. (2) Proper mean field theory is based on proper saddle point approximation, which means
that the calculation takes into account the Gaussian fluctuations around the minimum. (3) Renormalization Group



48

(RG) treatment is required in the critical regime, whenever the Gaussian approximation in not valid. It explains the
scaling anomalies that are witnessed in the vicinity of the critical temperature.

====== [7.1] Gas of weakly interacting particles

Consider a classical gas of interacting particles:

H =

N∑
i=1

p⃗i
2

2m
+
∑
⟨ij⟩

u (x⃗i − x⃗j) (7.2)

The partition function without the Gibbs factor is

ZN (β,V) =

(
1

λ3T

)N ∫
dx1...dxN exp

−β∑
⟨ij⟩

u (xij)

 (7.3)

≡
(

1

λ3T

)N ∫
dx1...dxN

∏
⟨ij⟩

(1 + f (xij)) , f(r) ≡ e−βu(r) − 1 (7.4)

Note that the configuration space integral has the dimensions of VN . It equals VN if there are no interaction. If there
are interactions we can regard the f(r) as a perturbation. Then we can expand the product and perform integration
term by term. The result can be organized as an expansion:

ZN (β,V) =

(
V

λ3T

)N
[
1 + coef2

(
N

V

)
+ coef3

(
N

V

)2

+ ...

]N
(7.5)

Note that we have raised an N using (1 +NS) ≈ (1 + S)N , such that S is an expansion in powers of the density
(N/V ). From here we can derive the so called Virial expansion for the pressure:

P =
NT

V

[
1 + a2

(
N

V

)
+ a3

(
N

V

)2

+ ...

]
= T

∞∑
ℓ=1

aℓ(T )

(
N

V

)ℓ

(7.6)

The aℓ are known as the virial coefficients. From the above it is implied that

a2 = −1

2

∫
f(r)d3r =

1

2

∫ [
1− e−βu(r)

]
d3r [classical] (7.7)

More generally it is implied from the discussion in the next sections that in order to get a2 we just have to calculate
the two-body partition function Z2. Namely:

a2 = − (λ3T )
2

V

1

2!

[
Z2 − Z2

1

]
[general, no Gibbs prescription here!] (7.8)

The calculation of Z2 for two interacting quantum particles, given the scattering phase-shifts, has been outlined
in a past lecture. In the classical case it is standard to assume that the gas particles are like hard spheres, each
having radius R, with some extra attractive part that has depth ∼ ϵ0, similar to Lenard-Jones potential. Using high
temperature expansion in β we get in leading order

a2 ≈ 1

2

[
1− ϵ0

T

]4π
3
(2R)3 ≡ b̄− ā

T
[Van-der-Waals] (7.9)
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The coefficients ā and b̄ appear in the phenomenological Van-der-Waals equation of state that we shall discuss in a
later stage. They are related to the attraction between the particles, and to their hard-core radius. Note that b̄ is the
excluded volume per particle multiplied by 2d−1, where d = 3. Contrary to a common misconception it is only in 1D
that b̄ equals the excluded volume.

====== [7.2] The grand canonical perspective

It is simplest to deduce the Virial expansion from the grand canonical formalism. From now on the dependence on the
temperature is implicit, and we emphasize the dependence on the fugacity z. The grand canonical partition function
using the Gibbs prescription is

Z(z) =

∞∑
N=0

1

N !
ZNz

N , [Here ZN is defined without Gibbs factor] (7.10)

For an ideal classical gas all the ZN are determined by the one-particle partition function, namely ZN = ZN
1 . Ac-

cordingly ln(Z) includes a single term, namely ln(Z) = Z1z. It makes sense to assume that interactions and quantum
effects will add higher order terms. Hence we postulate an expansion

lnZ(z) =

∞∑
n=1

1

n!
Bnz

n (7.11)

The relation between the Bn and the Zn is formally the same as the relation between commulants and moments in
probability theory:

Z1 = B1 (7.12)

Z2 = B2
1 + B2 (7.13)

Z3 = B3
1 + 3B1B2 + B3 (7.14)

Or backwards:

B1 = Z1 (7.15)

B2 = Z2 − Z2
1 (7.16)

B3 = Z3 − 3Z2Z1 + 2Z3
1 (7.17)

We can use these relations both directions: First we can evaluate a few ZN , typically Z1 and Z2, in order to get the
leading order Bn coefficients, say B1 and B2. Once the leading order Bn coefficients are known, we can generate from
them a generalized Gibbs approximation for all(!) the ZN .

====== [7.3] The cluster expansion

Our objective is to calculate the Bn coefficients in the expansion of ln(Z). For convenience we define their scaled
versions bn through the following substitution:

1

n!
Bn ≡ V

(
1

λ3T

)n

bn(T ) (7.18)

We turn to outline a general diagrammatic procedure to evaluate the bn for a classical gas of interacting particles. A
graph (network, diagram) is a set of vertices (nodes) that are connected by edges (connectors, bonds). In the present
context each diagram represents an integral. The sum over all the connected diagrams that have n nodes gives the
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expansion coefficient Bn of the ”comulant” generating function ln(Z), while the sum over all diagrams (including
reducible diagrams) gives the expansion coefficient ZN of the moments generating function Z. Formally we write

ZN =

(
1

λ3T

)N ∫
dx1...dxN

∏
⟨ij⟩

(1 + f (xij)) =

(
1

λ3T

)N ∑
[diagrams with N nodes] (7.19)

In this expression a diagram represents an integral of the type

C[3′, 1, 2, 3]×
∫
[f(x12)f(x23)] [f(x56)] [f(x78)f(x89)f(x97)] dx1...dx9 (7.20)

where C is a combinatorial factor that arise because we identify diagrams that differ only in the labelling of
the vertices. One should realize that if a diagram is reducible, say N = n1 + n2 + n3, then C[n1, n2, n3] =
[N !/(n1!n2!n3!)]C[n1]C[n2]C[n3]. In the above example C[3′] = 3 is the number of ways to have a triangle with
2 bonds, while C[3] = 1. Using this observation it is not difficult to prove that

Bn =

(
1

λ3T

)n∑
[connected diagrams with n nodes] (7.21)

The implied expression for the bn is the same diagrammatic sum, but the prefactor is replaced by 1/(n!V). The
expressions for the leading coefficients are:

b1 =
1

V

∫
dx = 1 (7.22)

b2 =
1

2!V

∫
f(x12) dx1dx2 =

1

2!

∫
f(r) dr (7.23)

b3 =
1

3!V

∫
[3f(x12)f(x23) + f(x12)f(x23)f(x31)] dx1dx2dx3 (7.24)

====== [7.4] The Virial coefficients

Having found the bn the grand canonical partition function is

lnZ(z) = V
∞∑

n=1

bn(T )

(
z

λ3T

)n

(7.25)

where b1 = 1, and bn has the dimension of lengthn−1. Note that for an ideal Bose or Fermi gas one obtains
bn = (±1)n+1n−5/2(λ3T )

n−1. We would like to find a procedure to determine these coefficients if there are weak
interactions between the particles. Once they are known we get the state equations from

N = z
∂

∂z
lnZ (7.26)

P =
T

V
lnZ (7.27)

leading to

N

V
=

∞∑
n=1

nbn(T )

(
z

λ3T

)n

(7.28)

P

T
=

∞∑
n=1

bn(T )

(
z

λ3T

)n

(7.29)
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It is customary to eliminate z/λ3T from the first equation and to substitute into the second equation, thus getting the
virial expansion with the coefficients

a1 = b1 = 1 (7.30)

a2 = −b2 (7.31)

a3 = 4b22 − 2b3 (7.32)

====== [7.5] The Van-der-Waals equation of state

Consider a classical gas that is composed of N particles in volume V. The particles have hard core of radius R, and
the two-body interaction is assumed to be attractive, with depth ∼ ϵ0. We have formally obtained from the virial
expansion the following equation of state:

P ≈ NT

V

[
1 +

(
b̄− ā

T

) N
V

]
(7.33)

where b̄ ∼ R3 and ā ∼ ϵ0R3. The effect of hard-core repulsion is under-estimated in this leading order perturbative
expansion. The add-hock correction is to re-write the equation of state as follows:

P =
NT

V −Nb̄
−
(
N

V

)2

ā (7.34)

Roughly this equation can be derived by assuming that the partition function is like that of an ideal gas, where each
particle experiences volume Veff = (V −Nb̄), and mean potential ⟨U⟩ = −Nā/V. Optionally the a term could have
been deduced from the virial theorem, using the estimate ⟨r · (∂U/∂r)⟩ ∼ N2 (ϵ0R

3/V). If we plot P versus V we find
that it becomes non-monotonic if the temperature is lower than a critical value. For a detailed analysis see [Huang,
section 2.3]. The critical value of the temperature is

Tc =
8ā

27b̄
∼ ϵ0 (7.35)

The P dependence for T < Tc is illustrated in the figure below [taken from Wikipedia]. From the relation
P = −dF/dV one can deduce the free energy F (V). One can argue that there is a V range of instability where the
free energy can be lowered via phase separation. This is known as Maxwell construction (details below). A similar
reasoning can be applied to the ferromagntic phase transition where the role of V is played by the magnetization.

Maxwell construction.– Assume that we divide the volume such that V = Ṽ1 + Ṽ2, and the particles are partitioned
such that N = Ñ1 + Ñ2. Using the extensive property of F (V;N) we deduce that the free energy of the mixed phase
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is

Fmix =
Ñ1

N
F

(
N

Ñ1

Ṽ1

)
+
Ñ2

N
F

(
N

Ñ2

Ṽ2

)
≡ xF (V1) + (1− x)F (V2) (7.36)

where x ∈ [0, 1] is the fraction of particles in phase1, while V1 and V2 are the volumes that would be occupied if all the
particles were in phase1 or in phase2 respectively. Observing that the mixture occupies a volume V = xV1 + (1−x)V2
we deuce that the mixture is represented by a point that is located on a chord that connects point1 and point2 of
the F (V ) plot above (right panel). It follows that any concave segment of F (V ) is unstable: the free energy can be
lowered via phase separation. Observing that P (V ) is the derivative of F (V ), the concave segment can be optionally
determined by the ”equal area” law. In reality we expect, as the volume is increased, to go along the constant pressure
equilibrium line, until all the particles evaporate from the ”liquid” phase to the ”gas” phase.

A possibly simpler perspective on Maxwell construction is to regard the applied P as the free variable, and see how
V depends on it. The grand Hamiltonian is HG = H+ PV , and the grand partition function is related by Laplace
transform:

ZG(P ) =

∫
dV e−A(V ;P ) A(V ;P ) ≡ 1

T
(F (V ) + PV ) (7.37)

Note that a plot of A(V ) versus V is related trivially to the plot of F (V ). The integral is dominated by the minimum
of A(V ), which provide the most probable value of V . This leads to the standard Legendre prescription for the
determination of the Gibbs function. But here the situation is somewhat subtle. As P is increased we get at some
point two minima that represent stable and meta-stable solutions. As P is further increased, at some stage the two
minima will swap, implying a jump at V . This swap corresponds to the Maxwell construction. We note that the
volume (V ) as a function of the pressure (P ) is analogous to the magnetization (M) as a function of the field (h),
which we discuss in more detail later on.

====== [7.6] From gas with interaction to Ising problem

Consider classical gas with interactions U (r⃗1, ..., r⃗N ). The N particle partition function is

ZN =
1

N !

(
1

λT

)3N ∫
d3Nr e−βU(r1,...,rN ) (7.38)

We see that the kinetic part factors out, hence the whole physics of the interactions is in the configuration integral.
Therefore, without loss of generality we can consider ”static gas”. To further simplify the treatment we consider a
”lattice gas” version:

H = U (r⃗1, ..., r⃗N ) =
∑
⟨x,x′⟩

u (x, x′)n(x)n (x′) (7.39)

We can represent graphically the interaction between two sites x and x′ by “bonds”. The notation ⟨x, x′⟩ means
summation over all the bonds without double counting. In the simplest case there are interactions only between
near-neighbor sites. The grand partition function is

Z =
∑
n(·)

exp

−β
∑

⟨x,x′⟩

u (x, x′)n(x)n (x′)− µ
∑
x

n(x)

 (7.40)

where n(x) = 0, 1. We define

n(x) =
1 + σ(x)

2
, σ(x) = ±1 (7.41)
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Then we get

Z =
∑
σ(x)

exp

−β
− ∑

⟨x,x′⟩

ε (x, x′)σ(x)σ (x′)− h
∑
x

σ(x) + const

 (7.42)

where h = [µ− ū]/2. Here ū is the interaction energy per site for full occupation. Note that h = 0 implies that a fully
occupied lattice has the same energy as an empty lattice. We also have changed notation u(x, x′) = −4ε(x.x′), with
ε > 0 corresponding to attractive interaction.

We see that the calculation of Z for static lattice gas is formally the same as calculation of Z for an Ising model. The
following analogies should be kept in mind

occupation N ←→ magnetization M = 2N −N (7.43)

chemical potential µ ←→ magnetic field 2h (7.44)

fugacity z = eβµ ←→ define z = e2βh (7.45)

grand canonical Z(β, µ) ←→ canonical Z(β, h) (7.46)

From now on we refer to Ising model, but for the formulation of some theorems in the next section it is more convenient
to use the lattice gas language for heuristic reasons. Note also that N is more convenient than M because it does not
skip in steps of 2.

M vs h N vs µ

M T<Tc

h

N

µ
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We shall clarify that in the thermodynamic limit (large N ) the magnetization density M/N , when plotted as a
function of h, might exhibits a jump at h = 0. This is called 1st order phase transition. Similarly, in the lattice gas
model, the density N/N , when plotted as a function of µ, might exhibits a jump at µ = ū. This can be regarded
a gas-to-liquid phase transition. In the canonical perspective we fix N and solve for µ. It is best to illustrate the
procedure graphically. Having a plot of N vs µ, we get a ”gas” or a ”liquid” state provided the horizontal N line does
not intersect the discontinuity. Otherwise there is a phase separation, where the gas and the liquid phases coexist
with the same chemical potential µ = ū.

In the phase diagram (T, h) of the Ising model it is customary to indicate the discontinuity of the first order transition
by a solid line that stretches from (0, 0) to (Tc, 0). Similarly, in the phase diagram (T, µ) of the lattice gas the
discontinuity is indicated by a solid line that stretches from (0, ū) to (Tc, ū). However in practice it is customary to
use a (T, P ) phase diagram. Here we bring the phase diagrams for conventional gas-liquid-solid transition, for water,
for Helium-II and for Helium-III [taken from the web]:

====== [7.7] Yang and Lee theorems

Consider the lattice gas or the equivalent Ising model. We can use n(x) or σ(x) in order to specify whether a cell is filled
(spin ”up”) or empty (spin ”down”). The probability of a given configuration is determined by the grand-canonical
energy Eσ − µNσ, namely

pσ ∝ e−β(Eσ−µNσ) (7.47)

Here Eσ is the Ising energy due to the interactions, and Nσ =
∑

x n(x) is the number of ”up” spins, which we call
below ”total magnetization”. In fact the total magnetization is 2Nσ −N , hence µ in the lattice-gas model is like 2h in
the Ising model. Either way we use the fugacity as the free variable and write the probability of a given configuration
as follows:

pσ =
1

Z
[
e−βEσ

]
zNσ , z ≡ eβµ ≡ e2βh (7.48)

Note that z = 1 means zero field. The partition function is

Z (z;β) =

N∑
N=0

ZN (β)zN (7.49)

where ZN sums over all the configurations that have N spins up, and Z sums over all the possible values of the ”total
magnetization”. The Helmholtz function is

F (z;β) = − 1

β
lnZ(z;β) (7.50)

The expectation value of the ”total magnetization” is

⟨N⟩ = −βz ∂
∂z
F (z;β) (7.51)

As we increase z we expect the magnetization ⟨N⟩ to grow, and ⟨N⟩/N to reach a well defined value in the limit
N → ∞. Moreover, below some critical temperature we expect to find a phase transition. In the latter case we
expect ⟨N⟩ to have a jump at zero field (z = 1). The Yang and Lee theorems formulate these expectations in a
mathematically strict way. Given N it is clear that we can write the polynomial Z as a product over its roots:

Z (z) = const×
N∏
r=1

(z − zr) (7.52)
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Consequently

F (z) = − 1

β

N∑
r=1

ln(z − zr) + const (7.53)

⟨N⟩ = z

N∑
r=1

1

z − zr
(7.54)

There is a strict analogy here with the calculation of an electrostatic field in a 2D geometry. In the absence of
interactions (infinite temperature) we get that all the roots are at z = −1. Namely,

Z (z;β) =

N∑
N=0

CN
N zN = (1 + z)N [non-interacting sites] (7.55)

So we do not have phase transition since the physical axis is 0 < z < 1, where this function is analytic. The questions
are what happens to the distribution of the roots as we increase the interaction (lower the temperature), and what
is the limiting distribution in the thermodynamics limit (N → ∞). There are three statements that give answers to
these questions due to Yang and Lee. The first statement is regarding the existence of the thermodynamics limit:

lim
N→∞

F (z)

N
= exists (7.56)

The second statement relates specifically to the standard Ising model, saying that all the roots are lying on the circle
|zr| = 1. In general other distributions are possible. The third statement is that below the critical temperature the
density of roots at z = 1 becomes non-zero, and hence by Gauss law ⟨N⟩/N has a jump at zero field. This jump is
discontinuous in the thermodynamic limit.

z

h<0 h>0
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[8] The Ising model

====== [8.1] Model definition

The energy of a given Ising model configuration state is

E[σ (·)] = −
∑
⟨x,x′⟩

ε (x, x′)σ(x)σ (x′)−
∑
x

h(x)σ(x) (8.1)

The canonical state is

p[σ (·)] =
1

Z
e−βE[σ(·)] (8.2)

where the partition function is

Z[h (·) , β] =
∑
σ(·)

exp

β
∑

⟨x,x′⟩

ε (x, x′)σ(x)σ (x′) +
∑
x

h(x)σ(x)

 (8.3)

We expand ln[Z] in Taylor with respect to the field. The first order coefficients are zero due to h 7→ −h symmetry.
Consequently we get for the Helmholtz function

F [h (·) , T ] = F0 (T )−
1

2T

∑
x,x′

G(x, x′)h(x)h (x′) +O
(
h4
)

(8.4)

In the absence of external field F (T ) = F0(T ) and we have the usual relations

E (T ) = F (T ) + TS (T ) (8.5)

S (T ) = −∂F (T )

∂T
(8.6)

C (T ) = T
∂S

∂T
=
dE

dT
(8.7)

Next we assume weak field, leading to a linear response relation between ⟨σ(x)⟩ and h(x). Namely,

⟨σ(x)⟩ = − ∂F

∂h(x)
=

1

T

∑
x′

G(x, x′)h (x′) (8.8)

⟨σ(x)σ (x′)⟩0 = −T ∂F

∂h(x)∂h (x′)

∣∣∣∣
0

= G(x, x′) (8.9)

For an homogeneous field we get ⟨σ(x)⟩ = χh, and F (T, h) = F0(T ) + (1/2)Nχh2, where

χ =
1

T

∑
r

G(r), [fluctuation-response relation] (8.10)

For the total magnetization we get

⟨M̃⟩ =
∑
x

⟨σ(x)⟩ = Nχh (8.11)
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Optionally we could get the same result by replacing h(x) 7→ h, and using M̃ = −∂F/∂h. For the fluctuations of the
total magnetization we get

⟨M̃2⟩ =
∑
x,x′

⟨σ(x)σ(x′)⟩ = N
∑
r

G(r) (8.12)

Form here we deduce that

χ =
1

T

⟨M̃2⟩
N

[fluctuation-response relation] (8.13)

This is merely another version of the same ”fluctuation-response relation”.

====== [8.2] The spatial correlation function

It is possible to measure G(r) via a scattering experiment. Given a configuration σ(x) the intensity of the scattering
in the Born approximation is

I (q) ∝
∣∣∣∣∫ σ(x)e−iq⃗·x⃗dx⃗

∣∣∣∣2 (8.14)

If we average over configurations we get

I (q) ∝
∫
dxdx′ ⟨σ(x)σ (x′)⟩ e−iq·(x⃗−x⃗′) ∝ G̃(q) (8.15)

Here G̃(q) is the FT of the correlation function G(r) = ⟨σ(x)σ(x′)⟩, where r = (x − x′). For an isotropic model the
result does not depend on the direction.

We would like to discuss what happens to G(r) as the temperature is lowered. Specifically we would like to illuminate
what is the fingerprints of approaching a critical temperature of a phase transition, below which the system is
“ordered”. We note that all the discussion below can be repeated if we apply an infinitesimal field h = +0 and
approach the critical temperature from below. In the latter scenario the correlation function should be redefined by
subtracting the constant ⟨σ⟩2.

We shall see in the next section that Landau’s approach in the Gaussian approximation leads to the Ornstein-Zernike
expression for the FT of the correlation function:

G̃(q) =

(
(1/ξ)

q2 + (1/ξ)2

)
(8.16)

This leads to

G(r) ∼ exp(−r/ξ) if ξ <∞ (8.17)

G(r) ∼ 1/rd−2 for d>2 if ξ =∞ (8.18)

Using the scaled variable r = r/ξ the exact FT can be expressed in terms of the modified Bessel function of the second
kind:

G(r) =
1

(2π)d/2

(
1

r

)(d/2)−1

K(d/2)−1(r) (8.19)

In 1D it is G(r) = [1/2]e−r, and in 3D it is G(r) = [1/(4πr)]e−r.
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The information about order-disorder transition is in G(r). If ξ <∞ there is no long range order, and we get χ <∞.
As ξ →∞ the susceptibility diverges, which implies a phase transition. Note that for finite ξ the total magnetization
M̃ can be regarded as a sum of random variables, its variance scales like N , and consequently χ comes out finite, as
implied by the ”fluctuation-response relation”. At the critical temperature the fluctuations are strongly correlated
over arbitrarily large distances, and χ diverges.

====== [8.3] Critical behavior and the scaling hypothesis

Below we display the phases diagram in (T, h) space, and qualitative plots of the state equations. For the 2D Ising
model with near neighbor interactions Tc ≈ 2.27ϵ.

Tc

T
h

E(T)
T

C(T)

T

M(T) h=+0

tC ~ −α

M~ t β h

cT < T

M(h)

h
M~ h 1/δ

cT = T

   tχ ∼

M(h)

h
−γ
hχM~

cT > T

M(h)

The state equations in the critical region are characterized by the exponents α, β.γ, δ (see below). Two other exponents
ν and η are defined via the critical behavior of the correlation function, which is assumed to be a variation on the
Ornstein-Zernike expression. Namely, one conjectures that the divergence of the correlation length as T → Tc is
described by

ξ ∼ |T − Tc|−ν (8.20)

and that the correlation function is

G(r) ∼ 1

rd−2+η
exp(−r/ξ) (8.21)

Here we combined the T = Tc and the T > Tc into one expression. This expression describes the long range behavior.
Note that the ”microscopic” short range behavior is not too interesting because it is bounded by G(0) = 1. The
divergence of χ is due to the slow power-law tails. Below Tc the behavior is similar to T > Tc provided the correlation
function is properly defined. Going on with the same phenomenology the conjecture is that away from Tc the
correlation distance ξ is the only relevant length scale in the thermodynamic limit. This means that each ”correlated
block” of the system has the same contribution to the Free energy irrespective of the temperature, hence

F0(T ) ∼
V

ξd
∝ |T − Tc|νd (8.22)

where d is the dimensionality. It is customary to define the scaled temperature as t = |T − Tc|/Tc, and to summarize
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the above conjectures as a scaling hypothesis that involves the critical exponents:

G(sr, s−1/νt) = s−(d−2+η)G(r, t) (8.23)

F0(s
−1/νt) = s−dF0(t) (8.24)

From here it follows that

χ(s−1/νt) = s2−ηχ(t) (8.25)

C(s−1/νt) = s(2/ν)−dC(t) (8.26)

From the combined scaling relation

F
(
s−1/νt, s−(d+2−η)/2h

)
= s−dF (t, h) (8.27)

we can deduce similar relations for the magnetization. These scaling relations allow to deduce the critical exponents
α, β.γ, δ from d, ν, η, leading to

C ∼ |t|−α, α = 2− νd (8.28)

M ∼ |t|β , β = (d− 2 + η)ν/2 (8.29)

χ ∼ t−γ , γ = (2− η)ν (8.30)

M ∼ |h|1/δ, δ = (d+ 2 + η)/(d− 2 + η) (8.31)

The so called “classical” mean-field exponents that we derive later are

ν = 1/2, η = 0, α = 0, β = 1/2, γ = 1, δ = 3 (8.32)

In order to get a non-trivial result for α we have to take into account Gaussian fluctuations around the mean field
leading to α = [2− (d/2)], in consistency with the scaling relations. However, one observes that the classical mean-
field exponents satisfy the other scaling relations with d = 4, and not with d = 3. This implies that we have to go
beyond mean field theory in order to establish the experimentally observed scaling behavior.

====== [8.4] Digression regarding scaling

A function of one variable has a scaling property if

F (sx) = sDFF (x) (8.33)

where DF is the scaling exponent. It follows that F (x) = const xDF . For example F (x) = x2 has the scaling exponent
DF = 2. If we have say two variables then the more general definition is

F (sDxx, sDyy) = sDFF (x, y) (8.34)

Note that the scaling exponents can be multiplied by the same number, and still we have the same scaling relation.
It follows that there is a scaling function such that

F (x, y) = yDF /Dyf

(
x

yDx/Dy

)
(8.35)

For example F (x, y) = x2 + y3 has the scaling exponents Dx = 1/2, Dy = 1/3, DF = 1. More generally any “physical”
function has an “engineering” scaling property that follows trivially from dimensional analysis.
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====== [8.5] Solution of the 1D Ising Model

Assuming only near neighbor interactions

E [σ] = −ε
∑
⟨ij⟩

σiσj −
∑
i

hiσi (8.36)

The partition function is

Z[h, β] =
∑
σ(·)

e−βE[σ] (8.37)

For ε = 0 we get

Z[h, β] =

N∏
i=1

2 cosh (βhi) (8.38)

and hence

F [h, T ] = −T
N∑
i=1

ln

(
2 cosh

(
hi
T

))
≈ −NT ln (2)− 1

2T

N∑
i=1

h2i (8.39)

The correlation function is

G(r) = −T ∂F

∂hi∂hj
= δij = δr,0 (8.40)

and hence the susceptibility is

χ =
1

T

∑
r

G(r) =
1

T
(8.41)

The magnetization is

M̃ = −∂F
∂h

= N tanh

(
h

T

)
≈ Nχh+O

(
h3
)

(8.42)

We turn now to the case ε ̸= 0. Without an external field the calculation is very easy. We can define s⟨ij⟩ = σiσj .
Then the interaction can be written as −ε

∑
b sb. Instead of summing over spins, we can sum over the bonds sb.

Assuming a chain of N spins the sum factorizes and we get Z = 2[2 cosh(βε)]N−1. Next we would like to assume
that there is non zero homogeneous field h. The calculation becomes somewhat more complicated, and requires the
so called “transfer matrix” method. Let us define the matrix

Tσ′σ′′ ≡ exp

[
ε̃σ′σ′′ +

1

2
h̃ (σ′ + σ′′)

]
=

(
eε̃+h̃ e−ε̃

e−ε̃ eε̃−h̃

)
, ε̃ ≡ βε, h̃ ≡ βh (8.43)

The eigenvalues of this matrix are

λ± = eε̃ cosh
(
h̃
)
± e−ε̃

√
1 + e4ε̃ sinh2

(
h̃
)

(8.44)
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The partition function of N site Ising model on a ring can be calculated as

Z (β, h) =
∑
σ(·)

Tσ0,σ1
Tσ1,σ2

...TσN−1,σ0
= trace

(
TN ) = λN+ + λN− (8.45)

and hence for very large N we get

F (T, h) = −NT ln (λ+) (8.46)

Expanding we get

F (T, h) ≈ −NT ln
(
2 cosh

( ε
T

))
− 1

2
N

exp
(
2 ε
T

)
T

h2 (8.47)

Hence

χ =
1

T
exp

(
2
ε

T

)
(8.48)

Now we would like to calculate the correlation function at zero field.

G(r) ≡ ⟨σ0σr⟩ =
1

Z

∑
σ0σr

σ0T
r
σ0σr

σrT
N−r
σrσ0

(8.49)

We have

Tσ′σ′′ =

(
1√
2

1√
2

1√
2
− 1√

2

)(
λ+ 0

0 λ−

)(
1√
2

1√
2

1√
2
− 1√

2

)
(8.50)

with

λ+ = 2 cosh (ε̃) (8.51)

λ− = 2 sinh (ε̃) (8.52)

Using standard Pauli matrix notations and denoting the digonalized matrix T as Λ we get

G(r) =
1

Z
trace

[
σzT

rσzT
N−r

]
=

1

Z
trace

[
σxΛ

rσxΛ
N−r

]
=
λr+λ

N−r
− + λr−λ

N−r
+

λN+ + λN−
(8.53)

For very large N we get

G(r) =

(
λ−
λ+

)r

= e−r/ξ (8.54)

where

ξ =
[
ln
(
coth

( ε
T

))]−1

≈ 1

2
e2ε/T (8.55)

The calculation of
∑
G(r) involves a geometric summation, and it can be verified that it agree with the result for χ.

The same result as the exact one is obtained from the approximated exponential expression if the summation is
replaced by an integral.



62

====== [8.6] Solution of the 2D Ising model

The full details of the Onsager solution for this problem is in Huang. Also here the transfer matrix approach is used.
Recall that the zero field solution of the 1D model is

1

N
lnZ = ln (2) + ln (cosh (ε̃)) (8.56)

The 2D solution is

1

N
lnZ = ln (2) +

1

2

∫ ∫
dθdθ′

(2π)
2 ln

[
(cosh (2ε̃))

2
+ sinh (2ε̃) (cos θ + cos θ′)

]
(8.57)

= ln (2) + ln (cosh (ε̃)) +
1

2

∫ ∫
dθdθ′

(2π)
2 ln

[
1 +

κ

2
(cos θ + cos θ′)

]
(8.58)

The integral is determined by the dimensionless parameter

κ ≡ 2 sinh (2ε̃)

(cosh (2ε̃))
2 ≤ 1 (8.59)

The value κ = 1, for which lnZ exhibits discontinuity in its derivative, is attained for sinh(2̃ε) = 1, from which it
follows that the critical value of the interaction is ε̃ = 0.44, leading to Tc = 2.27ε. This is almost half compared with
the heuristic “mean field” value Tc ≈ 4ε that will be derived in the next lecture.
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[9] Phase transitions - heuristic approach

====== [9.1] The ferromagnetic phase transition

The standard Ising Hamiltonian is

H = −ε
∑
⟨ij⟩

σiσj − h
∑
i

σi (9.1)

Let us assume that in equilibrium we can regard the spins as quasi-independent, each experiencing an effective field h̄,
such that the effective Hamiltonian for the spin at site i is H(i) = −h̄σi. This means that the equilibrium state is

pσ1...σN
∝ exp

[
βh̄
∑
i

σi

]
(9.2)

We have to find what is h̄. The formal way is to use a variational scheme. We shall introduce this procedure later.
In this section we guess the result using a self-consistent picture. By inspection of the Hamiltonian if the mean
magnetization of each spin is ⟨σ⟩, then it is reasonable to postulate that

h̄ = h+ ε
∑

neighbors

⟨σj⟩ = h+ cε⟨σ⟩ (9.3)

where c is the coordination number. Form H(i) we get the self-consistent requirement

⟨σ⟩ = tanh

(
1

T
(h+ cε⟨σ⟩)

)
(9.4)

This equation should be solved for ⟨σ⟩, and then we get h̄ as well.

< σ >

< σ >

zero h
nonzero

By inspection of the plot we observe that for h = 0 the condition for getting a non trivial solution is cε/T > 1.
Therefore Tc = cε. If we want to explore the behavior in the critical region it is convenient to re-write the equation
in the following way:

h = T tanh−1⟨σ⟩ − Tc⟨σ⟩ (9.5)

and to approximate it as

h = (T − Tc) ⟨σ⟩ +
1

3
Tc⟨σ⟩3 (9.6)
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For T > Tc we get the Curie-Weiss law, which implies a critical exponent γ = 1. Namely,

⟨σ⟩ =
1

T − Tc
h (9.7)

For T = Tc the dependence of h is characterized by the critical exponent δ = 3. Namely,

⟨σ⟩ =

(
3

Tc
h

) 1
3

(9.8)

For zero field (h = +0), below Tc, the temperature dependence is characterized by β = 1/2. Namely,

⟨σ⟩ =

(
3
Tc − T
T

) 1
2

(9.9)

In the mean field approximation the spins are independent of each other, and therefore ⟨σiσj⟩ = ⟨σi⟩⟨σj⟩. It follow
that the energy is

E = ⟨H⟩ = −1

2
cN ε ⟨σ⟩2 (9.10)

For the heat capacity we get

C(T ) =
dE

dT

∣∣∣∣
h=0

= −cϵN ⟨σ⟩∂⟨σ⟩
∂T

∣∣∣∣
h=0

(9.11)

For T > Tc we get C(T ) = 0, and from below we approach a constant value. The implied critical exponent is α = 0.
To get the non-trivial mean-field result α = [2− (d/2)] we have to take into account Gaussian fluctuations.

C (Τ)

T

====== [9.2] The anti-ferromagnetic phase transition

Let us consider a less trivial example for the use of the heuristic approach. An anti-ferromagnet is described by the
Ising Hamiltonian with ε 7→ −ε. Specifically we consider a 2D square lattice that consists of to sub-lattices (for other
lattices we might have frustrations). We mark the magnetization of the two sub lattices by Ma and Mb. We define

M =
1

2
(Ma +Mb) (9.12)

Ms =
1

2
(Ma −Mb) (9.13)

Without the magnetic field, the problem is the same as the ferromagnetic one with Ms as the order parameter. With
magnetic field h the heuristic mean field equations become

Ma = tanh

(
1

T
(h− TcMb)

)
Mb = tanh

(
1

T
(h− TcMa)

)
(9.14)
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Following the same algebraic simplification procedure as in the ferromagnetic case, we get after addition and subtrac-
tion of the two resulting equations,

(T − Tc)Ms +
1

3
Tc
(
3M2Ms +M3

s

)
= 0 (9.15)

(T + Tc)M +
1

3
Tc
(
3M2

sM +M3
)

= h (9.16)

From here it follows that (see graphical illustration):

Ms = 0 or 3M2 +M2
s = 3

(
Tc − T
T

)
(9.17)

(2 +M2
s )M +

1

3
M3 =

h

Tc
(9.18)

As expected from the second equation we get M = 0 in the absence of an external field, and from the first equation
we get the order parameter Ms(T ), which satisfies the same equation as in the ferromagnetic problem. If we switch
on the magnetic field Tc is shifted to a lower temperature.

Μ

Μ s T<Tc h

T

critical line
(2nd order)

If the magnetic field h is strong enough, it destroys the anti-ferromagnetic order and causes Ms = 0. This is implied
by the identification of the ground state:

E (↑↓↑↓) = N ·
(
−1

2
cϵ

)
, [for weak field] (9.19)

E (↑↑↑↑) = N ·
(
1

2
cϵ− h

)
, [for strong field] (9.20)

In the region where T ∼ Tc and h ∼ 0 we get for the magnetization

M =

 1

Tc + T
(
1 + 1

6Ms (T )
2
)
h ≡ χh (9.21)

We can get a better general expression for all of the temperature range by differentiation of the heuristic equations

χ =
1

Tc + T cosh2
(
Tc

T Ms (T )
) (9.22)

In the region T ∼ Tc substitution of Ms (T ) gives

χ =

{
1

Tc+T Tc < T
1

4Tc−2T T < Tc
(9.23)
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====== [9.3] Beyond the Ising model

We now make a slight generalization of the Ising model. We consider coupled non-inertial oscillators, meaning that
the kinetic term in the Hamiltonian is neglected:

H =
∑
j

[U(sj)− hsj ] − ε
∑
⟨ij⟩

sisj (9.24)

For the Ising model U(s) = 0 for s = ±1 and U(s) =∞ otherwise. But more generally we assume, say,
U(s) = (α/2)s2 + (u/4)s4. In the absence of interaction

M ≡ ⟨s⟩ = TANH(χh) (9.25)

where TANH is a function that has by definition slope unity at the origin (TANH′(0) = 1), and χ is a constant that
has the meaning of zero-field susceptibility. For zero non-linearity (u = 0) we get TANH(x) = x with slope χ = 1/α.
Otherwise the TANH becomes a concave function with temperature dependent χ(T ). For the Ising model χ(T ) = 1/T .
The heuristic mean field equation is

M = TANH [χ (h+ cϵM)] (9.26)

In the absence of an external field it possesses a non-trivial solution provided cϵχ(T ) > 1, leading to a finite Tc. But
if we consider dynamical degrees of freedom (see discussion of coupled rotors below), the susceptibility might be finite
also at zero temperature due to quantum fluctuations. Thus, if cϵχ(0) < 1, phase transition does not take place.
Then, by tuning the model parameters at T = 0, we can witness a quantum phase transition once we cross to a regime
where cϵχ(0) > 1.

Note: Considering again zero non-linearity (u = 0), the heuristic approach implies that the system becomes unstable
for α < cϵ. This condition becomes more illuminating if we wrote the interaction between to oscillators as (ϵ/2)[si−sj ]2.
The price for that is to write U(s) = (a/2)s2 instead of U(s) = (α/2)s2 with a = α− cϵ. The condition for instability
becomes simply a < 0.

====== [9.4] The mean-field Hamiltonian

Assuming that M is known, we set in the Hamiltonian sj =M + δsj , expand the interaction term, and get

H ≈
∑
j

H(j) − ε
∑
⟨ij⟩

δsiδsj (9.27)

were the first sum is the mean field Hamiltonian with

H(j) = U(sj) − (h+ cεM)sj +
1

2
cεM2 (9.28)

Assuming that the fluctuation are uncorrelated we deduce

E = ⟨H⟩ ≈ N
[
⟨U(s)⟩ − 1

2
cεM2 − hM

]
(9.29)

where ⟨U(s)⟩ should be calculated from the mean field Hamiltonian. Note that it is zero for the Ising model, while here
we consider a more general class of systems. If the non-linear term and the fluctuation are neglected ⟨U(s)⟩ = (α/2)M2.

Up to this pointM has not been fixed. We have assumed that it is known from the heuristic mean field equation. Our
purpose below is to get this heuristic equation as the formal outcome of a self-consistent mean-field approximation
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for the system Hamiltonian. For ε = 0 the ”spins” are non-interacting and we get the free energy F (h), from which
we can derive the state equation M = −F ′(h) =≡ f(h). For ε ̸= 0, and given M , the free energy that is derived from
the mean field Hamiltonian is (per spin)

F (h;M) = F (h+ cεM) +
1

2
cεM2 (9.30)

From this free energy we can derive the equation of state M = −(d/dh)F (h;M), which is precisely the heuristic
equation. But this is a short-cut that is not always available: In more complicated models the order parameter (here
it is M) is not necessarily conjugate to the control parameter (here it is h). For example, in the analysis of the
superfluidity, the order parameter ψ = ⟨a⟩ is not conjugate to the chemical potential µ. So we need a more general
procedure for the derivation of the mean-field equation. The way to go it to claim that M has to minimize F (h;M).
Indeed one can verify easily that (d/dM)F (h;M) = 0 leads to the mean-field equation.

There are two ways to justify the minimization procedure. One way is to claim that M is a variational parameter.
In a later section we explain that rigorously F (h;M) is the function that has to be minimized (at zero temperature
it equals the energy of the ground state). The second way is to further develop the idea of ”order parameter”, saying
that the partition function can be approximated by

Z =
∑
M

e−βF (h;M) ∼ e−β minimumM{F (h;M)} (9.31)

By inspection symmetry breaking in the evaluation of the minimum is implied if a = (α− cϵ) < 0. We shall further
explore this approach in later sections.

====== [9.5] Coupled rotors

We now consider coupled rotors. The rotors are dynamical entities, they have finite mass. We define u as the inverse
moment of inertia. Note that if we started with [φ, p] = iℏ, then with n = p/ℏ we get that u ∝ ℏ2. Accordingly infinite
mass is like taking the classical limit. The Hamiltonian is

H =
∑
j

[u
2
n2j − h cos(φj)

]
− ε

∑
⟨ij⟩

cos(φj − φi) (9.32)

If we ignore the kinetic term it is formally like coupled non-inertial oscillators with sj = cos(φj). In a classical context
if we take the kinetic term into account it has no effect because it factorizes out of the partition function. The mean
field Hamiltonian is

H(j) =
u

2
n2j − (h+ cεM) cos(φj) +

1

2
cεM2 (9.33)

In the quantum treatment the energy shift of the ground-sate is not −(1/2)cεM2 because of quantum fluctuations:
the price of small φ is large uncertainty in the conjugate momentum n. The implications is that quantum fluctuations
are able to diminish M at zero-temperature.

Quantum phase transition.– Let us find the condition for diminished “order” at zero-temperature. The simplest
perspective is the heuristic approach. At zero temperature standard quantum-mechanical calculation using second
order perturbation theory shows that the zero temperature susceptibility of a rotor is χ = 2/u. It follows that
symmetry-breaking is avoided if

2cε < u [Mott phase] (9.34)

We see that zero-temperature “order” is diminished either by having T or u that are larger than ∼ ε, reflecting
strong quantum or thermal fluctuations respectively. An equivalent way to deduce the above condition is to consider



68

the ground state energy of E0(h) of H0 = (u/2)n2 − h cos(φ). For large h using harmonic-oscillator approximation

E0 = −h+ (1/2)
√
uh, but for small h using 2nd order perturbation E0 = −h2/u. Using the latter result we get at

the vicinity of M = 0 that the mean-field energy per rotor is

E =
〈
H(j)

〉
=
a

2
M2, with a = −2(cε)

2

u
+ cε (9.35)

Symmetry-breaking is avoided if a > 0.

====== [9.6] The variational approach

A different way to derive the heuristic mean-field equations is to use the variational approach. The canonical state
minimizes the free energy functional. Accordingly we look for a solution to the variation problem

F [ρ] ≡ ⟨H⟩ − TS [ρ] = minimum (9.36)

with implicit constraint on the normalization. In the mean-field approach the canonical state is assumed to be well
approximated by ρ = {pσ}, where

pσ1...σN
=

1(
2 cosh

(
βh̄
))N exp

[
−βh̄

∑
k

σk

]
(9.37)

Here the variational parameter h̄ is the effective mean field. We would like to determine the optimal value of h̄
for which F [ρ] is minimal. For the calculation we use the identity F [ρ] = F0 [ρ] + ⟨H −H0⟩, where H0 = −h̄

∑
i σi,

leading to

F [ρ] = N
[
f(h̄)− 1

2
cϵm(h̄)2 −

(
h− h̄

)
m(h̄)

]
(9.38)

where f(h̄) = −T ln
(
2 cosh

(
h̄/T

))
and m(h̄) = −f ′(h̄) is the mean-field magnetization. The variational equation for

h̄ is as expected

h̄ = h+ cϵ tanh

(
h̄

T

)
(9.39)

Hence, we get the variational free energy

F (T, h) = N

[
−T ln

(
2 cosh

(
h̄

T

))
+

1

2
cϵ

(
tanh

(
h̄

T

))2
]

(9.40)

This is not a pleasant expression because the dependence on h is implicit in h̄. We can differentiate this equation to
find M̃ , which involves ∂h̄/∂h. The calculation is lengthy, but we can skip it because the result is obvious

M̃ = −∂F (T, h)

∂h
= N tanh

(
h̄

T

)
(9.41)

To make calculations of the state equations more convenient we notice that F (T, h) depends in a very simple way

on M̃ , hence it is useful to make the Legendre transformation

A(T, M̃) ≡ F (T, h) + hM̃ (9.42)
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such that dA = −SdT + hdM̃ . Note that the mean field equation for h̄ implies that

h = T tanh−1(M)− cϵM where M ≡ M̃

N
= ⟨σ⟩ (9.43)

Using the identity tanh−1(x) = (1/2) ln((1 + x)/(1− x)) one obtains

A (T,M) = N
[
−T ln 2 +

1

2
T ln

(
1−M2

)
+

1

2
TM ln

(
1 +M

1−M

)
− 1

2
cϵM2

]
(9.44)

= NT
[
1 +M

2
ln

1 +M

2
+

1−M
2

ln
1−M

2

]
−N 1

2
cϵM2 (9.45)

From this expression it is convenient to derive explicit results for the state equations. In particular S = −∂A/∂T and
one can recover the result for the heat capacity.

====== [9.7] The Bragg Williams formulation

Consider an Ising model withN sites, at any dimension, and with any coordination number. Given a spin configuration
define

N = total number of spins (9.46)

m = total magnetization (9.47)

M = m/N (9.48)

N+ = number of up spins =
1

2
(N +m) =

1

2
N (1 +M) (9.49)

N− = number of down spins =
1

2
(N −m) =

1

2
N (1−M) (9.50)

N+− = number of bonds connecting spins with opposite direction (9.51)

The total number of bonds is (1/2)cN , where c is the coordination number. It follows that∑
σi = m (9.52)∑

⟨ij⟩

σiσj =
1

2
cN − 2N+− (9.53)

If we look on two connected spins, there is a probability (N+/N ) to have the first up, and a probability (N−/N ) to
have the the second down. Or we can have the first down and the second up. This motivates the Bragg Williams
approximation:

N+− ≈ 2

(
N+

N

)(
N−

N

)
N c
2

=
N c
4

(1−M2) (9.54)

Assuming that it holds for typical configurations we approximate the energy functional as

E[σ] ≈ −N ×
(
1

2
cεM2 + hM

)
(9.55)

We note that this expression with c = N if formally exact for a fully connected cluster of spins. The number of
configuration with total magnetization m is

gm =
N !

(N+)! (N−)!
≈ const exp

[
−N

(
1

2
M2 +

1

12
M4 + ...

)]
(9.56)
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In order to derive the latter approximation note that

− ∂

∂m
ln gm =

1

2
(ln(1 +M)− ln(1−M)) ≈ M +

1

3
M3 +

1

5
M5 + ... (9.57)

With this approximation we get

Z =
∑
m

∑
σ∈m

e−βE[σ] ≈
∑
m

gme−βE(m) =
∑
M

e−A(M) (9.58)

A(M) = N ×
[
1

2
(1− βcε)M2 +

1

12
M4 − βhM

]
(9.59)

In the next section we are going to clarify the following points: (1) The sum can be evaluated via Gaussian integration.
(2) This Gaussian approximation can be justified if N is large. (3) Phase transition is implied. (4) But nevertheless
the result is false for d = 1. In the next lecture we shall further explain that the Bragg-Williams formulation fails in
providing the correct description of the symmetry-breaking if the critical temperature is approached.

====== [9.8] The Gaussian approximation

The expression that we have obtained for Z using the Bragg Williams formulation is a typical approximation that
can obtain for various models. We rewrite it as follows:

Z =

∫
dφ e−A(φ) A(φ) = N ×

[a
2
φ2 +

u

4
φ4 − hφ

]
(9.60)

This sum can be evaluated via Gaussian integration. The dominant contribution comes from the φ for which A(φ) is
minimal. One can easily verify that A′(φ) = 0 coincides with the heuristic mean field equation that has been discussed
in a previous lecture. Non trivial solutions appear for a < 0 which implies Tc = cε. Note that a ≈ (T − Tc)/Tc.

Above the critical temperature there is a single minimum at φ̄ = (1/a)h and one obtains

Z ≈
(

2π

Na

)1/2

exp

[
N
2a
h2
]

(9.61)

In the absence of an external field, as a becomes negative, the trivial minimum φ̄ = 0 bifurcates into two minima,
namely φ̄ = ±(|a|/u)1/2. For these values

A(φ̄) = − a
2

4u
∓
(
|a|
u

)1/2

h (9.62)

Approximating Z as the sum of two Gaussian integrals, one realizes, after expanding A(φ̄+ φ̃), that the coefficient
of the φ̃2 term is the same as above Tc, with a replaced by 2|a| (positive). We get that the partition function is like
that of a spin:

Z ≈
(

π

N|a|

)1/2

exp

[
N a2

4u
+
N
4|a|

h2
]

2 cosh

[
N
(
|a|
u

)1/2

h

]
(9.63)

From here one deduces that for T < Tc the susceptibility becomes χ = [1/(2|a|)] +N|a|/u instead of χ = 1/a.

At this point one can ask whether it was allowed to ignore the quartic term in A(φ). This should be checked self
consistently. For a > 0 the dispersion of φ in the Gaussian approximation is (Na)−1/2. The quartic term can be
neglected if u|φ|4 ≪ a|φ|2 leading to the condition a ≫ (u/N )1/2. This condition is always satisfied if N is large
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enough. The same condition also guarantees that for a < 0 the dispersion is much smaller compared with the non-zero
mean field φ̄. Generalization of this condition in the field-theory treatment will be discussed later and lead to the
Ginzburg criterion.

It is now appropriate to point out that the above treatment implies a phase-transition in the thermodynamic limit.
We first note that the existence of the thermodynamic limit for A(φ)/N could have been anticipated from general
considerations. From Z we can get the free energy F (h)/N that will have a thermodynamic limit too. The question
is whether the subsequent limits h→ +0 and h→ −0 lead to the same magnetization, or optionally whether the
susceptibility χ beomes infinite below Tc. Indeed this is what we found.

====== [9.9] The importance of fluctuations

The above analysis is misleading. The Bragg Williams approximation underestimates the effect of fluctuations. We
already know from the exact solution of the Ising model that in 1D there is no phase transition at finite temperature.
We would like to explain in detail why the fluctuations in 1D smear away the phase transition. Later we shall see
that also for d = 2, 3 the fluctuations are important: they do not smear away the phase transition, but they modify
the state equations in the critical region, which explains the failure of mean field theory there, and the observed
anomalous values of the scaling exponents.

cT>T cT<T

T=0

M

The problem with the Bragg Williams approximation is implied by the figure above. The action A(φ) is plotted. It
is determined by the energy term E[φ], and by the entropy term S[φ]. Recall that

p(φ) =
1

Z
e−A(φ) ∝ exp

[
− 1

T
E[φ] + S[φ]

]
(9.64)

In the T = 0 panel the energy of the states is indicted by bars. By taking the ”typical” value of the energy (thick
solid line) we ignore a dominant fraction of less typical states that have a very low energy. These states corresponds
to configurations where the spins a bunched in ”zones”. The simplest arrangement in 1D has two zones and its energy
is Eb = E0 + 2ϵ, where E0 = −N ϵ is the ground state energy. Consequently the effective barrier between the ”all up”
and ”all down” states is very low (thick dashed line), and the symmetry breaking is avoided at any finite temperature.
The formal argument is outlined below. In contrast to that, in 2D the effective barrier is Eb = E0 +N 1/2ϵ and
therefore symmetry breaking is realized in the thermodynamic limit.

Domain walls.– It is possible to argue that in 1D there is no phase transition at finite temperature. The argument
goes as follows: consider a mixture of states with one domain wall. For such state E[ρ] = E0+2ϵ, where ϵ is the cost of
the domain wall. But the entropic contribution is S[ρ] = ln[N ] where N is the length of the chain. It follows that for
any finite T the ground state, or any (exclusive) mixture of ground-like states, do not minimize F [ρ] at the thermody-
namic limit. We can lower E[ρ] by adding states that have with equal probability any magnetization. Consequently
we get huge fluctuations whose relative amplitude does not diminish, in contrast with the (N )−1/2 prediction of the
mean-field Gaussian estimate. Therefore spontaneous magnetization at finite temperature is impossible.

The above argument fails in 2D because the energy cost of a domain E[ρ] = E0 +N 1/2ϵ domeiniate over the entropic
contribution. In fact it is possible to refine the domain wall approach and deduce that for the d = 2 Ising model there
exists spontaneous magnetization at finite temperature [see Huang p.349], in consistency with the exact solution.
However, the possibility to witness phase transition at d = 2 is limited to systems with discrete symmetries. The
Mermin-Wagner theorem states that a continuous symmetry cannot be spontaneously broken at finite temperature
in d ≤ 2 systems with short-range interactions. See discussion of the Heisenberg model.
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[10] Phase transitions - field theory

====== [10.1] The Landau model

We would like to take into account the spatial fluctuations of the magnetization φ(x) in the calculation of the partition
function. We therefore use a refined version of the Bragg-Williams approach. Namely, first we sum over all microscopic
configuration that corresponds to a magnetization φ(x), and then we are left with a so-called functional integral:

Z[h, parameters; Λ, L] =
∑
φ(·)

e−A[φ(·)] =

∫
Dφ e−A[φ(·)] (10.1)

where the sum over configurations becomes an integral with the measure

Dφ =
∏
x∈Ld

dφx = const
∏

|k|<Λ

dφ̃k , φ̃k ≡
1

Ld

∫
φ(x) e−ikxdx (10.2)

In this definition φ̃k are the Fourier components of φ(x), normalized such that φ(x) =
∑

k φ̃ke
ikx. It is implicit

that one assumes a finite volume Ld, and a finite momentum cutoff Λ, otherwise the functional-integral that gives Z
is ill defined. To have a momentum cutoff is like to assume that space is discretized with lattice spacing 2π/Λ.
Accordingly the number of freedoms of the model is N = (LΛ/2π)d. Technical remark: for presentation purpose it is
more convenient to work with the complex ”exp” Fourier basis, but from mathematical point of view the meaning of
the Dφ integration is more obvious if we work with real ”sin” and ”cos” Fourier basis, corresponding to the real and
imaginary parts of φ̃k. Either way the φ field is represented by N independent real amplitudes.

In the Landau model the assumed action is

A[φ(·)] =

∫
dx
( c
2
(∇φ)2 + a

2
φ2 +

u

4
φ4 − hφ

)
= Ld

∑
k

(
1

2
(ck2 + a)|φ̃(k)|2 + ...

)
(10.3)

The summation over the k components of the field is conventionally written as an integral with the measure
[L/(2π)]ddk. The convention c = 1 with regard to the prefactor of the first term fixes the dimensions of φ, and
hence of all the other model parameters. We write these dimensions as Ld, accordingly

dφ = −d− 2

2
, dh = −d+ 2

2
, da = −2, du = −(4− d), (10.4)

The model has a thermodynamic limit, hence L is not significant, and we can calculate the Helmholtz free energy F
per unit volume. In contrast to that Λ is significant. In particular we note that the model contains two significant
dimensionless parameters that are related to the underlying microscopic Hamiltonian:

ã = a/Λ2 Note: later we see that ξ = a−1/2 is the correlation length (10.5)

ũ = u/Λ4−d Note: later we see that a/u2/(4−d) is the Ginzburg parameter (10.6)

Relating to the Bragg-Williams approximation we identify a ∝ (T − T
(0)
c ), where T

(0)
c is the mean field critical

temperature. In fact we shall see that the field theory analysis implies that for 2 ≤ d < 4 the actual critical temperature
is pushed down due to the fluctuations (ac < 0). In the d = 1 case there is no phase transition.

Coarse graining.– The Landau model can be regarded as the outcome of coarse graining on scale Λ. Therefore its
parameters a(Λ) and u(Λ) are “running coupling constants”. The cutoff Λ is in the range [Λ0,Λ∞], where Λ∞ reflects
a limiting microscopic scale, while Λ0 reflects the maximal spatial range over which coarse-graining is meaningful.
Clearly it is the correlation distance, hence Λ0 ∼ 1/ξ. We shall see that as Λ is decreased, as the result of successive
course-graining operations, we get ũ(Λ) → ũc, where ũc = 1/9 for 3D. So in some sense there is only one relevant
parameter (a) in this model, and results for different values of a are related by scaling.
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====== [10.2] Related models

The Landau model stands by itself as a prototype model. It might have different physical interpretations. Possibly
the simplest is to regard it as the continuum model of ”coupled oscillators”. If a = u = 0 it is formally like the Debye
model. Having a > 0 means that the oscillators have a positive spring constant that stabilizes them at φ = 0. For
a < 0 each oscillator is pushed away from φ = 0 and its new equilibrium position is determined by the nonliterary u
of the spring. Thanks to the non-linearity of the springs the φ cannot diverge to infinity.

Above we have regarded the Landau model as a coarse grained version of the Ising model, using the Bragg-Williams
approximation for each coarse-grained cell. There is an optional possibility to motivate the Landau model as an
approximation for the Ising model using a somewhat more direct procedure. For this purpose one replaces the
discrete summation over σ = ±1 by an integration over φ with a weight function:

∑
σ(·)

→
∫ ∏

x

dφx e−
1
4u(φ

2
x−1)

2

(10.7)

One should realize that the ferromagnetic interaction −σ(x)σ(x′) corresponds to differences (φ(x)− φ(x′))2, and
hence translates to the gradient term in the Landau model.

The field theory that corresponds to the Ising model contains a real field. It reflects the discrete mirror (up/down)
symmetry of the system. More generally we can consider a system that has a continuous rotational symmetry. In
such case the Action is A[S] with vector field S = (S1, S2, S3). Of particular interest is to have a gauge-invariant
Action A[Ψ] with a complex field Ψ = (ψ1, ψ2) ≡

√
n exp(iφ). Note that in two dimensions gauge-invariance can be

regarded as a rotational-invariance.

====== [10.3] The Gaussian approximation

Let us start with the simplest possibility of having u = 0. Regarded as an approximation it is meaningful only if
a > 0. If we had c = 0 the result would be the same as that of the Bragg-Williams model. If c is non-zero (equal to
unity by convention) the summation still factorizes, but in k space. Assuming for simplicity h = 0, and not caring
about a global prefactor we get the following:

Z =
∏
k

∫
dφ̃k exp

[
−L

d

2

(
k2 + a

)
φ̃2
k

]
= const

∏
k

(
1

k2 + a

)1/2

(10.8)

The free energy in the mean-field approximation was F = TA(0) = 0, corresponding to the mean field φ̄ = 0. Now
we have taken the Gaussian fluctuations into account. Consequently we get a non-trivial result for the free energy:

F (T ) = TA(φ̄) +
T

2

∑
k

ln
(
k2 + a

)
(10.9)

In particular we can derive from this expression the Gaussian prediction for the heat capacity. Contrary to the mean
field approximation, it is no longer zero. The singular contribution at the vicinity of Tc originates from the second
derivative with respect to a. Accordingly

C(T ) = −T d
2F

dT 2
≈ T 2

c

2

(
L

2π

)d ∫ Λ

0

Ωd k
d−1dk

(k2 + a)2
∝ |T − Tc|−(4−d)/2, for d < 4 (10.10)

where Ωd=4π for d=3 etc. We conclude that the mean field prediction α = 0 is replaced by α = [2− (d/2)] due to the
k ̸= 0 fluctuations. Below Tc we can perform a Gaussian approximation around the mean-field φ̄ that will be discussed
in the next section. The calculation is essentially the same, with an offset A[φ̄] that is added to the action, hence
F (T ) 7→ F (T ) + TA[φ̄]. The non-singular contribution of this additional ”mean field” term implies a discontinuity of
C(T ) at T = Tc as discussed in past lecture, and has no effect on the Gaussian value of α.
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====== [10.4] Digression - Gaussian integrals

The partition function can be calculated exactly whenever the action is a quadratic form. The so-called Gaussian
integral reduces to the product of N one dimensional integrals if we transform it to a basis in which the quadratic
form is diagonal. For a system that has translation symmetry it is momentum space.

∫
Dφ e−

1
2

∑
i,j Aijφiφj+

∑
i hiφi =

∏
k

∫
dφ̃k e−

1
2akφ̃

2
k+h̃kφ̃k (10.11)

=
∏
k

(
2π

ak

)1/2

e
1
2

(
1
ak

)
h̃2
k =

√
det(2πG) exp

1
2

∑
i,j

Gijhihj

 (10.12)

here G = A−1, and note that det(G) = 1/ det(A). Note also that going back to the original basis, in the case of
position-to-momentum transformation implies that G(r) is the Fourier transform of 1/a(k).

From the above result, it follows that G(r) is the correlation function ⟨φ(r)φ(0)⟩ for h = 0. Otherwise ⟨φ⟩ is non-zero,
and it equals to field φ̄ that minimizes that action. It satisfies the equation Aφ = h, whose solution is φ̄ = Gh. Hence
G can be regarded as the ”Green function”.

====== [10.5] The mean field equation

We define the mean field φ̄ via the equation A (φ) = minimum. This gives the equation

(
−∇2 + a

)
φ+ uφ3 = h(x) (10.13)

The mean field for an homogeneous h(x) = h is obtained from aφ+ uφ3 = h. In particular for h = ±0 we get

φ̄0 =

{
0, for a > 0

±
(−a

u

) 1
2 , for a < 0

A[φ̄0] =

{
0, for a > 0

− a2

4u , for a < 0
(10.14)

For a > 0 we neglect the non linear term in the action, define ξ = a−1/2, and write the mean field equation as(
−∇2 + (1/ξ)2

)
φ(x) = h(x). For a < 0 we make the substitution φ 7→ φ̄0 + φ, expand the action around the new

minimum, and then neglect the non-linear term. The mean-field equations takes the same form as for a > 0, with
ξ = (2|a|)−1/2. Accordingly the first-order solution in h(x) is

φ̄(x) = φ̄0 +

∫
G(x− x′)h (x′) dx′ +O(h2) (10.15)

where G(x− x′) =
∫

dq

(2π)
d

eiq(x−x′)

q2 + (1/ξ)
2 ξ =

{
a−

1
2 , for a > 0

(−2a)−
1
2 , for a < 0

(10.16)

We recall that G(r) is both the Green function and the correlation function in the Gaussian approximation. Hence
the Gaussian critical exponents are ν = 1/2 and η = 0. This ν value is consistent with what we have obtained for the
heat capacity exponent α. In 3D we get α = 1/2.

====== [10.6] Symmetry breaking

Let us first assume that a > 0 and ask whether we can trust the Gaussian approximation. Higher non-Gaussian
terms in the expansion of A[φ] around φ̄ were neglected in the above treatment. The condition for this neglect is
found in the same way as in the Bragg-Williams analysis. Namely, the neglect of the non-Gaussian term is justified
if uφ4 ≪ aφ2. This leads to the condition Var(φ) ≪ (a/u). As in the Bragg-Williams analysis the same condition

is deduced if we approach a = 0 from below, from the condition
√

Var(φ) ≪ |φ̄|. So we would like to estimate the
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fluctuations and see if this condition is satisfied. Within the framework of the Gaussian approximation the variance
of each Fourier component of the field is

Var(φ̃k) =
1

Ld

(
1

k2 + (1/ξ)2

)
(10.17)

The field amplitude φ(x) at a given point in space is the sum of N independent Fourier components, and accordingly

Var(φ) =
∑
k

Var(φ̃k) = G(0) (10.18)

If we kept only the k = 0 contribution, as in the Bragg-Williams analysis, we would get Var(φ) ∼ ξ2/Ld, which would
imply that the Gaussian approximation is always OK in the thermodynamic limit. If on the other hand we keep all
the terms in the above sum, we get for d > 2 a huge result that depends on Λ. This bare estimate of the variance has
no significance because it reflects the renormalization of a by the large k fluctuations as discussed by [Amit 1974].
Consequently, as suggested by Ginzburg the effective cutoff for the purpose of estimating the Gaussian fluctuations
is Λ0 ∼ 1/ξ, hence

Var(φ) ∼
∫ 1/ξ

0

kd−1dk

k2 + (1/ξ)2
∼ 1

ξd−2
∼ G(ξ) (10.19)

This value is determined by (L/ξ)d effective modes that each contribute to the variance ξ2/Ld, hence it is Λ indepen-
dent unlike the bare value G(0). Substitution into the condition Var(φ)≪ (a/u) leads to the Ginzburg Criterion

|T − T (0)
c | ≫ C u2/(4−d) (10.20)

where C is a constant. This condition defines the border of the critical region. Within the critical region the Gaussian
approximation breaks down because of non-Gaussian fluctuations.

T<Tc T~Tc

Tc <T

We now turn to the question whether there is a phase transition within the critical region. The other possibility is
that the fluctuations smear away the the phase transition leading to a smooth r rather than abrupt crossover. Namely,

for T ≪ T
(0)
c there is a symmetry breaking, such that the mean field φ̄ jumps from positive finite value to negative

finite value as h is varied across h = 0. Obviously, in order to observe a phase transition we have to require that this
abrupt jump is not smeared by the (non-Gaussian) fluctuations within the critical region. We shall discuss below two
cases in which fluctuations completely destroy the possibility to observe a phase transition.

Goldstone excitations. – First we refer to the case where the order parameter has a continuous rather than a
discrete symmetry. To be specific let us assume a complex order parameter Ψ = (ψ1, ψ2). In such case the potential
V (Ψ) = (1/2)a|Ψ|2 + (1/4)|Ψ|4 looks like a Mexican hat for r < 0. It means that instead of having two minima we
have a continuous set of minima. This implies that the low frequency excitations of the system are phonon-like, called
magnons in the ferromagnetic context. In general the excitations that appear if a continuous symmetry is broken
are known as Goldstone excitations. They have some dispersion ω = c|k|. Coming back to the partition sum, we
see that we have to include the Goldstone excitations in the Var(Ψ) calculation, leading formally to an integral over
1/k2 instead of 1/(k2 + (1/ξ)2). The integral is ”infrared divergent” unless d > 2. We conclude that the fluctuations
destroy the possibility to observe a phase transition at d = 2. This is know as the Mermin-Wagner theorem.

Non-Gaussian fluctuations. – Going back to the real field case, there are no Goldstone excitations, still we might
have non-Gaussian excitations that smear the phase-transition. For d > 1 the implication of such fluctuation is not too

http://iopscience.iop.org/0022-3719/7/18/020
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dramatic: the critical point is shifted down (ac < 0) but remains finite (see discussion of the RG analysis). For d = 1
we already have discussed the absence of a finite temperature phase-transition using a ”domain walls” perspective.
Let us re-phase the explanation using a field-theory perspective. It is clear that if we have a phase transition, then
formally Var(φ) ∼ φ̄2 on the critical line. The question is whether it becomes Var(φ) ≪ φ̄2 for any finite h away
from the critical line. This depends on the height of the ”barrier” between the two minima, and therefore cannot
be deduced from the Ginzburg criterion: the latter is based on a local Gaussian approximation that does not know
anything about the height of the ”barrier”. We shall see in the next section that in the d = 1 case the crossover has
a finite width: there is no abrupt change in ⟨φ⟩ as h = 0 is crossed.

Quantum phase transition. – The Landau model is “classical” in the sense that its Hamiltonian commutes with
the order parameter. This is not the case e.g. for coupled rotors (see previous lecture). In a field theory treatment the
partition function Z = trace[e−βH ] can be written as a Feynman path integral over the field φ(x, τ), where τ ∈ [0, β] is
the so-called imaginary time. The integral is over all field configurations in ([0, β]× [0, L]d). Accordingly the analysis
of the ground state in the thermodynamic limit (β, L→∞) maps formally to a classical field theory with dcl = d+ 1
dimensions. This implies that is is feasible to observe a zero temperature “quantum phase transitions”, as a control
parameter is varied, even for d = 1 and notably at d = 2.

====== [10.7] The one dimensional model

The one-dimensional field model can be solved exactly. This is merely a variation on the ”transfer matrix” method.
The Dφ integral is sliced and written as a trace over the product of N matrices. Each matrix can be written as
exp(−dxH) where H is the ”Hamiltonian”. One realize that this is nothing else but the Feynman path integral in
”imaginary time”. Let us define

H = −1

2

∂2

∂φ2
+ V (φ) = −1

2

∂2

∂φ2
+
[1
2
aφ2 +

1

4
φ4
]

(10.21)

using the notation φ̇ = dφ/dx and x = τ with periodic boundary conditions over [0, L], the calculation of the partition
function goes as follow:

Z =

∫
Dφ e−

∫ L
0

1
2 φ̇

2+V (φ)dτ = trace(e−LH) =
∑
n

e−Lµn (10.22)

where µn are the eigenvalues of H. In the thermodynamic limit F (T, h) = LTµ0 where µ0 is the ground state energy
of H. Similarly ⟨φ⟩ is just the ground state expectation value. For the correlation function we get

G(r) ∝ trace
[
e−(L−r)Hφe−rHφ

]
∝

∑
n

|⟨n|φ|0⟩|2e−r(µn−µ0) (10.23)

where in the last equality we already dropped the terms that vanish in the thermodynamic limit. We see that the
long tails are characterized the correlation length ξ = 1/(µ1 − µ0). This correlation length does not diverge, reflecting
that the variation of ⟨φ⟩ is smooth. The crossover at h = 0 has a width that equals the tunnel splitting (µ1 − µ0).
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====== [10.8] Coarse graining and scaling

The free energy F (a, u, c; Λ, L) of an homogeneous system that is described by the Landau model, and the associated
correlation function G(r, a, u, c; Λ, L) depend on the following parameters:

L = linear size of the model (10.24)

Λ = largest momentum scale (10.25)

(c=1, a, u) = microscopic related parameters (10.26)

r = distance between two test points (10.27)

Schematically we write the free energy as F (g; Λ, L), where g stands for any of the action parameters. The c = 1
convention fixes the units of the field φ, as well as the engineering dimension dg of any of the action parameters. The
microscopic-related parameters have been determined, as in the Bragg-Williams approximation, by summation over
all the microscopic configurations that correspond to the same coarse-grained φ(x). Accordingly these parameters
depend on the value of Λ. To emphasize this aspect one may use the notation g(Λ).

Assume that we have used a coarse-graining cutoff Λ to construct the action. But later we might prefer to work with
an action that corresponds to a somewhat lower cutoff Λ′. Obviously the result of the calculation should be the same.
Accordingly we write

F (g; Λ, L) = F (g′; Λ′, L) = F (sdgg′; Λ, sL) = sdF (sdgg′; Λ, L) (10.28)

In the second equality we scaled the units by factor s = Λ′/Λ in order to restore the original Λ cutoff, and in the last
equality we have used the thermodynamic limit in order to restore the original L cutoff. Using a compact notation
we have deduced the scaling relation

F (g) = sd F (gs), gs ≡ sdg g(sΛ) (10.29)

With regard to the correlation function we note that G, unlike F , does not depend on L, but the units of the field
have been modified, hence sd should be replaced by a different scaling factor that we discuss in the next section.

It should be clear that the units of length are arbitrary, hence F should be a well defined function of the dimensionless
model parameters. It follows that we can write the scaling relation for the microscopic related parameters without
giving explicit reference to Λ. Namely,

g̃s = R(s) g̃, g̃s ≡ Λdg gs (10.30)

where R(s) is a non-linear transformation that depends on s. This transformation relates values of F along
a trajectory in parameter space, and by definition has the semi-group property R(s2)R(s1) = R(s2s1). Using
the parametrization s = e−τ we can write the transformation as g̃τ = R(τ)g̃0 and the semi-group property as
R(τ2)R(τ1) = R(τ2 + τ1). Clearly we can generate R(τ) from infinitesimal steps, so we define a β function via the
expansion R(τ)g̃ = g̃ + τβ(g̃) +O(τ2), and write the so called renormalization group (RG) equation as

dg̃

dτ
= β(g̃), [opposite sign convention if dτ 7→ d ln Λ] (10.31)

Increasing the course graining parameter τ , we get a flow in g space. A fixed point of this flow represents a critical
point of the model, where the system look-alike on any scale. If we start the RG trajectory at a point close to the
fixed point it will flow away, meaning that on coarse-grained scale the system looks like having larger |T − Tc|. For
the Landau model in 3D we shall see below that the RG equation for a becomes

dã

dτ
=

1

ν
(ã− ãc), ãc = −

1

5
, ν =

3

5
(10.32)
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Defining t = (a − ac) we get the solution ts = s−1/νt, leading to the scaling relation F (t) = sdF (s−1/νt). Hence for
the heat capacity exponent we get α = 2− νd = 1/5, and not the mean-filed value α = 0, neither the Gaussain value
α = 1/2.

====== [10.9] Renormalization Group (RG) analysis

We outline the RG procedure that is used in order to find the β(g) function, where g stands for the parameters (a, u, c)
of the Landau model with the convention c = 1. For extra technical details see Section 18.7 of Huang.

Step1 of RG.– Perturbation theory allows to integrate the high Fourier components within a shell Λ′ < k < Λ.
where Λ′ = Λ−δΛ. Namely any field configuration can be written as a sum of smooth and erratic components:

φ(x) =
∑

|k|<Λ′

φke
ikx +

∑
Λ′<|k|<Λ

φke
ikx ≡ φ̄(x) + φ̃(x) (10.33)

The action can be expanded with respect to φ̃ up to quadratic order. This is allowed because δΛ is chosen as arbitrarily
small. Using abstract notation with regard to field indexes we write the expansion as

A[φ(·)] = A[φ̄(·)] + hinduced[φ̄] φ̃+ ainduced[φ̄] φ̃
2 (10.34)

Now it is possible to use Gaussian integration over φ̃ to get an effective expression for A[φ(·)] that involves new values
for the model parameters. Accordingly

F (a, u, c; Λ, L) = F (a′, u′, c′; Λ′, L) (10.35)

Doing the algebra the result is

a′ = a+ δΛ
[
3Ωd

(
Λd−3u− Λd−5au

) ]
(10.36)

u′ = u− δΛ
[
9ΩdΛ

d−5u2
]

(10.37)

c′ = c (10.38)

Note that the u of Huang should be identified with our u/4, and r of Huang is identified with our a. Though not the
case here, one should be aware that in general the elimination of the high Fourier components might spoils the c = 1
convention.

Step2 of RG.– In ”step2” of the RG procedure the original value of Λ is restored vis engineering scaling, and then
the thermodynamic limit is assumed to restore L as well. Accordingly

F (a, u, c; Λ, L) = sd F (sdaa′, sduu′, c′; Λ, L), s ≡ e−τ , τ = δΛ/Λ≪ 1 (10.39)

Note that according to the common convention dc = 0.

Step3 of RG.– In ”step3” of the RG procedure the field φ is re-scaled such that the convention c = 1 is restored.
Using the notation c′ = s−η, and dropping reference to the restored parameters, we get

F (a, u) = sd F (as, us) (10.40)

G(r, a, u) = s−2dφ+η G(sr, as, us) (10.41)

Here we suppressed c, because it has been restored to unity. In the Landau model c′ = c and therefore η = 0. For the
two other parameters we get

as = s−2a′ = a + τ
[
2a+ 3Ωd

(
Λd−2u− Λd−4au

) ]
(10.42)

us = s−(4−d)u′ = u + τ
[
(4− d)u− 9ΩdΛ

d−4u2
]

(10.43)
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where s = 1− τ applies for an infinitesimal step. Without the high frequency contribution the above RG relation is
just a complicated way to write how the parameters are affected by engineering scaling.

RG equation.– We can illustrate the RG flow in the (a, u) space. Increasing τ means lower resolution description
of the system, with effective parameters (as, us). It is convenient to use dimensionless parameters g̃ = Λdgg, such that
the transformation R(s) becomes free of Λ. Considering an infinitesimal τ one finds that the RG-equations of the
Landau model are

dã

dτ
= 2ã+ 3ũ− 3ãũ (10.44)

dũ

dτ
= (4− d)ũ− 9ũ2 (10.45)

where ã = a/Λ2 and ũ = Ωdu/Λ
4−d.

RG flow.– The RG equation defines flow in (a, u) space. This flow is illustrated in the figure below. In the Landau
model we have two fixed points. The Gaussian fixed point is for ũ0 = 0 at ã0 = 0. The nontrivial fixed point is

ũc =
(4−d)

9
(10.46)

ãc = −
[
1− (4−d)

6

]−1
(4−d)

6
(10.47)

For d < 4 the Gaussian fixed point is unstable and the flow is dominated by the nontrivial fixed point. One observes
that the critical temperature (ac) is shifted below the mean field Gaussian value.

====== [10.10] Implications of the RG results

The results of the RG analysis are used slightly differently in Statistical Mechanics (”Ising”) and in high energy
physics (”HEP”). We first would like to explain the subtle difference, and then to focus on the the ”Ising” context.

HEP.– In the HEP context
√
a = m is the so-called ”bare mass”, and u is the ”bare interaction”. They are associated

with the momentum exchange q ∼ Λ in, say, electron-electron scattering calculation. The low energy scale Λ0 is the
Compton wavelength that corresponds to the electron mass. For larger Λ the scattering involves ”loop” corrections
reflecting the virtual appearance of electron-positron pairs. Consequently the mass and the interaction become
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“running coupling constants”. With different choices of Λ one associates different a(Λ) and u(Λ). The physical mass
and the physical interaction for q-scattering are defined through the measured dispersion-relation and through the
cross-section respectively. Both are functions of (q; a, u), and are calculated from the bare parameters. With different
choices of Λ we can associate different points in (ã, ũ) space. It follows that the relevant physics is along a specific
HEP line of the RG flow (see figure). Accordingly what we get from the RG analysis is how a(Λ) and u(Λ) depend
on Λ. It turns out that the d = 4 Landau model has essentially the same beta function as in QED. Namely, the beta
function for the QED coupling g = e2/(4π) is β(g) = Cg2 with C = 2/(3π) instead of C = 1/9. One obtains

g(Λ) =
g0

1− Cg0 ln(Λ/Λ0)
≡ 1

C ln(Λ∞/Λ)
(10.48)

where Λ0 corresponds to the Compton length of the electron and g0 ≈ 1/137 is the asymptotic QED coupling. At
large distances (q < Λ0) the interaction strength is renormalized to a universal value that is independent of the bare
parameters. For short distances the interaction becomes stronger, and diverges at the Landau pole Λ∞. Note that
this divergence is possibly not physical because the derivation of the RG equation assumes that g is small.

Ising.– In the Ising context the reasoning is different. After Λ coarse-graining we get an action with a and u, which
we represent as a point in (ã, ũ) space. If we vary the temperature it is like going along a horizontal line. If we use a
lower cutoff Λ′ it would takes us to a lower horizontal line (see figure). Assuming that we have done enough coarse-
graining, the value of u would become u ≈ uc. We therefore say that u is ”irrelevant”. Without loss of generality we
can set u = uc in our calculations. We end up with a single RG equation for the variable t = (a− ac), namely

dt

dτ
= (2− 3uc) t generic notation:

dg

dτ
= λ g (10.49)

The solution of this equation is tτ = eλτ t0 hence we deduce the scaling relation F (t) = sdF (s−λt). We therefore
conclude that F (t) ∝ |t|d/λ, from which the dependence of the heat capacity on the temperature can be derived.

The critical exponents.– We want to understand how the RG flow explains the scaling hypothesis. In the vicinity
of the fixed point we can linearize the RG equation. After linear transformation and shift we get an equation of the
type dg/dτ = λg, whose solution is gτ = eλτg. Parameters with negative eigenvalues λ < 0 vanish from the model due
to the coarse graining and therefore are called ”irrelevant”. We keep only the relevant parameters and deduce that

F (g) = sd F (sDgg), Dg ≡ −λ (10.50)

The anomalous dimension Dg of Huang is defined with opposite sign (he is using inverse length units). In general ”g”
stands for a collection of (relevant) parameters, each having its own ”dimension”. In the Landau model the relevant
parameter is related to the temperature, namely t = (a− ac) ∝ (T − Tc). From the RG equation we deduce

Dt = − [2− 3uc] = −
[
2− (4−d)

3

]
≡ −1

ν
(10.51)

Hence the scaling relations take the familiar form

F (t) = sd F (s−1/νt) (10.52)

G(r, t) = sd−2+η G(sr, s−1/νt) (10.53)

This means that the coarse grained system looks less and less critical as τ is increased. Having determined ν and
η = 0 using the RG procedure, we can deduce all the other critical exponents from the scaling relations.
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====== [10.11] The Heisenberg model

The Heisenberg model relates to a three component vector field S. It is described by the Hamiltonian

H = −J
∑
⟨i,j⟩

Si · Sj (10.54)

The field theory version of the Heisenberg model is the nonlinear sigma model (NLSM), where S(r) is a vector field
that obeys the constraint |S(r)| = 1. The NLSM energy functional is commonly written as

E[S] =
1

2g

∫
|∇S|2dr (10.55)

The Mermin-Wagner theorem:– In the Heisenberg and Landau-Ginzburg models the order parameter has a
continuous symmetry with respect to spin rotations. This is different from the Ising and Landau models where
the symmetry is discrete (up/down). The Mermin-Wagner theorem states that continuous symmetries cannot be
spontaneously broken at finite temperature in d ≤ 2 systems with short-range interactions. This is due to long-range
fluctuations, corresponding to massless ”Goldstone modes”. These fluctuations cost little energy, while contribute
large entropy. Hence at finite temperatures the T = 0 broken symmetry is washed away.

Let us outline the argument that explains the dimensionality issue. Assume that there is a long range order. Use the
Gaussian approximation to calculate the correlation function around the selected minimum. The Goldstone modes
are massless (which is like r = 0 in the Landau model). Hence g(r) = FT[1/k2]. The area under g(r) diverges due to
the low wavelength fluctuations if d ≤ 2, indicating that the minimum is washed away.

====== [10.12] The XY model

The XY model relates to a two component vector field S. It can be regarded as describing coupled rotors. The
orientation of the ith spin in the XY plane is φi. Accordingly we can write

H = −J
∑
⟨i,j⟩

cos(φi − φj) (10.56)

The associated continuous field version is defined by the energy functional

E[φ] =
K

2π

∫
(∇φ)2dr =

K

2π

∫
|Ψ′(r)|2dr (10.57)

where dr integrates over space, and Ψ(r) = eiφ(r). Note that the Landau-Ginzburg model has an order-parameter

Ψ(r) =
√
n(r)eiφ(r), and can be regarded as a variation of the XY model, where n(r) is not constrained to unity. The

low lying excitations of the XY model in 2D are vortexes. For example, a single vortex at the origin is represented by

φ(r) = q arg(x, y) = q tan−1(y/x) (10.58)

|∇φ| = (q/r) [tangential] (10.59)

E[φ] = Kq2 ln(L/a) (10.60)

where L is the radius of the system, and a is the lattice spacing, and q is an integer, say q = ±1. One realizes

that F⃗ = ∇φ is like a 90deg rotated version of a field dues to a charge q in a 2D electrostatic problem, while E[φ]
corresponds to the electroststic energy. Accordingly if we have several vortexes we get

E[φ] = const−K
∑
⟨i,j⟩

qiqj ln |ri − rj | (10.61)
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which is formally the expression for the energy of a Coulomb gas in 2D.

Note about complex representation.– Consider a field F⃗ = (Fx, Fy) in 2D that has no sources (∇ · F = 0) and
no circulations (∇× F = 0). These two conditions are the Cauchy-Riemann equations that allow to represent the field

by a complex differentiable function f(z) = Fx − iFy, where z = x+ iy. Note that in sloppy notations F⃗ = f(z)∗.
Note that such functions are called holomorphic and hence they are analytic, i.e. have a convergent Taylor expansion
at any point. Note also that a holomorphic function can be regarded as a conformal map w = f(z) that induces a
local transformation df = Cdz, where the local derivative C can be regarded as a rotation (due to its phase) combined
with dilation (due to its modulo). From the Cauchy-Riemann no-circulation condition it follows that the field can be

derived from a scalar potential (F⃗ = −∇V ). Optionally from the Cauchy-Riemann no source condition it follows that

the field can be derived from a vector potential (F⃗ = ∇× (0, 0, A)). We can summarize these two options by defining
a complex potential Ψ(z) = V (z) + iA(z) such that f(z) = −Ψ′(z). The lines of constant A(z) are called ”stream
lines”, while the lines of constant V (z) are called ”propagation fronts”. Differences of A have the meaning of ”flux”,
while differences of V have the meaning of ”work”. For a point charge in a 2D electrostatic problem the Coulomb
field is f(z) = q/z and Ψ(z) = −q ln(z) corresponding to V (x, y) = −q ln(r). The vortex in the XY model is just a
rotated version of a Coulomb field with f(z) = −iq/z and Ψ(z) = −iq ln(z).

The Kosterlitz-Thouless transition.– Considering the XY model in 2D space, let us see what happens if we have
a collection of vortexes. The entropy which is associated with the number of possibility to position the vortex in the
lattice is S = ln[(L/a)2]. Accordingly the introduction of a vortex into the system implies

F [ρ] = E[ρ]− TS[ρ] = (K − 2T ) ln[(L/a)] (10.62)

Hence for T > (K/2) the creation of a vortex is favoured, so we expect to have a gas of quasi-independent vortexes.
For T < (K/2) these vortexes have to pair, which is like not having vortexes. The above argumentation implies
an ”infinite order phase transition”, known as the Kosterlitz-Thouless transition. In consistency with the Mermin-
Wagner theorem it does not lead to ”long range order”. Rather it describes a transition from ”conventional disordered
phase” at high temperature, to ”quasi-long-range ordered phase” at low-temperature. The correlation function goes
from exponential above the critical temperature, to powerlaw at the critical temperature and below. At the critical
temperature g(r) = 1/rη, with η = 1/4. Below the critical temperature a Gaussian estimate gives η = T/(2K).
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Fluctuations and Response

[11] Fluctuations
In order to know the expectation value of an operator we need only spectral information which is present in g(E,X)
or in Z(β,X). Note that these functions contains only spectral information about the system (no information on
the dynamics). Still it is enough for the calculation of the conservative force. For example, in case of a canonical
preparation

⟨F⟩0 =

〈
−∂H
∂X

〉
=
∑
n

pn

(
−∂En

∂X

)
=

1

β

∂ ln(Z)

∂X
(11.1)

In contrast to that, the fluctuations of F(t)−⟨F⟩0 require knowledge of the dynamics, and cannot be calculated from
the partition function. For simplicity of presentation we assume below that the fluctuating quantity of interest is
re-defined such that ⟨F⟩0 = 0.

====== [11.1] The classical power spectrum

Consider a stationary stochastic classical variable F (t), and define its correlation function as

C(t2 − t1) = ⟨F (t2)F (t1)⟩ (11.2)

The power spectrum C̃(ω) is the Fourier transform of C(τ), where τ = t2 − t1 is the time difference. In practice a
realization of F within time interval 0 < t′ < t can be Fourier analyzed as follows:

Fω =

∫ t

0

F (t′)eiωt′dt′ (11.3)

and we get the ”Wiener-Khinchin theorem”

⟨|Fω|2⟩ = C̃(ω)× t (11.4)

where we assume that t is much larger compared with the correlation time.

A related perspective concerns the intensity of the power spectrum:

ν =

∫ ∞

−∞
C(τ)dτ = C̃(ω=0) (11.5)

If we regard F (t) as the velocity (”steps”) in a random-walk process, then the zeroth Fourier component is

r(t) =

∫ t

0

F (t′) dt′ = total displacement (11.6)

On the average ⟨r⟩ = 0 but the variance is linear in time:

Var(r) =

∫ t

0

∫ t

0

⟨F (t′)F (t′′)⟩ dt′′dt′ = ν t ≡ 2D t (11.7)

Accordingly the intensity ν is trivially related to the coefficient D of a diffusion process that is generated by the noisy
signal F (t).
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====== [11.2] The quantum power spectrum

We consider a system whose dynamics is generated by Hamiltonian H. We assume that it is prepared in a stationary
state, possibly but not necessarily a thermal states. Our interest is in the fluctuations of an observable F . We use the
common interaction picture notation F(t) = eiHtFe−iHt. The non-symmetrized correlation function of F is defined
as

S(t) = ⟨F(t)F(0)⟩ (11.8)

This function is complex, but its Fourier transform is real and can be calculated as follows:

S̃(ω) =

∫ ∞

−∞
S(t)eiωtdt =

∑
n

pn
∑
m

|Fmn|2 2πδ

(
ω − Em − En

ℏ

)
(11.9)

In the case of a microcanonical preparation at some energy E, this is the same object that appears in the Fermi-
Golden-rule (FGR) for rate of decay due to transitions to other levels, namely

ΓFGR = S̃E(Ω)× f20 , for H− f(t)F , with f(t) = f0e
−iΩt (11.10)

See further discussion of the FGR in the Kubo formula section. In the above formula ω > 0 corresponds to absorption
of energy (upward transitions), while ω < 0 corresponds to emission (downward transitions).

====== [11.3] The detailed balance relation

It is a straightforward algebra to show that for a canonical preparations at temperature T , where pn ∝ exp(−En/T ),
there is a detailed balance relation:

S̃T (−ω) = exp

(
−ℏω
T

)
S̃T (ω) (11.11)

This implies that if we couple to the system another test system (e.g. a two level “thermometer”) it would be driven
by the fluctuations into a canonical state with the same temperature.

The disadvantage of S̃T (ω) is that it has meaning only in the quantum mechanical context. We want a formulation
that treat the quantum and the classical on equal footing. We therefore define spectral functions that have well
defined classical limit:

C̃(ω) ≡ FT
1

2

〈
F(t)F(0) + F(0)F(t)

〉
=

1

2

(
S̃(ω) + S̃(−ω)

)
(11.12)

K̃(ω) ≡ FT
i

ℏ

〈
[F(t),F(0)]

〉
=

i

ℏ

(
S̃(ω)− S̃(−ω)

)
(11.13)

and deduce that at thermal equilibrium they are related as follows:

K̃(ω) = i
2

ℏ
tanh

(
ℏω
2T

)
C̃(ω) (11.14)

We shall see later that K̃(ω) determines the absorption coefficient of the system, hence the above relation is going to
be the basis for a “fluctuation-dissipation relation”.

It is interesting to look on the classical limit of the detailed balance relation. The classical canonical version can be
regarded as the low frequency limit of the quantum relation:

K̃T (ω) = iω × 1

T
C̃T (ω) [classical canonical version] (11.15)



85

It looks very nice in time domain:

KT (t) = − 1

T
ĊT (t) (11.16)

We shall use the latter version in order to derive what we call later the “DC version” of the a generalized fluctuation-
dissipation relation.

====== [11.4] The classical version of ”detailed balance”

The purpose of the present section is to show how a general relation between K(t) and C(t) can be derived within
the framework of classical mechanics, assuming that the system is prepared in some arbitrary stationary state
ρ(x, p) = f(H(x, p)). The classical canonical version that we have deduced in the previous version by taking the
ℏω → 0 limit can be regarded as a special case with f(H) ∝ exp(−βH). We first define K(t) and C(t) in a more
general way:

C(t) = trace {f(H) AtB} (11.17)

K(t) = trace {f(H) [At, B]} (11.18)

The trace means dxdp phase-space integration, with obvious generalization to more than one freedom. We define
z = (x, p) and ∂ = (∂x, ∂p). The Poisson brackets of two functions are:

[A,B]PB = (∂xA)(∂pB)− (∂pA)(∂xB) ≡
∑
i,j

(∂iA)Ji,j(∂jB) (11.19)

where Ji,j = matrix{0, 1;−1, 0}. One easily proves that trace{[A,B]C} = trace{A[B,C]}. Note also the chain rule
[f(H), A] = f ′(H)[H,A]. It is now possible to derive the following identity:

trace {f(H)[At, B]} = trace {[f(H), At]B} = trace {f ′(H)[H,At]B} = − d

dt
trace {f ′(H)AtB} (11.20)

where the time evolved function At obeys the Hamilton equation of motion (d/dt)At = −[H,A]t, and we use the
canonical invariance [H,A]t = [Ht, At]. For a microcanonical distribution f(H) = g(E)−1δ(H − E) we get

KE(t) = − 1

g(E)

d

dE

[
g(E) ĊE(t)

]
[classical microcanonical version] (11.21)

For a canonical distribution f(H) = Z(β)−1 exp(−βH) the weighted energy derivative is replaced by 1/T as antici-
pated from the quantum version. Optionally the canonical version can be obtained from the microcanonical version
by averaging over the energy with the canonical weight ∝ g(E) exp(−E/T ), and integration by parts. A physically
appealing deduction of the connection between K and C will be implied by the derivation of the classical fluctuation-
dissipation relation.

====== [11.5] Fluctuations of a many body system

A single particle dynamics at energy ϵ can be characterized by the single particle microcanonical fluctuation spectrum
Cϵ(ω), and by the associated response function

K̃ϵ(ω) = iω × 1

g(ϵ)

d

dϵ

[
g(ϵ) C̃ϵ(ω)

]
(11.22)

Let us assume that we have a many body occupation that is described by an occupation function f(ϵn). If we consider

a one-body operator Â =
∑

mnAmna
†
man, the expectation function an additive property that relates it to the single
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particle expectation values:

⟨Â⟩ =
∑
n

f(En) ⟨A⟩n (11.23)

If C is the two-body operator such property does not in general exist: the total ”interaction” is greater than the
sum of the interactions within subsets. But if the two-body operator C = [A,B] is defined as the commutator of two
one-body operators, it is easy to show that the additive property is re-gained. According we deduce that for an N
body system

K̃ [N ](ω) =

∫
dϵ g(ϵ)f(ϵ) K̃ϵ(ω) (11.24)

Expression K̃ϵ(ω) using C̃ϵ(ω) we get

K̃ [N ](ω) = iω ×

{
g(ϵF ) C̃F (ω) degenerate Fermi occupation (T ≪ ϵF )

(N/T ) C̃T (ω) dilute Boltzman occupation (T ≫ ϵF )
(11.25)

where the subscripts F and T implies that Cϵ(ω) is evaluated at the Fermi energy, or averaged according to the
thermal occupation, respectively. Note that in practice g(ϵF ) ∼ N/ϵF , so we have a smooth crossover at T ∼ ϵF . The
fluctuations of the many-body current are deduced from the detailed balance relation:

C̃ [N ](ω) =
ℏ
2
coth

(
ℏω
2T

)
Im
[
K̃ [N ](ω)

]
(11.26)

Considering a system of Fermions we get

C̃ [N ](ω) =

{
ℏω
2 coth

(ℏω
2T

)
g(ϵF ) C̃F (ω) degenerate Fermi occupation

N C̃T (ω) dilute Boltzmann occupation
(11.27)

Contrary to the classical reasoning the zero temperature Fermi sea is not noisy νN = C̃ [N ](0) = 0. The intensity νN
of the current-fluctuations is not simply the sum over the one-particle fluctuations. The classical result is νN = NνT
where νT is the thermally averaged one-particle fluctuation-intensity. In contrast, the quantum result is νN = NT νF ,
where νF is evaluated at the Fermi energy, andNT = Tg(ϵF ) ≡ T/∆ is the effective number of particles that contribute
to the noise. Strangely enough (see next lecture) the classical and the quantum calculations give the same result within
the framework of the Drude model: the temperature dependence merely shifts from the “ν” to the “N”.

Many body calculation.– It is interesting to see how the relation between many-body fluctuations and single
particle fluctuations is deduced for a low temperature system of Fermions using a direct calculation. We consider the
fluctuations of a general observable A. If we treat the many body system as a whole then we have to employ second
quantization to write Â =

∑
mnAmna

†
man. Excluding the irrelevant diagonal n=m terms we get for a non-interacting

system in a thermal state

S̃[N ](ω) = FT
〈
Â(t)Â(0)

〉
(11.28)

=
∑
nm

|Amn|2
〈
a†nama

†
man

〉
2πδ(ω−(ϵm−ϵn))

=
∑
nm

(1−f(ϵm))f(ϵn)|Amn|2 2πδ(ω−(ϵm−ϵn))

=

∫
dϵ

∆
(1−f(ϵ+ω))f(ϵ) C̃ϵ(ω)
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If we had bosons the last expression would be (1+f)f instead of (1−f)f . In the dilute Boltzmann limit (f ≪ 1)
we recover additivity, as expected from classical considerations with regard to uncorrelated motions of independent
particles. But for non-dilute occupations the results depends of the “many body statistics”. For bosons there are
enhanced fluctuations due to the ”bunching” of particles in the same orbital. For fermions it is the opposite effect.
In the latter case let us assume that the single particle power spectrum has a well-defined mean level spacing ∆ at
the energy range of interest, namely at the thermal vicinity of the Fermi energy. At the limit of zero temperature the
result of the integral is clearly zero for ω < 0 reflecting that a zero-temperature the system can only absorb energy.
For positive frequencies the zero temperature result (ω/∆)C̃F (ω) is proportional to the number levels (ω/∆) from
which transitions to empty orbitals can take place. For finite temperature we get:

S̃[N ](ω) =
ω/∆

1− e−ω/T
C̃F (ω) (11.29)

C̃ [N ](ω) =
ω

2∆
coth

( ω
2T

)
C̃F (ω) (11.30)

K̃ [N ](ω) = i
ω

∆
C̃F (ω) (11.31)

Needless to say that these results, that have been deduced here from a direct many-body calculation, are consistent
with the former deduction that has been based on detailed-balance considerations.

====== [11.6] Fluctuations of several observables

Give several observables F j , and assuming that the system is prepared in a stationary state, the fluctuations can be
characterized by the correlation function

Skj(t) = ⟨Fk(t)F j(0)⟩ (11.32)

The associated spectral function S̃kj(ω) is defined by a Fourier transform. For simplicity we use the notations F1 = A
and F2 = B, and write the spectral decomposition

S̃AB(ω) =
∑
n

pn
∑

m(̸=n)

AnmBmn 2πδ

(
ω − Em − En

ℏ

)
(11.33)

It is convenient to write SAB(t) as the sum of two real spectral functions that have a good classical limit:

SAB(t) = CAB(t)− iℏ
2
KAB(t) (11.34)

CAB(t) ≡ 1

2

〈
A(t)B(0) +B(0)A(t)

〉
(11.35)

KAB(t) ≡ i

ℏ

〈
[A(t), B(0)]

〉
(11.36)

We use the notations S̃AB(ω), and C̃AB(ω), and K̃AB(ω) for their Fourier transforms. With regard to the spectral

decomposition of C̃AB(ω) and K̃AB(ω) we note that it is convenient to write pn = f(En). We can simplify these
expressions by interchanging the dummy indexes n,m in the second term. Thus we get

C̃AB(ω) =
1

2

∑
n,m

(f(En) + f(Em))AnmBmn 2πδ

(
ω − Em−En

ℏ

)
(11.37)

K̃AB(ω) = iω
∑
n,m

f(En)− f(Em)

Em − En
AnmBmn 2πδ

(
ω − Em−En

ℏ

)
(11.38)

Note that for a canonical state f(En)−f(Em) = tanh((En−Em)/(2T )) × (f(En)+f(Em)). Note also that in the

expression for K̃AB(ω), the ω cancels the Em−En denominator. The reason for pulling ω out of the sum is to
emphasize the low frequency dependence.
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====== [11.7] Reciprocity relations and detailed balance

There are some reciprocity relations that should be noticed. First we note that by definition SAB(t) =
[
SBA(−t)

]∗
.

In practice it is more illuminating to write the FTed version of this reciprocity relation, which can be directly deduced
by inspection of the spectral decomposition. Namely,

S̃AB(ω) =
[
S̃BA(ω)

]∗
(11.39)

It follows that C̃AB(ω) =
[
C̃BA(ω)

]∗
, while K̃AB(ω) = −

[
K̃BA(ω)

]∗
. There is a second reciprocity relation that

follows from time reversal invariace. Also here it is simpler to look on the spectral decomposition and to remember
that [An,m]∗ = An∗,m∗ , where n∗ and m∗ are the eigenstates of the time reversed Hamiltonian. In practical terms it

means that one has to reverse the sign of the magnetic field h. Consequently
[
S̃BA(ω;h)

]∗
= [±]S̃BA(ω;−h), where

the plus (minus) applies if the signs of A and B transform (not) in the same way under time reversal. Combining
with the trivial reciprocity relation we get the Onsager reciprocity relation

S̃AB(ω;h) = [±] S̃BA(ω;−h) (11.40)

The Kubo formula that we discuss in the next section implies that the same reciprocity relations hold for the response
kernel αkj , to the susceptibility χkj and to the DC conductance Gkj . These are called Onsager reciprocity relations

Finally, we can also generalize what we called the “detailed balance relation”. In the quantum context this is a relation
between “positive” and “negative” frequencies. Assuming that the system is prepared in a canonical state we have

S̃AB
T (−ω) = exp

(
−ℏω
T

)
S̃BA
T (ω) (11.41)

From here it follows that

K̃AB
T (ω) = i

2

ℏ
tanh

(
ℏω
2T

)
C̃AB

T (ω) [quantum canonical version] (11.42)

In the classical limit this relation takes the form

KAB
T (t) = − 1

T
ĊAB

T (t) [classical canonical version] (11.43)

where the dot indicates time derivative.

The Kubo formula that we discuss in the next section is expressed using K̃AB(t). But it is more convenient to

use C̃AB(t). The canonical relation between the two is the basis for the Fluctuation-Dissipation relation.
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[12] Linear response theory

====== [12.1] The notion of linear response

Let us assume that X(t) is an input signal, while F (t) is the output signal of some black box. Linear response means
that the two are related by

F (t) =

∫ ∞

−∞
α(t− t′) X(t′) dt′ (12.1)

The response kernel α(t− t0) can be interpreted as the output signal that follows a δ(t− t0) input signal. We assume
a causal relationship, meaning that α(τ) = 0 for τ < 0. The linear relation above can be written in terms of Fourier
components as:

Fω = χ(ω) Xω (12.2)

where χ(ω) is called the generalized susceptibility. Because of causality χ(ω) is analytic in the upper complex plane.
Consequently its real and imaginary parts are inter-related by the Hilbert transform:

Re[χ(ω)] =

∫ ∞

−∞

Im[χ(ω′)]

ω′ − ω
dω′

π
(12.3)

(the reverse Hilbert transform goes with an opposite sign). The imaginary part of χ(ω) is the sine transforms of α(τ),
and therefore it is proportional to ω for small frequencies. Consequently it is useful to define

χ0(ω) ≡ Re[χ(ω)] =

∫ ∞

0

α(τ) cos(ωτ)dτ ∼
∫ ∞

0

α(τ)dτ (12.4)

η(ω) ≡ Im[χ(ω)]

ω
=

∫ ∞

0

α(τ)
sin(ωτ)

ω
dτ ∼

∫ ∞

0

α(τ) τdτ (12.5)

The asymptotic expressions apply for small frequencies: in this ”DC driving” limit one can regard χ0 and η = η0 as
constants. Accordingly for small frequencies we write

Fω = [χ0(ω) + iωη(ω)] Xω ≈ χ0 Xω − η0 Ẋω (12.6)

which implies in time domain F (t) = χ0X − η0Ẋ.

====== [12.2] Rate of energy absorption

Back to Physics, what we called above X is the deviation of a control parameter from a reference value,
namely X −Xeq, and what we called F is the deviation from the corresponding equilibrium value, namely,
F (t) = ⟨F⟩t − ⟨F⟩eq. In the “DC regime” of small frequencies we regard χ0 and η0 as constants, and deduce that

⟨F⟩t = ⟨F⟩eq + χ0 (X −Xeq) − η0Ẋ = ⟨F⟩X − η0Ẋ (12.7)

where ⟨F⟩X is the canonical X-dependent expectation value. Thus, the in-phase response gives the conservative
effect, while the out-of-phase response gives the dissipative term. The latter is responsible to the irreversible work as
discussed in the ”Work” section. The rate of dissipation is Ẇ = η0Ẋ

2.

The above considerations regarding dissipation can be generalized to a source that has a wide power spectrum
(”AC driving”). The irreversible work equals the time integral over F (t)Ẋ, and hence to the integral over FωẊω.
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Assuming linear response we get an integral over η(ω)Ẋ2
ω. Note that in the context of electrical engineering X(t)

might represent magnetic flux, hence Ẋω are the Fourier components of the voltage. For a stationary driving source
Ẋ2

ω is proportional to the measurement time and is characterized by a power spectrum S̃Ẋ(ω). Consequently the rate
of energy absorption is

Ẇ =

∫ ∞

−∞
η(ω) S̃Ẋ(ω)

dω

2π
≡ η̄AC RMS[Ẋ]2 (12.8)

Possibly it is more transparent to consider a pure AC source that has a definite frequency Ω. In such a case we write

X(t) = Re
[
Ae−iΩt

]
(12.9)

F (t) = Re
[
χ(Ω) Ae−iΩt

]
= χ0(Ω)X − η(Ω)Ẋ (12.10)

Ẇ = ⟨−ẊF⟩t = η(Ω)× (1/2)[AΩ]2, [averaged over cycle] (12.11)

Note again that only the out-of-phase response gives dissipation, and that AΩ/
√
2 is the RMS value of sinusoidal

driving.

====== [12.3] LRT with several variables

Commonly the Hamiltonian H(r,p; X1, X2, X3) depends on several control parameters. Then we can define gener-
alized forces in the usual way:

Fk = − ∂H
∂Xk

(12.12)

Below Xj represent a small deviation from some reference value X = Xeq ≡ 0. The postulated linear-response relation
due to small X(t) variation is written as

⟨Fk⟩t =
∑
j

∫ ∞

−∞
αkj(t− t′) Xj(t

′)dt′ (12.13)

The low frequency limit of the linear relation between the generalized forces and the rate of the driving can be regarded
as a generalized Ohm law that includes an additional ”geometric” term. Disregarding the conservative contribution
and changing notation for the dissipation coefficient the one parameter version ⟨F⟩ = −GẊ is generalized as follows:

⟨Fk⟩ = −
∑
j

Gkj Ẋj = −
∑
j

ηkj Ẋj −
∑
j

Bkj Ẋj (12.14)

where ηkj and Bkj are the symmetric and anti-symmetric parts of Gkj . In an abstract notation this formula can be
written as follows:

⟨F⟩ = −ηẊ −B ∧ Ẋ (12.15)

Note that second term is analogous to a magnetic Lorentz force. Later we shall see that it can be derived form the
theory of adiabatic processes, where it can be expressed as a ”rotor” of the Berry connection A. The derivation of
the first term requires the larger perspective of the Kubo formula which we discuss in the next section. It is the first
term that is responsible for dissipation. Namely, the rate of dissipation is given by

Ẇ = −
∑
k

⟨Fk⟩Ẋk =
∑
k,j

ηkjẊkẊj (12.16)
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====== [12.4] The Kubo formula

The Kubo formula is an expression for the response kernel that relates the expectation value ⟨A⟩t = trace(Aρ(t)) of
some observable A to driving field f(t), where the driving term in the Hamiltonian −f(t)B involves the operator B.

αAB(t) = Θ(t)

〈
i

ℏ

[
A(t), B

]〉
≡ Θ(t) KAB(t) [Kubo formula] (12.17)

The formula has a good classical limit, and has various derivations. See “Lecture notes in quantum mechanics”.
One option is to deduce ⟨A⟩t from the time evolution of the probability matrix ρ(t). Another way is to regard the
Kubo formula as the interaction picture version of the “rate of change formula”. Namely, the rate of change of the
expectation value of A is determined by the expectation value of the commutator [H, A], hence in the interaction
picture it is related to [B,A].

Yet there is a very simple way to derive the Kubo formula in “one line”. Assume that the system is prepared in a
stationary state of H0, and that we provide a pulse f(t) = λδ(t) at t = 0. Accordingly the evolution operator after
time t is is U(t) = exp(−iH0t) exp(iλB). Below we use the notation A(t) = eiH0tAe−iH0t. By definition α(t) is the
first-order approximation for the response to this pulse, accordingly we get

⟨A⟩t = ⟨U(t)†AU(t)⟩t=0 = ⟨e−iλBA(t)e+iλB⟩t=0 = ⟨A⟩t=0 + iλ⟨[A(t), B]⟩t=0 (12.18)

From here the Kubo formula follows. Note that t=0 refers here to the moment that precedes the delta perturbation,
at which the state of system is assumed to be stationary, possibly a canonical equilibrium. By default the subscript
is omitted in the final result.

====== [12.5] Memory and Sensitivity

The so called out-of-time-order correlator (OTOC) of operators A and B is defined as follows:

KABAB(t) =
〈
[A(t), B]†[A(t), B]

〉
(12.19)

In order to understand its significance let us write the this correlator and the Kubo correlator for a classical particle,
with the substitutions A = x and B = p.

KAB(t) = −
〈
[x(t), p]PB

〉
(12.20)

KABAB(t) =
〈∣∣∣[x(t), p]PB

∣∣∣2〉 (12.21)

An infinitesimal perturbation at t = 0 shifts the initial position of the particle a distance λ = δx, and consequently
x(t) = x(0)− λ[x(t), p]PB. By definition the Kubo response kernel reflects the memory for the perturbation of the
initial conditions, namely KAB(t) = (1/λ) ⟨δx(t)⟩. In contrast to that, the the OTOC reflects the sensitivity for
the perturbation of the initial conditions. For chaotic system we have |δx(t)| ∼ δx(0)eγt, where γ is known as the
Lyapunov exponent. Accordingly KABAB(t) = (1/λ2)

〈
|δx(t)|2

〉
reflect the exponential sensitivity of the system to

any small perturbation of the initial conditions. The quantum mechanical version of the OTOC in general suppresses
this sensitivity.

====== [12.6] The Onsager regression formula

A related deduction of the Kubo formula is based on the analysis of a “quench process”. We assume that a system
is described by the Hamiltonian Hλ = H0 − λB. For example B might be the volume of the gas, and then the
conjugate field λ is the applied pressure. At t = 0 the field λ is instantly turned off, such that the dynamics for t > 0
is described by the unperturbed Hamiltonian H0. In the lecture regrading generalized forces it has been shown that
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the compressibility equals Var(B)/T . This means that the expectation value ⟨B⟩t should decay from ⟨B⟩λ to ⟨B⟩0,
where

⟨B⟩λ = ⟨B⟩0 + λ
1

T
Var(B) (12.22)

Here we repeat essentially the same calculation, but in the context of a time dependent scenario, considering an
arbitrary observable A. Not caring about commutation relations (”classical limit”) we get

⟨A⟩t = trace [Aρ(t)] = trace
[
A e−iH0tρ(0)eiH0t

]
= trace [A(t) ρ(t=0)] (12.23)

=
trace [A(t) exp (−βHλ)]

trace [exp (−βHλ)]
= ⟨A(t)⟩0 + βλ

[
⟨A(t)B⟩0 − ⟨A(t)⟩0⟨B⟩0

]
+ higher orders (12.24)

Note that here the subscript ”0” does not mean t=0, but λ=0. Initially we have ⟨A⟩t=0 = ⟨A⟩λ, while after a long
time the unperturbed equilibrium value is restored, namely, ⟨A⟩t=∞ = ⟨A(t)⟩0 = ⟨A⟩0. Neglecting the higher orders
terms the linear-response result is

⟨A⟩t = ⟨A⟩0 + λ
1

T
CAB(t) [f(t) is a step function] (12.25)

We see that the re-equilibration mimics the decay of the pertinent correlation function. This can be regarded as a
formal way to justify the “Onsager regression hypothesis” (see later). From here we can derive the classical version
of the Kubo formula. We simply have to notice that the response for a “delta pulse” is simply the derivative of the
response for a “step function”. Accordingly

⟨A⟩t = ⟨A⟩0 − λ
1

T
ĊAB(t) [f(t) is a delta pulse] (12.26)

Using the relation K(τ) = −(1/T )Ċ(τ), that has been derived in the lecture regarding fluctuations, we deduce the
Kubo formula.

====== [12.7] The Onsager regression hypothesis

The Onsager regression hypothesis states that “the average regression of fluctuations should obey the same laws
as the corresponding irreversible process”. The regression scenario is defined as follows. We allow the system to
equilibrate in the presence of an applied field. Then we turn off the field, and watch the time dependence of some
observable. We already demonstrated that the Onsager regression hypothesis can be deduced in the classical limit
via first order-perturbation theory treatment of the response. The quantum generalization of the Onsager regression
formula is known as the fluctuation-dissipation relation, to be discussed in the next lecture.

The ”regression formula” describes the relaxation of the system back to equilibrium. Consider the case of having
one fluctuating variable A. If we assume that its relaxation obeys an exponential decay law Ȧ = −γA, then we can
deduce that the rate of relaxation is

γ = − Ȧ

A

∣∣∣∣∣
t=0

= − Ċ(0)
C(0)

(12.27)

In the next section we describe the departure from equilibrium with a scaled variable XA = A/C(0), and write the

relaxation as Ȧ = −γAAXA with γAA = −Ċ(0). Then, for several variables, it would be possible to get a generalized

formula γij = −Ċij(0) with a reciprocal relation between γij and γji.
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====== [12.8] Onsager reciprocity

Within the Hamiltonian framework the Onsager reciprocity is the statement that response coefficients obey relations
of the type GAB(h) = GBA(−h), where h is the magnetic field. This follows from the observation that they are
related to cross-correlation functions that obey reciprocity as discussed in previous lecture. Below we provide a more
general perspective of Onsager reciprocity, which is not based on Hamiltonian formulation, and hence can be applied
to a wider range of problems in thermodynamics. We no longer assume the canonical Boltzmann ensemble. Instead
we assume that the probability of a ”configuration” is given by

p(φ1, φ2, ...) ∝ e−A(φ1,φ2,...) (12.28)

For example the φj might represent a set of chemical reaction coordinates. Or it can stand for the amount of energy
that is transferred from one body to another body. For an isolated system that is described by a microcanonical
ensemble the function A(φ) is the Boltzmann entropy of a given configuration. For a system in contact with a heat
bath that is described by a canonical ensemble A(φ) = βF (φ), where F is the Helmholtz function.

We use the convention that φ = 0 is the most probable value if there are no constraints nor additional fields. We
assume that the deviations from equilibrium are small, such that A(φ) can approximate by a quadratic expression:

A(φ) =
1

2

∑
ij

Aij φiφj (12.29)

As for the temporal aspect we assume that the fluctuations are characterized by some correlation function:

Cij(t) = ⟨φi(t)φj(0)⟩ (12.30)

The Aij determines the correlations Cij(0) = ⟨φiφj⟩ = (A−1)i,j , but give no information on the temporal aspect. At
this point it is convenient to define conjugate variables Xk = −∂kA = −

∑
iAkjφj , which are like restoring forces,

and to realize that ⟨Xkφj⟩ = −δk,j . Next we assume that the relaxation of the system is described by a linear relation
that reflects the tendency of the system to restore equilibrium

φ̇i =
∑
k

γik Xk [which implies φ̇ = γAφ where both A and γ are ”nice” matrices] (12.31)

From here it follows that ⟨φ̇iφj⟩ = −γij . Thus, as expected, we can derive response coefficients from correlation
functions

γij = −Ċij(τ = 0) (12.32)

Note that the absence of the 1/T prefactor is because we defined the conjugate variables not from the Hamiltonian
but from the ”Action”. The Onsager reciprocity relation follows automatically from the symmetry of the correlation
function. In the absence of magnetic field, assuming time-reversible dynamics, we have Cij(τ) = Cij(−τ), and hence
γij = γji. A non-trivial example for the Onsager reciprocity relation is discussed with regard to the thermo-electric
effect in the kinetic theory lecture.

====== [12.9] The Kubo formula for AC/DC driving

The DC value of the dissipation coefficient is obtained by integration:

ηAB [DC limit] =

∫ ∞

0

KAB(τ) τdτ (12.33)

More generally, an expression for the generalized susceptibility follows from the convolution theorem:

χAB(ω) ≡ FT
[
αAB(τ)

]
=

∫ ∞

−∞

iK̃AB(ω′)

ω − ω′ + i0

dω′

2π
(12.34)
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Of particular interest is the case where A = B is a generalized force that is conjugate to the variation of some
parameter X such that f(t) = (X(t)−X0). This is the case of interest in the study of friction (where ḟ is the

displacement velocity) and in the study of electrical conductance (where ḟ is the electromotive field). From the
definition it follows that K(−τ) = −K(τ), hence K(ω) is pure imaginary, and consequently the friction coefficient is

η(ω) ≡ Im[χ(ω)]

ω
=

1

i2ω
K̃(ω) [Kubo formula for the dissipation coefficient] (12.35)

====== [12.10] The Kubo formula - FGR version

So far we have used versions of the Kubo formula that are ”good” both classically and quantum mechanically. In the
quantum case one can write a version of this formula that involves the non-symmetrized correlation function:

η(ω) =
1

2ℏω

[
S̃(ω)− S̃(−ω)

]
[Quantum FGR version of the Kubo formula] (12.36)

This expression can be deduced directly from the FGR picture as follows. Assume that Hdriving = −f(t)B with
f(t) = f0 sin(Ωt). From the FGR it follows that the rate of energy absorption due to upward transitions is

(f0/2)
2S̃(Ω)Ω. Similarly the rate of energy emission is (f0/2)

2S̃(−Ω)Ω. The net rate of heating is the difference. By

definition it is written as Ẇ = η(Ω)[ḟ2], where [ḟ2] = (1/2)[f0Ω]
2. Hence one deduce the above expression for η.

Below we discuss the non-trivial generalization of the Kubo linear response formalism for the case of Hamiltonian
that depends on several parameters. We start with the dissipation-less quantum adiabatic limit, and continue with
the full linear response analysis.

====== [12.11] Adiabatic response

For an extended presentation see ”Lecture notes in quantum mechanics”. Given an Hamiltonian H(r,p; X1, X2, X3)
that depends on several control parameters, we find the zero order adiabatic basis |n(X)⟩ with eigenenergies En(X).
Then, for a given level, we define in parameter space the ”Christoffel symbols” that are known in this context as
”Berry connection”, and the associated ”curvature field” as follows:

Aj
nm = iℏ

〈
n(X)

∣∣∣∣ ∂

∂Xj
m(X)

〉
(12.37)

Bij
n = ∂iA

j
n − ∂jAi

n (12.38)

We use the notation Aj
n = Aj

nn, and note the following identities:

Aj
nm =

−iℏF j
mn

Em−En
[n ̸= m] (12.39)

Bij
n =

∑
m(̸=n)

2ℏIm
[
F i

nmF j
mn

]
(Em − En)2

(12.40)

If we have 3 control variables it is convenient to use notations suggesting that we can formally regard An as a vector
potential whose rotor Bn is formally like a magnetic field:

X 7−→ (X1, X2, X3) (12.41)

A 7−→ (A1
nn, A

2
nn, A

3
nn) (12.42)

B 7−→ (B23, B31, B12) (12.43)
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With the above definitions the Schrodinger equation can be written as follows:

d

dt
|ψ⟩ = − i

ℏ
H(X(t)) |ψ⟩ (12.44)

We expand the state in the zero order adiabatic basis

|ψ(t)⟩ =
∑
n

an(t) |n(X(t))⟩ (12.45)

and get the equation

dan
dt

= − i
ℏ
(En−Ẋ ·An)an −

i

ℏ
∑
m

Wnmam (12.46)

where

Wnm ≡ −
∑
j

ẊjA
j
nm for n ̸=m, else zero (12.47)

It follows that the first order adiabatic state that is associated with the nth level is

|ψ(t)⟩ = |n(X(t))⟩+
∑
m̸=n

Wmn

En − Em
|m(X(t))⟩ (12.48)

Consequently the first order adiabatic response of a system that has been prepared in the nth adiabatic state is

⟨Fk⟩ = −
∑
j

Bkj
n Ẋj = −B ∧ Ẋ (12.49)

We shall explain in the next section that this corresponds to the geometric part of the response in the Kubo formula.
The Kubo formula contains an additional non-adiabatic (dissipative) term that reflects FGR transitions between
levels.

====== [12.12] Low frequency response

Here we go beyond adiabatic response and discuss both the adiabatic and dissipative terms that are implied by the
Kubo formula. Recall that the Kubo expression for the response kernel is αkj(τ) = Θ(τ) Kkj(τ), whose Fourier
transform is the generalized susceptibility:

χkj(ω) =

∫ ∞

−∞

iK̃kj(ω′)

ω − ω′ + i0

dω′

2π
(12.50)

Taking into account that Re[χkj(ω)] is symmetric with respect to ω we have

Gkj = lim
ω→0

Im[χkj(ω)]

ω
= lim

ω→0

d

dω
χkj(ω) =

∫ ∞

0

Kkj(τ)τdτ (12.51)

The last expression (in time domain) is mentioned for completeness. In practice it is more convenient to proceed in
frequency domain. After some straightforward algebra we get

Gkj =
1

2
lim
ω→0

Im[K̃kj(ω)]

ω
−
∫ ∞

−∞

dω

2π

Re[K̃kj(ω)]

ω2
≡ ηkj +Bkj (12.52)
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We notice that ηkj is a symmetric matrix while Bkj is anti-symmetric. Hence in abstract notation the linear-response
relation can be written as a generalized Ohm law:

⟨Fk⟩ = −
∑
j

Gkj Ẋj = −ηẊ −B ∧ Ẋ (12.53)

This is a generalization of the adiabatic response formula. The additional term takes into account the FGR non-
adiabatic transitions between levels. To see clearly the connection we substitute the spectral decomposition of K̃kj(ω)
and get the following expressions:

χkj(ω) =

∫ ∞

−∞

iK̃kj(ω′)

ω − ω′ + i0

dω′

2π
=

∑
n

f(En)
∑
m

(
−Fk

nmF j
mn

ℏω−(Em−En)+i0
+

F j
nmFk

mn

ℏω+(Em−En)+i0

)
(12.54)

and

ηkj =
1

2
lim
ω→0

Im[K̃kj(ω)]

ω
= −πℏ

∑
n,m

f(En)− f(Em)

En − Em
Fk

nmF j
mnδ(Em − En) (12.55)

Bkj = −
∫ ∞

−∞

dω

2π

Re[K̃kj(ω)]

ω2
=

∑
n,m

(f(En)− f(Em))
−iℏFk

nmF j
mn

(Em − En)2
(12.56)

The Re[] and Im[] are not required because the doubles summation cares for that. The expression for Bkj can be
written in a way that better emphasize the relation to the analysis of the adiabatic response:

Bkj =
∑
n

f(En)
∑

m( ̸=n)

2ℏIm
[
Fk

nmF j
mn

]
(Em−En)2

=
∑
n

f(En)B
kj
n (12.57)
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[13] The fluctuation dissipation relation

====== [13.1] General formulation

The essence of the fluctuation dissipation relation (FDR) is to relate the response of a system to its fluctuations in
equilibrium. In order to derive this relation we have to supply information on the preparation of the system, which
is typically assumed to be canonical. In the classical context there is a useful microcanonical version from which
the canonical version can be derived. The formal derivation of the FDR is based on the generalized detailed balance
relation that allows to express K̃kj(ω) using C̃kj(ω).

We first consider what we call “the AC version” of the FDR. For simplicity we consider the one-variable version: the
driving term in the Hamiltonian is −X(t)F , and our interest is in the observable F that is conjugated to the driving

field X. Recall that K̃(ω) is imaginary, and Im[χ(ω)] = [1/(2i)]K̃(ω). Assuming canonical preparation the detailed
balance relation implies that

Im[χ(ω)] =
1

ℏ
tanh

(
ℏω
2T

)
C̃FF(ω) [FDR, the AC version] (13.1)

What we call “the DC version” of the FDR is obtained by taking the small ω limit of the AC version, which is formally
equivalent to the classical limit (small ℏ). One deduces that the low frequency dissipation coefficient is relate to the
equilibrium intensity of the fluctuations:

η =
νT
2T

, νT ≡
∫ ∞

−∞
⟨F(τ)F(0)⟩T dτ [FDR, the DC version] (13.2)

Note that in the above writing we assume that the equilibrium value of the fluctuating force is ⟨F⟩ = 0, else F should
be re-defined so as to have a zero average.

For completeness we also point out the multi-variable version of the FDR in the DC limit. Here we change notion
and use GAB for the generalized conductance. In the DC case we know from Kubo that G is an integral over τK(τ).
In the classical treatment K(τ) is the derivative of C(τ), hence after integration by parts

GAB =
1

T

∫ ∞

0

CAB(τ) dτ [generalized FDR, classical DC version] (13.3)

Note that the (1/2) prefactor is absent, and that the integration is over positive τ , and that the cross-correlation
function CAB(τ) does not have to be symmetric in time. The asymmetry is responsible for the geometric part of the
conductance matrix.

====== [13.2] The diffusion-dissipation picture

We can illuminate the physics of FD for DC driving using a simple diffusion-dissipation picture. We show below that
the DC energy absorption rate is related to the induced diffusion in energy space. To simplify the presentation we
use a classical language. We can deduce that the driving induce diffusion in energy space from the relation

E(t)− E(0) = −Ẋ
∫ t

0

F(t′)dt′ (13.4)

leading to

⟨(E(t)− E(0))2⟩ = Ẋ2

∫ t

0

∫ t

0

⟨F(t′)F(t′′)⟩dt′dt′′ (13.5)
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where the averaging assumes a microcanonical preparation. Thus we get

δE2(t) = 2DEt (13.6)

where the leading order estimate for the diffusion is

DE =
1

2
Ẋ2

∫ ∞

−∞
⟨F(τ)F(0)⟩E dτ =

1

2
νEẊ

2 (13.7)

On long times we assume that the probability distribution in the democratic variable n = N (E) satisfy a standard
diffusion equation. Transforming to the non-democratic variable E we get

∂ρ

∂t
=

∂

∂E

(
g(E)DE

∂

∂E

(
1

g(E)
ρ

))
(13.8)

where g(E) reflects the ratio between the proper phase-space measure dn and the distorted measure dE. For more
details see [arXiv]. The energy of the system is ⟨H⟩ =

∫
Eρ(E)dE. Taking the time derivative and integrating by

parts, it follows that the rate of energy absorption is

Ẇ =
d

dt
⟨H⟩ = −

∫ ∞

0

dE g(E) DE
∂

∂E

(
ρ(E)

g(E)

)
(13.9)

For a microcanonical preparation ρ(E) = δ(E − E). Substitution and integration by parts leads to

Ẇ =
d

dt
⟨H⟩ =

1

g(E)

d

dE
[g(E) DE ]

∣∣∣
E=E

(13.10)

By definition Ẇ = ηẊ2 and DE = (1/2)νẊ2. Consequently the diffusion-dissipation relation reduces immediately to
the microcanonical version of the fluctuation-dissipation relation:

η =
1

2

1

g(E)

d

dE
[g(E)νE ] (13.11)

The canonical version η = νT /(2T ) can be derived from the integral expression for Ẇ, upon the substitution
ρ(E) = (1/Z)g(E)e−βE . Optionally it can be obtained from the microcanonical version by canonically averaging
over E and performing integration by parts.

====== [13.3] The wall formula

The first prototype application of the FD relation is to the calculation of the friction in the Brownian motion problem.
Consider a gas of particles in a box. The system is driven by moving in it a ”spoon”, or a ”piston” or a ”Brownian
body”.

• The parameter in H(X) represents the position of the spoon.
• The generalized force is the Newtonian force ⟨F⟩ on the spoon.

• The DC linear response relation ⟨F⟩ = −ηẊ describes friction.

• The dissipation rate is Ẇ = ηẊ2.

Our purpose below is to find an expression for the friction coefficient η using the FD relation. For this purpose we
have to calculate the intensity νT of the fluctuations of F at equilibrium, and to use the relation η = νT /(2T ).

http://arxiv.org/abs/cond-mat/9902168
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Due to random collisions of the gas particles, the Brownian body experiences a ”random force” that can be written
as the sum of short impulses:

F (t) =
∑
j

2mvj δ(t− tj) (13.12)

Here tj is the time of the jth collision with velocity vj at the x direction. Note that |vj | ∼ vT , where vT = (T/m)1/2

is the thermal velocity. The rate of collision for N particles is

1

τ0
= N ×

(
A

L2

)
× vT

L
(13.13)

where L3 is the volume of the box that holds the gas particles, and A is the effective area of the moving wall.
Accordingly the intensity of fluctuations is

νT = C̃(ω = 0) =
1

τ0
(mvT )

2 = m2v3T
N

L3
A (13.14)

and for the friction we get

η =
1

2T
C̃(ω = 0) = ρvT ×A (13.15)

where ρ = (N/L3)m is the mass density of the gas particles.

We note that if the dynamics of the Brownian body is described by a Langevin equation, then ν/η = 2T implies that a
canonical equilibrium is reached. For more details see the Langevin section. This was in fact the historical deduction
of the FD relation by Einstein in the context of Brownian motion study.

If the Brownian particle is moving in an incompressible fluid the above result does not apply. Instead the friction is
given by Stokes Law (see “Additional topics / The Kinetic picture / Viscosity”), and we can use the FD relation “in
reverse” in order to deduce the intensity of fluctuations.

====== [13.4] The Drude formula

The second prototype application of the FD relation is to the calculation of electrical conductance. Here we show
how to derive the Drude formula for a gas of classical particles in an EMF driven ring. For an extended discussion of
electrical conductance see the ”additional topics” section of the lecture notes.

We consider a ring driven by an electro-motive force (EMF). The interaction term originates from the kinetic term
[p − (e/L)Φ(t)]2/(2m), where Φ is the flux and I = (e/L)v is the conjugate current. Optionally we can say that the
interaction is −A(t)v, where A(t) is the vector potential and the velocity v is the conjugate variable. Summarizing:

• The parameter in H(Φ) represents the magnetic flux.
• The generalized force is the current ⟨I⟩ in the ring.

• The rate in which the flux is varied determines the EMF = −Φ̇ by Faraday law.
• The DC linear response relation ⟨I⟩ = G× EMF is Ohm law.

• The dissipation rate Ẇ = GΦ̇2 describes Joule heating.

Our purpose below is to find an expression for the conductance G using the FD relation. For this purpose, following
Drude, we postulate what is the velocity-velocity correlation function; calculate the intensity νT of the fluctuations
of I at equilibrium, and use the relation G = νT /(2T ).

Following Drude we assume an exponential velocity-velocity correlation function with a time constant τ0, and RMS
velocity v0, such that the mean free path is ℓ = v0τ0. Hence we deduce that C̃vv(ω) is a Lorentzian. The displacement
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of the particle (x(t)− x(0)) is the integral over the velocity v(t′), hence the variance is ⟨(x(t)− x(0))2⟩ = 2Dt where

D =
1

2
C̃vv(0) =

1

3
v20τ0 (for a 3D sample) (13.16)

For a single particle the current operator is I = (e/L)v, hence the intensity of the fluctuations of the current is
ν = [(e/L)2] 2D. For N classical particles at thermal equilibrium we get νT = N [(e/L)2] 2DT , where DT is calculated
with the thermal velocity that is defined via (1/2)mv2T = (3/2)T . For N Fermions at low temperatures we get
νT = NT (e/L)2 2DF , where NT = T/∆ is the effective number of participating electron at the Fermi energy. This
result has been derived in the lecture about fluctuations. Here ∆ is the mean level spacing at the Fermi energy. Note
that N = (2/3)(ϵF /∆). The diffusion coefficient DF is calculated with the Fermi velocity which is determined via
(1/2)mv2F = ϵF . Either way we get

νT = Neff

( e
L

)2
2Deff = 2

[
N

L2

e2

m
τ0

]
T (13.17)

and for the conductance we get

G[N ] =
1

2T
νT =

N

L2

e2

m
τ0 ≡ A

L
σ (13.18)

where A is the cross section of the ring. As a byproduct of this derivation we see clearly why the conductivity σ is
related to the diffusion coefficient D.

Optionally the Drude expression can be written in a way that allows to make an association with the Landauer
formula of mesoscopic physics. Considering zero temperature Fermi occupation:

G[N ] = e2
(

N

mvFL

)
ℓ

L
≡ e2

2π
M ℓ

L
(13.19)

whereM corresponds to the effective number of open modes. There is a very simple toy model for which the ”expo-
nential” velocity-velocity correlation can be deduced, and hence ℓ/L can be evaluated analytically. Consider a ring
with a single stochastic scatterer that has a transmission g. The current-current correlation function C(t) = ⟨I(t)I⟩
at given energy E can be calculated as detailed in [arXiv]. The procedure is to use the identity ⟨BA⟩ =

∑
a pa⟨B⟩aa,

where where A and B are any two operators, and ⟨B⟩a is the expectation value of B given that A = a. Applying
this rule in our case we get ⟨I(t)I⟩ =

∑
r pr⟨I(t)⟩rIr, where r = (x, v) labels all the possible states of the particle in

the ring, and I = evδ(x) is the current through the measurement point x = 0. The current ⟨I(t)⟩x,v, given that the
particle has been launched at x with velocity v, can be written as a sum of pulses

∑
j qjδ(t− tj). If the measurement

point x = 0 is situated right across the barrier, such that the barrier is at x = ±L/2, one obtains

C(t) =
evE
L
⟨I(t)⟩0,vE = e2

vE
L

∞∑
n=−∞

(2g − 1)|n| δ

(
t−

(
L

vE
n

))
(13.20)

which exhibits exponential decay of correlations as in the Drude model. Assuming low temperature Fermi occupa-
tion, with NT = T/∆ thermal particles, that occupy levels whose spacing is ∆ = πvF /L, we use the FD relation
G = νT /(2T ) and get

G[N ] =
1

∆

∫ ∞

0

C(t) =
e2

2π

(
g

1− g

)
(13.21)

For small g one can neglect the 1−g denominator, and this formula becomes identical with the Landauer formula.
For larger g the two formulas differ. The reason for this difference concerns the geometry: Here we consider the
conductance of a barrier that is integrated into a closed ring, while Landauer concerns the conductance of a barrier
that is connected to open reservoirs. In the latter case the particle cannot circulate multiple times via the barrier.

http://arxiv.org/abs/cond-mat/0603484
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====== [13.5] Conductor in electric field

A straightforward generalization of the driven ring problem applies for an extended piece of metal that in placed in a
time dependent electric field. The electric field is described by a vector potential such that E = −Ȧ. The interaction
term in the Hamiltonian is an extended version of the simplified −A(t)v that we have assumed in previous discussion:

Hint = −
∫
J(x) ·A(x) d3x (13.22)

In linear response theory the current is proportional to the rate in which the parameters are being changed in time.
Regarding the values of A at different points in space as independent parameters the postulated linear response
relation takes the form

⟨J(x)⟩ =
∫

σ(x, x′) E(x′) d3x (13.23)

where σij(x, x
′) is called the conductivity matrix. The FD relation states that the conductivity is proportional to

the temporal FT of ⟨Ji(x, t)Jj(x′, t′)⟩ with respect to the time difference τ = t− t′. The proportionality constant is
1/(2T ) in the DC limit.

====== [13.6] Forced oscillator

Consider a particle that is (say) bounded to a spring. Let us assume that the motion of x(t) ≡ ⟨x̂⟩t obeys the equation
mẍ+ ηẋ+mΩ2x = E , where the external driving is due to an interaction term −E(t)x̂. Accordingly,

• The parameter in H(E) represents an electric field.
• The generalized force is the polarization ⟨x⟩ of the particle.
• The AC linear response relation is ⟨x⟩ = χ(ω) E .

The FD relation implies that x has fluctuations at equilibrium, that are related to the susceptibility:

C̃xx(ω) = ℏ coth
(
ℏω
2T

)
Im
[
χ(ω)

]
, χ(ω) =

1

−mω2 − iηω +mΩ2
(13.24)

Note that the fluctuations of the velocity are C̃vv(ω) = ω2C̃xx(ω). Integrating over ω we get Cxx(0) and Cvv(0), from
which can deduce the average energy of the oscillator. The results are consistent with the canonical expectation in
the limit of zero damping.

====== [13.7] Forced particle

The limit Ω→ 0 of the forced harmonic oscillator corresponds formally to a Brownian particle. In the classical limit
we get for the power spectrum of the velocity:

C̃vv(ω) = (T/m)× 2(η/m)

ω2 + (η/m)2
(13.25)

The area of this Lorentzian is Cvv(0) = T/m, as expected from the canonical formalism. The corresponding velocity-
velocity correlation is Drude type (exponential), with damping constant γ = η/m. The integral over the velocity-
velocity correlation function determines the diffusion coefficient, namely

D =
1

2
C̃vv(0) =

T

η
= µT (13.26)

This is known as the Einstein relation between D and the mobility µ = 1/η. There is an optional shortcut in the
application of the FD relation, that leads directly to the above Einstein relation. Let us write the electric field as
E = −Ȧ. The interaction term is −A(t)v. Accordingly,
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• The parameter in H(A) represents the vector potential.
• The generalized force is the velocity ⟨v⟩ of the particle.
• The DC linear response relation ⟨v⟩ = µ E describes drift motion.

• The dissipation rate Ẇ = µE2 describes Joule heating (per particle).

The FD relation in this notations implies that v has fluctuations at equilibrium, that are related to the mobility
µ. The ”intensity” of the velocity fluctuations is 2D. Hence the classical FD relation implies that the ratio of the
diffusion (D) to the mobility (µ) equals the temperature (T ).

====== [13.8] Duality between friction and mobility

In the “Forced particle” problem we have considered interaction of the type −x̂F (t), and defined the mobility µ,
which is the response of ⟨x̂⟩t to the control field F (t). In the “wall formula” problem we have considered interaction

of the type −x(t)F̂ , and defined the friction coefficient η, which is the response of ⟨F ⟩t to the control parameter x(t).
The two points of view on the system are dual, and with the standard definitions we have the identification µ = 1/η.

====== [13.9] The fluctuations of an Ohmic system

Nyquist Noise.– The FD relation in the electrical context is known as Nyquist theorem. It can be used ”in reverse”
in order to deduce the Nyquist noise ν = 2GT , provided G is known from experiment. It should be clear that in
non-equilibrium conditions we might have extra fluctuations, which in this example are known as shot noise.

Ohmic response.– Sometimes it is convenient to characterize the system by its response, and from this to deduce
the power spectrum of the fluctuations. So we regard K̃(ω) as the input. Inspired by jargon of electrical engineering,
so-called Ohmic response is characterized by a dissipation coefficient η that is independent of ω up to some implicit
high frequency cutoff ωc. It follows that the DC intensity of the fluctuations is ν = 2ηT , and the associated spectral
functions are:

K̃ohmic(ω) = i2ηω (13.27)

C̃ohmic(ω) =
ℏ
2
coth

(
ℏω
2T

)
Im
[
K̃(ω)

]
= ηℏω coth

(
ℏω
2T

)
(13.28)

S̃ohmic(ω) = C̃ohmic(ω)− i
ℏ
2
K̃ohmic(ω) = 2η

ℏω
1− e−ℏω/T

(13.29)

====== [13.10] The fluctuations of the potential in metals

The dielectric constant of a metal is defined via the linear relation between the total electrostatic potential Utotal and
an external test charge density ρext

Utotal =
1

ε(q, ω)

(
4πe2

q2

)
ρext (13.30)

For simplicity we relate here and below to one component q of the fields. The total electrostatic potential is the sum
of the external potential Uext = (4πe2/q2)ρext, and the induced potential Uelct = (4πe2/q2)ρelct, where ρelct is the
total density of the electrons. The dielectric constant can be deduced from the equations of motion ∂ρelct/∂t = −∇J
with J = −(σ/e2)∇Utotal −D∇ρelct that leads to the relation

ρelct =
(σ/e2)q2

iω −Dq2
Utotal (13.31)
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and hence to Utotal = (1/ε)Uext, where

ε(q, ω) = 1− 4πσ

iω −Dq2
. (13.32)

Note that

Im

[
−1

ε(q, ω)

]
=

4πσω

(Dq2 + 4πσ)2 + ω2
≈ ω

4πσ
(13.33)

The interaction between the electrons and an external electrostatic field is described by Hext = Uextρelct which can be
also written as Hext = ρextUelct. The fluctuation dissipation relation expresses S̃[N ](q, ω) using the response function
α(q, ω) that relates Uelct to −ρext which is

α(q, ω) =
4πe2

q2

[
1− 1

ε(q, ω)

]
(13.34)

Using the fluctuation dissipation relation

S̃[N ](q, ω) = Im
[
α(q, ω)

] ( 2

1− e−ω/T

)
(13.35)

we deduce

S̃[N ](q, ω) ≈ e2

σ

1

q2

(
2ω

1− e−ω/T

)
(13.36)

The Ohmic behavior is cut-off by |ω| ≲ 1/τc and |q| ≲ 1/ℓ where ℓ = vFτc is the elastic mean free path, and vF is the
Fermi velocity. Recalling the Einstein relation σ = e2νD, where ν = ∆−1/Ld is the density of states per unit volume,
we can write this result more conveniently as follows:

S̃[N ](q, ω) ≈ 1

νDq2

(
2ω

1− e−ω/T

)
(13.37)

Note that the electron charge e cancels out from this final result for the Nyquist noise spectrum. This well-known
fact is due to the effects of screening: A larger value of the charge would be canceled by a correspondingly stronger
suppression of density fluctuations.



104

System interacting with a bath

[14] The modeling of the environment

====== [14.1] The Born-Oppenheimer Hamiltonian

We first discuss system that is coupled to some other degrees of freedom that can be eliminated using an adiabatic
scheme. This leads to the Born-Oppenheimer picture. It is strongly related to Linear response theory, and the
presentation below is arranged accordingly. Linear response theory is the leading formalism to deal with driven
systems. Such systems are described by a Hamiltonian

H = H(Q,P ;X(t)) (14.1)

where (Q,P ) is a set of canonical coordinates (in case that the Hamiltonian is the outcome of ”quantization”), and
X(t) is a set of time dependent classical parameters (”fields”). For example, X can be the position of a piston. In

such case Ẋ is its velocity. More interesting is the case where X is the magnetic flux through a ring. In such a case
Ẋ is the electro motive force. The Kubo formula allows the calculation of the response coefficients. In the mentioned
examples these are the “friction coefficient” and the “conductance of the ring” respectively.

In the limit of a very slow time variation (small Ẋ), linear response theory coincides with the “adiabatic picture”. In
this limit the response of the system can be described as a non-dissipative “geometric magnetism” effect (this term was

coined by Berry and Robbins). If we increase Ẋ beyond a certain threshold, then we get Fermi-golden-rule transitions
between levels, leading to absorption of energy (“dissipation”). Then linear response theory can be regarded as a
generalization of “Ohm law”.

The Born-Oppenheimer picture allows to deal with Hamiltonians of the type

Htotal = H0(x, p) + H(Q,P ;x) (14.2)

Here we replaced the parameter X(t) by a dynamical variable x. The standard textbook example is the study of
diatomic molecules. In such case x is the distance between the nuclei. It is evident that the theory of driven systems
is a special limit of this problem, which is obtained if we treat x as a classical variable. For presentation purpose let
us consider the Hamiltonian

Htotal =
1

2M

∑
j

p2j + H(Q,P ;x) (14.3)

We define the basis |x, n(x)⟩ = |x⟩ ⊗ |n(x)⟩, and expand the state as

|Ψ⟩ =
∑
n,x

Ψn(x) |x, n(x)⟩ (14.4)

Using

⟨x, n(x)|H|x0,m(x0)⟩ = δ(x−x0)× δnmEn(x) (14.5)

⟨x, n(x)|pj |x0,m(x0)⟩ = (−i∂jδ(x−x0))× ⟨n(x)|m(x0)⟩ = −i∂jδ(x−x0)δnm − δ(x−x0)Aj
nm(x) (14.6)

we deduce that pj 7→ −i∂j −Aj
nm(x), and the Hamiltonian can be written as

Htotal =
1

2M

∑
j

(pj −Aj(x))2 + E(x) (14.7)
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The adiabatic approximation is obtained if one neglects the n ̸= m terms that couple the motion on different energy
surfaces. These couplings are responsible to the dissipation effect.

driven systemdriving source

"slow" DoF

"system" "environment"

"fast" DoF

fluctuations

dissipation Qx

====== [14.2] The bath Hamiltonian

The Hamiltonian of a system that interact with and environment is conveniently arranged as

Htotal = H0(x, p) + H(Q,P ;x) (14.8)

For an interaction with a general (possibly chaotic) environment we write

Htotal = H0(x, p) + xB + E (14.9)

where E = {En} is the bath Hamiltonian that can be written is some diagonal representation, while B = {Bnm}
represents that interaction term with x. Above we assumed that the variation of x is small, so we can linearize the
interaction term with respect to x. More generally we can write

H0(x, p) + U(x,Qα) + Hbath(Qα, Pα) (14.10)

It is convenient to model the environment as a huge collection of harmonic oscillators. For a particle that interacts
with such bath we write

H0(x, p) =
1

2M
p2 + V (x) (14.11)

Hbath(Qα, Pα) =
∑
α

(
Pα

2

2mα
+

1

2
mαω

2
αQα

2

)
(14.12)

where the interaction is either ZCL-type, or more generally of DLD type:

UZCL = −x
∑
α

cαQα (14.13)

UDLD = −
∑
α

cαQαu(x−xα) (14.14)

The subscripts ZCL and DLD refer to the modeling of the environment as discussed in PRE 1997. The ZCL (Zwanzig-
Cladeira-Leggett) model describes an interaction with a uniform fluctuating field (see figure, upper panels), while the

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.1422
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DLD (diffusion-localization-dissipation) model allows the possibility of experiencing disordered fluctuations that are
uncorrelated in space (see figure, lower panels). Another possibility is an interaction with chaotic degrees of freedom
(see figure, right most panel).

V

x

V

V

V

(Q,P)

V

====== [14.3] The bath fluctuations

It is common to model the environment as a huge collection of harmonic oscillators, and to say that the system if
subject to the fluctuations of a field variable F which is a linear combination of the bath coordinates:

F =
∑
α

cαQα =
∑
α

cα

(
1

2mαωα

)1/2

(aα + a†α) (14.15)

For preparation of the bath in state n = {nα} we get

S̃(ω) =
∑
α

∑
±
c2α |⟨nα±1|Qα|nα⟩|2 2πδ(ω ∓ ωα) (14.16)

Using

⟨nα+1|Qα|nα⟩ =

(
1

2mαωα

)1/2 √
1 + nα (14.17)

⟨nα−1|Qα|nα⟩ =

(
1

2mαωα

)1/2 √
nα (14.18)

we get

S̃(ω) =
∑
α

1

2mαωα
2πc2α

[
(1+nα)δ(ω − ωα) + nαδ(ω + ωα)

]
(14.19)

For a canonical preparation of the bath

⟨nα⟩ = f(ωα) ≡
1

eω/T − 1
(14.20)
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It follows that

S̃(ω) = 2J(|ω|)×

{
(1 + f(ω))

f(|ω|)

}
= 2J(ω)

1

1− e−βω
(14.21)

where the lower entry is for ω < 0. To get the final compact expression we used the identity f(−ω) = −(1 + f(ω)),
and defined the spectral density of the bath as

J(ω) =
π

2

∑
α

c2α
mαωα

δ(ω − ωα) [with anti-symmetric continuation] (14.22)

Ohmic response.– To get an Ohmic bath we set J(ω) = ηω, with some cutoff frequency ωc. Assume that the
interaction of the particle with the bath is −xF , as in the ZCL model. Consider a scenario of having a classical
particle that is constrained to move with velocity ẋ. Then we get from the fluctuation-dissipation relation (or from
a direct calculation) that the response of the bath is ⟨F⟩ = −ηẋ. This statement can be generalized for the DLD
interaction, see PRE 1997 for details.

Einstein coefficient.– From the formal calculation it comes out that S̃(ω) satisfies what we call previously the

detailed-balance relation, namely [S̃(−ω)/S̃(ω)] = exp(−ω/T ). It is the time to illuminate the historical perspective
for this terminology. This is related to insights that Einstein had regarding Blackbody radiation. Planck’s formula,
disregarding c/4 factor, is an expression for u(ω;T ), the electromagnetic energy density in space. Consider a two

level atom that is immersed in this electromagnetic bath. It experiences fluctuations S̃(ω) that induce upward and
downward transitions, namely,

w↓ = A+Bu(ω;T ) (14.23)

w↑ = B′u(ω;T ) (14.24)

Here ω > 0 corresponds to the energy of the transition, and (A,B,B′) are the coefficients for spontaneous emission,
stimulated emission, and stimulated absorption. To get equilibrium we expect w↑/w↓ = exp(−ω/T ). Considering
T =∞ we realize that we must have B′ = B. Considering finite temperature we further deduce that the following
relation between “Planck” and “Boltzmann” should hold

u(ω;T ) =
A

B
f(ω;T ) (14.25)

where A and B are temperature independent by definition. The theory of electromagnetic field implies that the A/B
ratio is related to the density of modes:

A

B
= ω g(ω) =

1

π2

(ω
c

)3
(14.26)

From a different perspective we can say that the Einstein detailed-balance argument implies that we can write for
emission S̃(ω) = A[1 + f(ω;T )], and for absorption S̃(−ω) = Af(ω;T ). This is consistent with the direct calculation
of the power spectrum that we have presented previously.

====== [14.4] Spin bath

We consider the fluctuations of an F that arise from a bath of spins

F =
∑
α

cαQα =
∑
α

cα(aα + a†α) (14.27)

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.1422
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Thus Qα is the first Pauli matrix. Its non-trivial matrix elements are

⟨nα−1|Qα|nα⟩ =
√
nα (14.28)

⟨nα+1|Qα|nα⟩ =
√
1− nα (14.29)

In complete analogy we get

S̃(ω) =
∑
α

2πc2α

[
(1−nα)δ(ω − ωα) + nαδ(ω + ωα)

]
(14.30)

For canonical preparation ⟨nα⟩ = f(ωα) where (from here on ℏ = 1)

f(ω) =
1

eβω + 1
(14.31)

f(−ω) =
1

1 + e−βω
= 1− f(ω) (14.32)

Thus we get

S̃(ω) = 2J(|ω|)×

{
(1− f(ω))
f(−ω)

= 2J(ω)
1

1 + e−βω
(14.33)

and

C̃(ω) = J(ω) (14.34)

where we define

J(ω) = π
∑
α

c2αδ(ω − ωα) [with symmetric continuation] (14.35)

For Ohmic bath J(ω) = ν, with some cutoff frequency ωc.

====== [14.5] Spatially extended environment

In this section we describe fluctuations of an extended environment in space and time using the form factor S̃(q, ω).
We define

S̃(q, ω) = FT
[
⟨U(x2, t2)U(x1, t1)⟩

]
(14.36)

where the expectation value assumes that the bath is in a stationary state of its unperturbed Hamiltonian. The force-
force correlation function is obtained via differentiation. In particular the local power spectrum of the fluctuating
force is

S̃(ω) =

∫
dq

2π
q2S(q, ω) (14.37)

and the intensity of the fluctuations at a given point in space is

ν ≡ S̃(ω=0) =

∫
dq

2π
q2S(q, ω=0) (14.38)
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For the one dimensional DLD bath we get

U = −
∑
α

cαQαu(x−xα) (14.39)

Taking into account that the oscillators are independent of each other we get

⟨U(x2, t2)U(x1, t1)⟩ =
∑
α

c2α⟨Qα(t2)Qα(t1)⟩u(x2−xα)u(x1−xα) (14.40)

=

∫
dx

[∑
α

c2α⟨Qα(t2)Qα(t1)⟩δ(x− xα)

]
u(x2−x)u(x1−x) (14.41)

=

[∫
u(x2−x)u(x1−x) dx

]
S(t2 − t1) (14.42)

= w(x2 − x1) S(t2 − t1) (14.43)

Where we have assumed homogeneous distribution of the oscillators, and S(τ) is defined implicitly by the above
equality. With the convention w′′(0) = −1 it is identified as the local force-force correlation function. Consequently
we get for the form factor

S(q, ω) = FT
[
⟨U(x2, t2)U(x1, t1)⟩

]
= w̃(q) S(ω) (14.44)

As an example we may consider the following correlation function:

w(r) = ℓ2 exp

(
−1

2

(r
ℓ

)2)
(14.45)

If the spatial correlation distance is very large we get ZCL model:

w(r) = const− 1

2
r2 (14.46)

leading to

S(q, ω) =
2π

q2
δ(q) S̃(ω) (14.47)

This means that the force is homogeneous in space, and fluctuates only in time, which is effectively the case if a
particle or an atom interacts with long wavelength modes.
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[15] Stochastic picture of the dynamics
There are various ”levels” in which the dynamics of a non-isolated system can be treated. We start with the random
walk problem that can describe the motion of a Brownian particle in the absence of friction. Then we discuss the
Langevin equation where friction is included. The dynamics in the above problem is described by a diffusion equation
and Fokker-Planck equation respectively. More generally we can talk about Master equations and in particular their
simplest stochastic version which is known as rate equations.

====== [15.1] Random walk and diffusion

Consider a particle that can hope from site to site in a stochastic manner. Each step can be represented by a random
number ft = ±a, where a is the lattice constant and t is the integer time index. The total displacement is

x(t)− x(0) =

t∑
t′=0

f(t′) (15.1)

Assuming a stationary stochastic process in which the correlation function is

⟨f(t1)f(t2)⟩ = C(t1 − t2) (15.2)

we get that the variance is

Var[x] =

t∑
t1=0

t∑
t2=0

⟨f(t1)f(t2)⟩ =

t∑
t′=0

+t′∑
τ=−t′

C(τ) ≡
t∑

t′=0

2D(t′) −→ 2Dt (15.3)

where the asymptotic value of the diffusion coefficient is

D =
1

2

∞∑
τ=−∞

C(τ) (15.4)

Most significant is to realize that there is a continuum limit of the random walk problem where the dynamics is
described by the following ”Langevin” equation of motion

ẋ = f(t) ; x(t)− x(0) =

∫
f(t′) dt′ (15.5)

and accordingly

D =
1

2

∫ ∞

−∞
C(τ)dτ =

1

2
C̃(ω=0) (15.6)

There are various generalizations of the random walk problem, where the dwell time or the size of the steps are
random variables, leading in general to sub-diffusive or super diffusive behavior respectively. The latter case is known
as Levi-flight.

Master Equations.– In the random walk problem the stochastic dynamics can be described by an equation for
the time evolution of the probabilities pn to find the particle in site n. This has the form of a rate equation. In the
continuum limit it becomes a diffusion equation for the probability density ρ(x). More generally this type of master
equation is known as the Fokker Planck equation.
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====== [15.2] The Langevin equation

Consider a test particle subject to a homogeneous but fluctuating field of force F , leading to stochastic dynamics that
is described by the Langeving equation mẍ = F . It is convenient to isolate the average (= “friction”) term from F ,
and accordingly to redefine F as a stochastic variable (= “noise”) that has zero average. Consequently the Langevin
equation is written as

mẍ = −ηẋ+ F(t) (15.7)

where F is a stochastic variable that satisfies ⟨F(t)⟩ = 0, and

⟨F(t2)F(t1)⟩ = C(t2 − t1) (15.8)

It is assumed that C(τ) has a short correlation time. We are interested in the dynamics over larger time scales (we
have no interest to resolve the dynamics over very short times). We also note that if F were a constant force, then
the particle would drift with velocity (1/η)F . The coefficient µ = 1/η is called mobility. The equation for the velocity
v = ẋ can be written as

d

dt
e(η/m)tv(t) =

1

m
e(η/m)tF(t) (15.9)

leading to the solution

v(t) =
1

m

∫ t

−∞
dt′e−(η/m)(t−t′)F(t′) (15.10)

We see that τη = m/η is the damping time. After time ≫ τη the initial velocity is forgotten, hence the lower limit
of the integration can be extended to −∞. Evidently the average velocity is zero. We turn now to calculate the
velocity-velocity correlation. ”Squaring” and averaging over realizations we get

⟨v(t2)v(t1)⟩ =
1

m2

∫ t1

−∞

∫ t2

−∞
dt′dt′′e−(η/m)(t1+t2−t′−t′′)C(t′ − t′′) (15.11)

We treat C(t′ − t′′) like a delta function. Then it is not difficult to find that

⟨v(t2)v(t1)⟩ =
1

2ηm
e−(η/m)|t2−t1|

∫ ∞

−∞
C(τ)dτ =

1

m

(
ν

2η

)
e−|t2−t1|/τη (15.12)

There is an optional shorter derivation of the latter result: In Fourier-space the Langevin equation is solved easily
vω = [−imω + η]−1Fω, leading to C̃vv(ω) = [(mω)2 + η2]−1C̃(ω). With C̃(ω) = ν we get after FT the same result.

The correlation function ⟨v(t2)v(t1)⟩ for t1 = t2 = t should be consistent with ⟨ 12mv
2⟩ = 1

2T . From this one deduces
an FD relation ν/(2η) = T with regard to the response characteristics of the bath. The displacement x(t) − x(0) of
the particle is the integral over its velocity v(t′). On the average it is zero, but the second moment is

⟨(x(t)− x(0))2⟩ =

∫ t

0

∫ t

0

dt′dt′′⟨v(t′′)v(t′)⟩ =
ν

η2
× t ≡ 2Dt (15.13)

Hence we have diffusion in space. From the above we deduce the Einstein relation

D

µ
=

ν

2η
= Temperature (15.14)

The two results for D/µ, and for ν/η, can be regarded as special consequences of the general FD relation, as demon-
strated in a previous lecture.
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====== [15.3] The Fokker-Planck Equation

It is natural to ask what is the ”master equation” that describes the time evolution of the probability density ρt(x) in
the case of a diffusion process. We assume that the stochastic equation of motion is ẋ = f(t) with stochastic f(t) that
has a zero average. A trivial generalization is to include a drift term such that the equation is ẋ = u + f(t), where
u is the so-called drift velocity. In order to derive the diffusion equation, note that for any particular realization of
f(t) the probability ρt+dt(xt+dt)dxt+dt must equal ρt(xt)dxt. Since the phase space element preserves its volume one
obtains the Liouville equation (d/dt)ρt(xt) = 0, from which one deduces the continuity equation

∂

∂t
ρt(x) = − ∂

∂x

[
(u+ f(t))ρt

]
(15.15)

From this equation it follows that ρt0+dt can be expressed as an integral that involves ρt′ within t0 < t′ < t0 + dt.
The equation can be solved iteratively. In order to simplify notations we set without loss of generality t0 = 0 and
t = t0 + dt. Consequently we get an expansion that involves nested terms with higher order ∂/∂x derivatives of ρ0.
For sake of clarity we drop the drift term and write

ρt = ρ0 −
∫ t

0

dt′f(t′)
∂ρ0
∂x

+

∫ t

0

dt′f(t′)

∫ t′

0

dt′′f(t′′)
∂2ρ0
∂x2

+ higher order terms (15.16)

Averaging over realizations of f(), and neglecting the higher order terms, one obtains a diffusion equation, to which
we add back the drift term:

∂

∂t
ρt = −u∂ρt

∂x
+D

∂2ρt
∂x2

(15.17)

The neglect of higher order terms, say O(dt3) terms, is justified in the limit where the correlation time goes to
zero. This is sometimes known as the Markovian approximation. It is possible to regard the diffusion equation as a
continuity equation

∂

∂t
ρt(x) = −

∂

∂x
It(x), It(x) = uρt(x)−D

∂ρt(x)

∂x
(15.18)

The expression for the current includes a drift term and a diffusion term. The diffusion term is known as Fick’s law.
Fick’s law can be explained heuristically as reflecting a non-zero net net flow of particles across a section, due to a
difference of concentrations between its two sides. Ignoring the drift, if we have a sample of length L with a steady
state current then

I = −D
L
×
[
ρ(L)− ρ(0)

]
(15.19)

This means that there is a strict analogy here to Ohm law, implying that D is formally like the conductivity of the
chain, and accordingly can be obtained from a resistor network calculation. This observation is useful in analyzing
diffusion is non-homogeneous networks.

The drift velocity is typically related to a the gradient of an external potential, u = −µV ′(x), with a coefficient which
is called mobility. Accordingly we write

I(x) = uρ(x)−D ∂

∂x
ρ(x) = −µρ∂V

∂x
−D∂ρ

∂x
(15.20)

If this expression is applied to a system in canonical equilibrium with ρ(x) ∝ exp(−βV (x)), it follows from the
requirement I(x) = 0 that µ = (1/T )D. This is called Einstein relation. It is useful in semiconductor physics.
For electrons in metal it is common to define the conductivity σ = µρ, and postulate that at equilibrium
ρ(x) =

∫
dEg(E − V (x))f(E − EF ). It follows that the Einstein relation for metals is σ = g(EF )D. Note that

g(EF ) is defined here as the density of one-particle states per unit volume, and it is proportional to ρ/EF .



113

FPE for Langevin.– As in the case of a ”random walk” one can ask what is the ”master equation” that described
the evolution of the probability density ρ(x, p). This leads to the Fokker-Planck equation. The derivation is the
same as in the case of a diffusion process. Here the diffusion is in momentum with a coefficient ν/2. Including the
v(p) = p/m drift in the position, we get the continuity equation

∂

∂t
ρ = − ∂

∂x

[
vρ
]
− ∂

∂p

[
− V ′(x)ρ− ηvρ− ν

2

∂ρ

∂p

]
(15.21)

There are quantum generalizations of the Fokker-Planck equation which we discuss in a separate section.

====== [15.4] The Ito-Stratonovich interpretation

Let us try generalize the derivation of the diffusion equation for a propcess that is described by the stochastic equation

ẋj = uj + gi f(t) (15.22)

⟨f(t)f(t′)⟩ = 2Dδτ (t− t′) (15.23)

where the uj and the gj are some functions of the xi. The “noise” has zero average, namely ⟨f(t)⟩ = 0, and is
characterized by a correlation time τ . Accordingly the δτ (t− t′) has a short but finite width, which is later taken to
be zero. For a particular realization of the noise, the continuity equation for the Liouville distribution ρ(x) reads:

∂ρ

∂t
= −

∑
j

∂

∂xj
[(uj + gif(t)) ρ] (15.24)

We are interested in ρ(x) averaged over many-realizations of the noise. In its current form the continuity equation
cannot be averaged, because ρ and f are not independent variables. To overcome this issue we write for ρ(t+ dt)− ρ(t)
an integral expression as in the previous section. Performing the average over realizations of the noise, non-vanishing
noise-related terms arise from the second-order terms and we end up with the equation

∂ρ

∂t
= − ∂

∂xj

[
ujρ− gjD

∂

∂xi
(giρ)

]
(15.25)

Terms that originate from higher orders can be neglected in the τ → 0 limit. It is common to say that the above
is the Fokker-Plank equation (FPE) that is associated with the stochastic equation according to the Stratonovich
interpretation. Other ”interpretations” (as we explain below) provide a similar equation with a different order of
differentiation. The Stratonovich ordering is [gjD∂i(giρ)], the Ito ordering is [D∂x(gjgiρ)], and the Hanggi ordering is
[gjgiD∂x(ρ)]. All the interpretation are formally equivalent because the difference can be absorbed into the definition
of the drift velocity uj . So one may say that the notion of drift velocity depends on the ”interpretation”. To make
this point physically clear let us consider again random walk on discrete lattice with rates of transitions wx,x′ . One
way is to define the drift velocity at x = 3 as u = w4,3 − w2,3. Another way would be to define it at x ∈ [3, 4] as
u = w4,3 − w3,4. The latter definition implies that the steady state for u = 0 would be uniform in sapce (ρ = const),
and therefore is associated with the ordering of Hanggi. Different definitions can lead to different interpretations. As
a rule of thumb the u = 0 steady state can be used as a guide for making a self-consistent choice.

An observable X is a function of the x variables. In order to obtain an equation of motion for ⟨X⟩, we multiply both
sides of the FPE by X, and integrate over x. Using integration by parts, and dropping the boundary terms, we get
the so-called adjoint equation

d

dt
⟨X⟩ =

〈
uj
∂X

∂xj
+ gi

∂

∂xi

[
gjD

∂X

∂xj

]〉

There are cases where instead of handling FPE for the time evolution of ρ(x), we can replace it by a reduced set
of equations for a complete set of variables that characterize the evolving distribution. For example those variables
might be moments of the distribution, say {⟨x⟩ , ⟨y⟩ ,

〈
x2
〉
, ⟨xy⟩ ,

〈
y2
〉
, ...}.
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====== [15.5] Dynamics according to Smoluchowski and Kramers

The master equation that is associated with the Langeving equation mẍ = −V ′(x)− ηẋ+ F(t) is an Kramers FPE
for ρ(x, p). The stochastic term induces diffusion in momentum with coefficient ν/2, and the friction implies damping
with rate γ = η/m and mobility µ = 1/η. In the absence of external potential the interplay of noise and friction
leads to diffusion in space with coefficient D = ν/(2η2). For strong damping the inertial effect can be neglected and
the stochastic motion can be described by a simpler equation ẋ = −µV ′(x) + µF(t). The master equation that is
associated with this simpler version is known as Smoluchowski diffusion equation for the density ρ(x). The drift
term is −µV ′(x)ρ(x), and the diffusion term has coefficient D = (1/2)µ2ν in consistency with Kramers FPE. The
Smoluchowski diffusion equation can be formally obtained from the Kramers FPE via a leading order expansion in
1/η. The details are described in Section 10 of The Fokker-Planck Equation: Methods of Solution and Applications
by H.Risken.

A major theme in stochastic dynamics is to get the rate of crossing via barrier. This type of activation process
is handled within the framework of so-called transition state theory. In the Smoluchowski approximation (strong
damping) the current is given by

I(x) = −µV ′(x)ρ(x)−D∂ρ(x)
∂x

= −T
η
e−V (x)/T ∂

∂x

[
eV (x)/T ρ(x)

]
(15.26)

We assume that V (x) = 0 away from the barrier, and V (x) = VB at the top of the barrier. To be specific we further
assume that the curvature at the top of the barrier is ωB (inverted harmonic potential). Assuming a steay state
current I(x) = const, we can multiply both sides of the expression above by eV (x)/T , and integrate over interval that
contains the barrier. We get that

I =
T/η∫ xC

xA
eV (x)/T dx

[ρ(xA)− ρ(xC)] ≈
T

η

√
mω2

B

2πT
e−VB/T [ρ(xA)− ρ(xC)] (15.27)

Let us assume that the left region is in fact a well that has curvature ωA around xA, and that initially the particle is
located there in a state of canonical equilibrium. The density ρ(xA) is determined by normalization, while ρ(xC) is
neglected. Changing notation from I to Γ we get an expression for the rate of escape:

Γ =
ωA

2π
×
[
ωB

γ

]
e−VB/T ≡ ωA

2π
× Transmission (15.28)

where ωA/(2π) is known as the attempt frequency. A more refined treatment by Kramers gives the expression

Γ =
ωA

2π
×

√1 +

(
γ

2ωB

)2

−
(

γ

2ωB

) e−VB/T (15.29)

The square brackets in the above formula goes to unity in the formal γ → 0 limit. But this is a fallacy. The expression
is no longer valid in the weak damping regime. The reason for that is that the escape process is no longer limited by
slow diffusion in space (as assumed in the derivation of the Smoluchowski diffusion equation), but rather by the slow
diffusion in momentum. So it is natural to write a reduced diffusion equation in momentum, or more precisely in the
action variable I. Then one deduces that in the weak damping regime the escape rate is given by

Γ =
ωA

2π
×
[
γIB
T

]
e−VB/T (15.30)

where IB is the action at the escape energy, namely, the enclosed phase-space area, which is given by the dxdp integral
over the E < VB region.
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====== [15.6] Rate equations

A rate equation is merely a discrete version of the diffusion or Fokker-Planck equation. It can be regarded as describing
a generalized ”random walk” problem, where the transition rates wnm are not necessarily equal in the n 7→ m and
m 7→ n directions. The state of the system is described by a column vector p whose entries are the occupation
probabilities pn, such that

∑
n pn = 1. The dynamics is determined by the rate equation

dp

dt
= Wp, W = diagonal{−γn}+ offdiagonal{wnm} (15.31)

The off-diagonal elements are the rates of transitions, namely, wnm is the rate of transition from m to n. The
diagonal elements −γi of the W matrix are determined such that each column sums to zero. Accordingly

∑
n pn = 1

is conserved. Optionally the rate equation can be regarded as a continuity equation:

dpn
dt

= −γnpn +
∑

m(̸=n)

wnmpm = −
∑

m( ̸=n)

[wmnpn − wnmpm] (15.32)

The steady state of the stochastic system is found from the equation WpSS = 0. The relaxation modes are the
eigenstates, namely Wψ = −λψ, where {−λ} are the eigenvalues. Note the sign convention, and note that the λ = 0
mode is the steady-state. An arbitrary initial state can be expanded in this basis, and consequently the solution of
the rate equation is

p(t) = eW tp(0) = pSS +
∑
λ ̸=0

Cλ e
−λt ψ(λ) (15.33)

Detailed balance.– In the context of the ”system-bath” paradigm it is common to model the system as a set of
levels {En} with transition rates that reflect detailed balance considerations, such that pSS

n ∝ exp[−En/TB ]. Namely,

wmn

wnm
≡ exp [En;m] = exp

[
En − Em

TB

]
(15.34)

where En;m is called stochastic field. From a mathematical point of view detailed-balance means that any circulation
of the stochastic filed is zero, i.e. E is a conservative field that can be derived from a potential Un. To get equilibrium
the stochastic potential has to be Un = En/T .

A driving noise source or a work agent (see below) can be regarded as a bath that has infinite temperature. More
generally one can regard the average value (wnm + wmn)/2 as the noise which is introduced into the system by the
bath, while the difference (wnm − wmn) is the friction. However this point of view is strictly correct only for constant
density of states. If the level density grows with energy there will be a heating effect even if TB=∞.

Two level/site system.– The two level system is the simplest setup for illustration of equilbration process. The
transition rates are w±. The dynamics is generated by the matrix

W =

(
−w+ w−

w+ −w−

)
(15.35)

Using the notation S = p2 − p1, recaling that p1 + p2 = 1, and using the noation γ = w+ + w− and u = w+ − w− we
get the equation

dS

dt
= −γS + u (15.36)

which implies exponential relaxation towards the equilibrium value Seq = u/γ. If the transitions are induced by a
bath of temperature TB , then Seq corresponds to equilibrium at temperature TB . If we expose the system to so-called
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”work agent”, say a sun that has infinite temperature, then the new rates are w± = w±
B + wA, and the system will

reach an equilibrium-like state that corresponds to a higher temperature. It is important to realize that the steady
state solution features energy flow from the work agent via the system to the bath (and not the other way around).
We say the energy is dissipated.

Three level/site system.– The three-level system is the simplest setup for illustration of non-equilibrium thermo-
dynamics. For example, it can be regarded as a model for a 3-level laser heat engine (see figure) or a mathematically
equivalent rolling marble machine (see figure). The transitions are induced by a hot bath (TH) and by a cold bath
(TC). In the first example photons can be either emitted or absorbed by a work agent (TA =∞). The second example
is further discussed below. Either way the dynamics is generated by the matrix

W =

−γ1 w−
C wA

w+
C −γ2 w−

H

wA w+
H −γ3

 (15.37)

where γ1 = w+
C + wA, and γ2 = w−

C + w+
H , and γ3 = w−

H + wA. The affinity of the cycle is defined as

Φ = E1;2 + E2;3 + E3;1 = ln

[
w13w32w21

w12w23w31

]
=

ωC

TC
− ωH

TH
(15.38)

In order to have a working engine cycle we require Φ > 0, which implies (ωC/ωH) > (TC/TH). The efficiency of the
engine is

η ≡ ωH − ωC

ωH
< 1− TC

TH
(15.39)

The limiting efficiency is the so-called Carnot efficiency. We can solve Wp = 0 to find the probabilities (p1, p2, p3) at
steady state. Then we can find the probability current I(Φ) = (p3 − p1)wA at steady state, and the power output of
the engine (ωH − ωC)I(Φ).

Work agent.– The mechanical rolling marble machine possibly clarifies better the concept of work agent. Here the
task of the engine is to pulls up a weight. The hot bath induce with some probability a transition of the marble
form position ”2” to position ”3”. From there, with some probability, it gets into a car of the roller coaster wheel.
Then is rolls (trapped in the car) to position ”1”. The wheel pulls up the weight. In order to maximize efficiency it
is designed such that the potential energy of the whole system (including the weight) is the same at ”3” and at ”1”.
Consequenltly there is an equal probability to make the ride from ”1” to ”3”. However, considering the full cycle,
the condition Φ > 0 ensures that the net work is positive.

Work agent

Hot bath

Cold bath

(3)

(1)

(2)

ω
C

ω
H

(3)

(2)

(1)
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The N site ring.– The dynamics of a particle in an N site ring is generated by the matrix

W =


−γ1 w−

2 0 ... w+
1

w+
2 −γ2 w−

3 0 ...

0 w+
3 −γ3 w−

3 ...

... ... ... ... w−
N

w−
1 0 ... w+

N −γN

 = −γ1+ w+D + w−D−1 (15.40)

In the second equality we have assumed that all the anti-clockwise rates equal w+, and that all the clockwise rates
equal w−. Accordingly γ = w+ + w−. The matrices D and D−1 generate anti-clockwise and clockwise displacements
respectively. The drift velocity is

d

dt
⟨x⟩ = [w+ − w−]a ≡ v̄ (15.41)

where a is the lattice spacing. The proof is as follows:

d

dt
⟨x⟩ =

d

dt

∑
n

pnxn =
∑
n

xnwnmpm =
∑
n

xn
[
w+pn−1 + w−pn+1 − γpn

]
=
∑
n

[
w+(xn+1 − xn)pn + w−(xn−1 − xn)pn

]
= ... (15.42)

Irrespective of drift, we have diffusion. Say that we start a distribution at x = 0. For simplicity let us assume that
w− = w+ = w. We get that the rate of growth of the spreading is

d

dt

〈
x2
〉

= 2wa2 ≡ 2D (15.43)

More generally, if the drift velocity is non-zero, we can prove that

Var(x) =
〈
x2
〉
− ⟨x⟩2 = 2Dt (15.44)

where D = (1/2)[w+ + w−]a2 is called the diffusion coefficient.

The eigenstates of W are the eigenstates of the displacement operator D, namely momentum states. It is convenient
to write the column representation ψn as a function, namely ψn ≡ ψ(xn). The momentum states are ψ(x) = eikx with
eigenvalues e−ika. Accordingly

λk = γ − w+e−ika − w−eika = γ[1− cos(ka)] + iv̄ sin(ka) (15.45)

Diffusion.– Consider a rate equation that describes stochastic motion along chain, with transition rates wnm = w(r)
that depend on the hopping distance r = (n−m). One can deduce the drift velocity and the diffusion coefficient from
the 1st and 2nd moments of the short-time spreading:

v̄ =
1

2

∞∑
r=−∞

r w(r) (15.46)

D =
1

2

∞∑
r=−∞

r2 w(r) (15.47)

For unbiased near-neighbor hopping with rate w we get v̄ = 0 and D = wa2, where a is the lattice constant. Ac-
cordingly, if we discretize a diffusion equation by slicing the x axis into cells of width a, the effective hopping rate w
should be chosen such that the diffusion coefficient is D = wa2. An optionally procedure to determine v̄ and D is via
a Taylor expansion (in k) of the eigenvalue λk.



118

====== [15.7] Rate equations - formalism

In the remaining subsections of this lecture we discuss the formal aspects of treating rate equations. The state of
the system is described by a column vector p whose entries are the occupation probabilities pn. The dynamics is
determined by the rate equation

dp

dt
= Wp, W = diagonal{−γn}+ offdiagonal{wnm} (15.48)

Probability is conserved hence W has the left eigenvector q0 = {1, 1, ...} with eigenvalue λ0 = 0. The associated right
eigenvector p0 is the steady state. The other eigenvalues −λr of W might be complex, but the real part of λr has
to be positive. This follows from the observation that for t → ∞ only the steady state survives, while all the higher
has to diminish. The proof is based on the Perron-Frobenius theorem with regard to U(t) = exp(W t). If we have
detailed balance (see below) the λr have to be real and positive.

In general we can write the transition rates as follows:

wnm = exp

[
−Bnm +

Em;n

2

]
(15.49)

where B is a symmetric matrix while E is the anti-symmetric part. The latter can be decomposed into conservative
and solenoid components in a unique way:

Em;n = ln

(
wnm

wmn

)
= (Vm − Vn) +

∑
α

α A(α)
m;n (15.50)

Note that the “solenoid gauge” implies that A is uniform along the Cα loop. One can use a non-solenoid gauge, e.g.
to have it non-zero on one bond only. Anyway we fix its gauge and normalized its circulation as follows:∑

x∈Cα

A(α)
x = 1 (15.51)

We can define the height of the barrier relative to the potential reference level:

Bnm = Bnm +
Vn + Vm

2
(15.52)

Then the expression for the transition rates takes the following form:

wnm = exp

[
− (Bnm − Vm) +

1

2

∑
α

α A(α)
m;n

]
(15.53)

The detailed balance condition of having no circulations implies that there exist a diagonal matrix V such that

eV W e−V = W † (15.54)

Then we can perform a “gauge” transformation to a symmetric matrix

W̃ = eV /2W e−V /2, W̃ = W̃ † (15.55)

It follows that all the λr have non-negative real values. If we spoil the detailed-balance the matrix W̃ will becomes
parameterized by the affinities α, and the λr might become complex. Instead of the detailed balance condition we

get eV W (α)e−V = [W (−α)]† or equivalently W̃ (α) =
[
W̃ (−α)

]†
.
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====== [15.8] Rate equations - counting statistics

We add a pointer q with conjugate variable φ such that [q, φ] = i. Now the Hilbert space is spanned by |n, q⟩. The
dynamics of the joint probability distribution pn(q) in the presence of affinity α is generated by the operator

W (α) =
∑
n,m

|n, q +Am;n⟩ wnm ⟨m, q| =
∑
n,m

wnm Ĵ (m;n) ⊗ e−iAm;nφ̂ (15.56)

We change basis to |n, φ⟩ and use the Laplace transform convention iφ 7→ φ, such that

pn(q) ≡
∑
φ

p̃n(φ) e
iφq ≡

∑
φ

pn(φ) e
φq (15.57)

It follows that the moment generating function is

Z(φ) =
〈
e−φq

〉
=
∑
n

pn(φ), with pn(φ) =
∑
q

pn(q)e
−φq, (15.58)

The master equation for pn(φ) is block-diagonal in φ, with matrix

W (α;φ) = wmne
−φAn;m = W (α− 2φ) (15.59)

We no longer have detailed balance but eV W (α;φ)e−V = [W (α;α−φ)]†. The comulants are determined by the
lowest eigenvalue λ0(φ), leading to the NFT

g(φ) = g(α− φ) ; P (−q)/P (q) = exp(−αq) (15.60)

====== [15.9] Rate equations - ergodicity

It is convenient to define a weighted distribution qn = pn/p
0
n, such that qn =uniform once the steady state is reached.

The rate equation takes the form ṗ = Gq, where

Gnm = Wnmp
0
m

∑
n

Gnm =
∑
m

Gnm = 0 (15.61)

Accordingly

q†Gq = −1

2

∑
nm

Gnm(qn − qm)2 (15.62)

For an eigen-mode Gqr = λrp
r and it is implied that λr

∑
n[(p

r
n)

2/p0n] > 0, leading to the conclusion that λr > 0.

In order to characterize the approach to steady state we pick a convex function f(x), for example f(x) = x ln(x) and
define an ergodicity measure

H(t) =
∑
n

p0n f(qn(t)) = e.g. =
∑
n

pn ln(pn/p
0
n) (15.63)

Then we get

d

dt
H(t) = −

∑
n

Gnm [(f(qn)− f(qm))− (qn − qm)f ′(qn)] < 0 (15.64)
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[16] Quantum master equations

====== [16.1] General perspective

The description of the reduced dynamics of a system that is coupled to a bath using a Master equation is commonly
based on the following working hypothesis: (i) The bath is fully characterized by a single spectral function. (ii) There
is a way to justify the neglect of memory effects. The latter is known as the Markovian approximation. In particular it
follows that the initial preparation, whether it is factorized or not, is not an issue. If the master equation is regarded
as exact description of the reduced dynamics it should be of the Lindblad form. Otherwise is should be regarded
merely as an approximation.

There are two common approximation schemes: (A) In the Microscopic regime of atomic physics (e.g. two level atom)
it is assumed that the bath induced rates are much smaller than the level spacing, and a ”secular approximation” is
employed. (B) In the Mesoscopic regime of condense matter physics (e.g. Brownian motion) it is assumed that the
bath is Ohmic, and accordingly its effect can be treated as a generalization of ”white noise”.

====== [16.2] The general Lindblad form

A master equation for the time evolution of the system probability matrix is of Lindblad form if it can be written as

dρ

dt
= −i[H, ρ] +

∑
r

νrLrρL
†
r −

1

2
[Γρ+ ρΓ] , Γ =

∑
r

νrL
†
rLr (16.1)

where Lr are called Lindblad generators, and νr are positive coefficients. An optional style of writing the above
master equation is

dρ

dt
= −i[H, ρ] +

∑
r

νr

[
LrρL

†
r −

1

2
{L†

rLr, ρ}
]
, (16.2)

Lindblad equation is the most general form of a Markovian master equation for the probability matrix. The time
dependence of an expectation values is given by the adjoint equation:

d

dt
⟨Q⟩ = trace

[
Q
d

dt
ρ

]
= trace [QLρ] = trace

[
(L†Q)ρ

]
=
〈
L†Q

〉
(16.3)

If the master equation is written in the Lindblad form, the expression for L†Q is the same as Lρ with H 7→ −H.

====== [16.3] Derivation of the Lindblad form

The most general linear relation between matrices is

ρ̃αβ =
∑
α′β′

K(αβ|α′β′) ρα′β′ (16.4)

This linear transformation can be regarded as “quantum operation” if it preserves the hermiticity and the positivity of
ρ. See [arXiv (lecture 53)] for details. Changing notation to K(αβ|α′β′) = Kαα′,ββ′ one observes that Kαα′,ββ′ should
be hermitian, with non-negative eigenvalues λr. Accordingly we can find a spectral decomposition with a transforma-
tion matrix T (αα′|r). Changing notation to Kr

α,α′ = T (αα′|r) we get the Kraus representation ρ̃ =
∑

r λr[K
r]ρ[Kr]†.

Conservation of probability implies
∑

r λr[K
r]†[Kr] = 1. Looking on the incremental change of ρ during a small time

interval dt, one obtains the Lindblad form of the Master equation.

Detailed derivation of Lindblad form from the Kraus representation can be found in [arXiv]. For completeness we
present here a brief outline. We note that for zero time evolution we have as single non-zero eigenvalue λ(0) = N

http://arxiv.org/abs/quant-ph/0605180
https://arxiv.org/abs/1204.2016
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which is associated with the normalized identity matrix T (αα′|0) = N−1/2δα,α′ ≡ L0, where N is the dimension of
Hilbert space. For a small time step we substitute λ(r ̸=0) ≡ νrdt and T (αα′|r) ≡ Lr. Note that the νr are positive,
and that the L(r ̸=0) are traceless due to the orthogonality with L0. Accordingly

dρ

dt
=

∑
r ̸=0

νrLrρL
†
r + ... (16.5)

The remaining terms in the Lindblad form are the H-term and the Γ-term, that are related to the r = 0 term, and can
be straightforwardly deduced. However we prefer to point out an indirect approach. From the same argument as for
quantum operations it is clear that any linear expression that preserves hermiticity can be written as

∑
r νr[L

r]ρ[Lr]†.

We transform to some general orthonormal basis where one of the operators is F (0) = N−1/21, while by orthonormality
all the other F r are traceless. We get

dρ

dt
=

∑
r,s

ν̃r,s[F
r]ρ[F s]† = −i[H, ρ]− 1

2
{Γ, ρ}+

′∑
r,s

ν̃r,s[F
r]ρ[F s]† (16.6)

where the last summation excludes the ”0” terms. The definition of the Hamiltonian H ∝ i
∑′

r([F
r]− [F r]†) is

implied. Also the Γ-term is implied, and optionally can be deduced from the requirement of obtaining a trace-
preserving map. It is now argued that the sum

∑′
r,s should coincide, upon diagonalization, with the summation over

the Lr terms. Hence the ν̃r,s must have positive eigenvalues νr.

====== [16.4] The Ohmic Master Equation

Consider the the classical Langevin equation. Using canonical phase-space coordinates it reads
ṗ = −V ′(x)− ηv + f(t), where v = ẋ = p/m is the velocity, and f(t) is white noise that has intensity ν. The
corresponding master equation for ρ(x, p) is the Fokker-Planck equation:

dρ

dt
= − ∂

∂x

[
pρ
]
− ∂

∂p

[
− V ′(x)ρ− ηvρ− ν

2

∂ρ

∂p

]
(16.7)

This equation can be written with Poisson Brackets, which are replaced in the quantum context by commutators:

dρ

dt
= −i[H, ρ]− ν

2
[x, [x, ρ]]− iη

2
[x, {v, ρ}] (16.8)

We shall discuss later the general procedure to derived this master equation from an Hamiltonian, where the interaction
with the bath is via the system operator W = x. The same procedure can be uses for any W , leading to

dρ

dt
= −i[H, ρ]− ν

2
[W, [W,ρ]]− iη

2
[W, {V, ρ}]− νη

2
[V, [V, ρ]] (16.9)

where v has been replaced by V = i[H,W ], and where νη = 0. This Ohmic master equation does not have the
Lindblad form (see below), and hence in general complete positivity is not guaranteed. For example: if we consider
the relaxation of a wavepacket in damped harmonic oscillator, then at low temperatures we end up with a sub-minimal
wavepacket that violates the uncertainty relation.

The Ohmic master equation involves the bilinear form
∑

r,s ν̃r,s[F
r]ρ[F s]† with F (1) =W , and F (2) = V , and

ν̃r,s =

(
ν −iη2
iη2 νη

)
(16.10)
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In order for this equation to be Lindblad, the matrix ν̃r,s should be positive. The minimal modification would be to
set a non-zero νη = η2/(4ν). With this substitution, after diagonalization, one ends up with a single Lindbald term
with the generator

L = W + i
η

2ν
V (16.11)

Note that the pre-factors of the three terms in the modified Ohmic version are ν/2 and ν/(2T ) and ν/(32T 2) respec-
tively. These terms can be regarded as arsing from an expansion in powers of (Ω/T ), where Ω is the frequency of the
motion. Accordingly in the high temperature regime the deviation of the standard Fokker-Planck equation from the
Lindblad form is negligible.

We can also go in reverse and provide an “Ohmic interpretation” for each term in the Linblad form. Namely, consider

Lindblad = LρL† − 1

2
L†Lρ− 1

2
ρL†L (16.12)

Writing

L = A+ iB (16.13)

C = i[A,B] (16.14)

D = (1/2){A,B} (16.15)

and using the identity

[A, {B, ρ}] = 1

2
[D, ρ]− i

2
{C, ρ}+AρB −BρA (16.16)

we get the following optional expressions for the Lindblad term:

Lindblad = −i[D, ρ]− 1

2
{A2 +B2, ρ}+AρA+BρB − i[A, {B, ρ}] (16.17)

= −i[D, ρ]− 1

2
[A, [A, ρ]]− 1

2
[B, [B, ρ]]− i[A, {B, ρ}] (16.18)

The first term represents “Lamb shift”, the second and the third are ”noise” induced diffusion terms, and the last is
the “friction” term.

====== [16.5] System-bath interaction

In the following presentation we assume that the full Hamiltonian is

Htotal = H−WF +Hbath (16.19)

where W and F are system and bath operators respectively. Neglecting the interaction, the bath is characterized by
the spectral function

C̃(ω) = FT
[
⟨F (t)F (0)⟩

]
(16.20)

and the convention ⟨F (t)⟩ = 0. Whether the bath is composed of harmonic oscillators or not is regarded by the
working hypothesis as not important. There is a well known discussion of this point in Feynman-Vernon paper.
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The spectral function C̃(ω) is characterized by temperature T and by a cutoff frequency ωc. The latter is assumed

below to be large compared with any other temporal frequency. What we call ”noise” means C̃(−ω) = C̃(ω). What
we call ”finite temperature” means

C̃(−ω)/C̃(ω) = exp(−ω/T ) (16.21)

What we call ”white noise” or ”infinite temperature Ohmic bath” corresponds to C̃(ω) = ν, leading to

C(t) = ⟨F (t)F (0)⟩ = νδ(t) (16.22)

What we call “high temperature Ohmic bath” takes into account that C̃(ω) possesses an antisymmetric component,
which is implied by the Boltzmann ratio. Namely, in order to have the Boltzmann ratio to leading order in ω we have
to add to ν an antisymmetric term ν × [ω/(2T )]. Consequently

C(t) = ⟨F (t)F (0)⟩ = νδ(t) + iηδ′(t) (16.23)

where η = ν/(2T ) is the so called friction coefficient. If we want to have from first principles an expression that holds
for arbitrary ω, we can model the bath as a collection of harmonic oscillators with spectral density J(ω). Then we
get (see “the modeling of the environment” lecture):

S̃(ω) = 2J(ω)
1

1− e−ω/T
(16.24)

This expression is consistent with the above definition of Ohmic bath provided we set J(ω) = ηω. For W := x(t),
meaning that the bath is driven by a particle that has a given velocity ẋ, we get from the fluctuation-dissipation
relation (or from a direct calculation) that the response of the bath is ⟨F ⟩ = −ηẋ.

For a general bath, non-necessarily Ohmic, it is useful to define a bath spectral function via a Fourier-Laplace transform

G(ω) ≡
∫ ∞

0

C(t)e−iωtdt ≡ 1

2
C̃(ω)− i∆(ω) (16.25)

It is also useful to look on W in the interaction picture:

W (t) = eiHtWe−iHt =
∑
n,m

|n⟩Wnmei(En−Em)t⟨m| ≡
∑
Ω

e−iΩtWΩ (16.26)

We can say that the unperturbed system Hamiltonian H induces spectral decomposition W =
∑

ΩWΩ of the in-
teraction. For non-degenerated spectrum W0 =

∑
n |n⟩ ⟨n| is the diagonal part of the W -matrix in the energy rep-

resentation, and each W †
Ω =W−Ω with Ω ̸= 0 corresponds to a pair of coupled levels. Additionally it is useful to

define

W̃ ≡
∫ ∞

0

C(t)W (−t)dt =
∑
Ω

G(Ω)WΩ (16.27)

Coming back to the Ohmic case, it is useful to define a “velocity” operator V = i[H,W ]. Accordingly, in the Ohmic
case, we get

W̃ ≈ ν

2

(
W + i

η

ν
V
)

(16.28)

The notations above are useful for the purpose of writing down the Master equation for the time evolution of the
reduced probability matrix.
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====== [16.6] The Redfield master equation

We first demonstrate the derivation of the Master equation in the case of white noise. The Hamiltonian is
H(t) = H+ f(t)W , were f(t) represents white noise: that means that upon ensemble average ⟨f(t)⟩ = 0, while
⟨f(t)f(t′)⟩ = νδ(t− t′). Given ρ(t0) ≡ ρ, the Liouville von-Neumann equation can be solved iteratively to deter-
mine ρ(t0+dt), where dt is a small time interval. Without loss of generality we set t0=0 and t = t0+dt and get:

ρ(t) = ρ− i
∫ t

0

dt′ [H(t′), ρ]−
∫ t

0

∫ t′

0

dt′dt′′ [H(t′), [H(t′′), ρ]] + ... (16.29)

Averaging over realizations of f(t) all the odd orders in this expansion vanish, while the leading dt contribution comes
only from the zero order term that involves H and from the second order term that involves W . Consequently we get
the following Master equation:

dρ

dt
= −i[H, ρ]− 1

2
ν[W, [W,ρ]] = −i[H, ρ]− 1

2
{Γ, ρ}+ νWρW (16.30)

where Γ = νWW . Note that the first two terms in the second expression generate so called non-Hermitian dynamics
with the effective Hamiltonian Heff = H− (i/2)Γ, while the last term represents “continuous measurement”.

The generalization of the ”white noise” derivation for a system that is coupled to a high temperature Ohmic bath
is straightforward. It is based on the assumption that at any moment the system-bath state is ”factorized”, which
can be justifies if ω−1

c is sufficiently small. We define the interactions-representation of the probability matrix via
ρ(t) ≡ U(t)ρ̃(t)U(−t) where U(t) = e−iHt. The iterative procedures provides for ρ̃(t) the same expansion as in the
previous subsection withH(t) replaced with F (t)W (t), whereW (t) = U(−t)WU(t). Consequently we get the so-called
Redfield equation

dρ

dt
= −i[H, ρ] + W̃ρW +WρW̃ † −WW̃ρ− ρW̃ †W (16.31)

Note that an optional style of writing this expression is with −[W, W̃ρ− ρW̃ †], which reduces to −[W, [W̃ , ρ]] for an

hermitian W̃ . If instead one substitutes the non-hermitian Ohmic expression for W̃ , one obtains the Ohmic master
equation, that contains both noise and friction terms. As noted above, one can add to the Ohmic master equation a
term [V, [V, ρ]] that represents an extra white noise coupled via V .

====== [16.7] The secular approximation

We come back one step, and consider again general bath, not necessarily Ohmic. Instead of assuming small correlation
time, we shall assume weak interaction. Specifically, in atomic physics applications the induced rate of transitions w
becomes much smaller compared with the Rabi-Bloch frequency Ω of the coherent oscillations. Accordingly it is
appropriate to write that master equation in the interaction picture:

dρ̃

dt
= W̃ (t)ρ̃W (t) +W (t)ρ̃W̃ (t)† −W (t)W̃ (t)ρ̃− ρ̃W̃ (t)†W (t) (16.32)

Substitution of the H-induced spectral decomposition of the W -s one observes terms that oscillate with frequencies
Ω+Ω′. We keep only the terms that oscillate with ∼ 0 frequency, and hence do not average to zero. For example, in
W̃ρW we keep only the G(Ω)WΩρW−Ω terms. Consequently we obtain the so called secular approximation

dρ

dt
= −i[H, ρ] +

∑
Ω

[
C̃(Ω) WΩρW

†
Ω −G(Ω) W

†
ΩWΩρ−G(Ω)∗ ρW †

ΩWΩ

]
(16.33)

The imaginary part of G(Ω), aka Lamb shift, can be absorbed into the Hamiltonian H, so we end up with a simple
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sum over Lindblad terms that are weighted by the spectral intensities C̃(Ω), namely,

dρ

dt
= −i[Heff, ρ] +

∑
Ω

C̃(Ω)

[
WΩρW

†
Ω −

1

2
{W †

ΩWΩ, ρ}
]

(16.34)

In particular one should distinguish the Ω ̸= 0 terms that induce inter-level transitions from the Ω = 0 term that
commutes with the Hamiltonian.

====== [16.8] The Pauli master equation

For a system that has no degeneracies (for example a few-level atom) it is natural to write the secular equation in the
H basis. One realizes that the dynamics of the diagonal elements decouples from that of the off-diagonal elements.
Namely, the first term in the secular approximation induces FGR transitions with rates

wnm = C̃(−(En−Em)) |Wnm|2 (16.35)

The corresponding decay constants are Γn =
∑′

m wnm. The ratio wnm/wmn is not unity unless we consider white
noise source (infinite temperature). For finite temperatures the FGR rates favor downwards transitions. Consequently
we get the so-called Pauli rate equation for the probabilities pn

dp

dt
= W p, W =

−Γ1 w12 ...

w21 −Γ2 ...

... ... ...

 (16.36)

For the off-diagonal terms we get

dρnm
dt

=
[
− i(En − Em)− γnm

]
ρnm, [for n ̸= m] (16.37)

with dephasing rates

γnm =
ν

2
|Wnn −Wmm|2 +

1

2
(Γn + Γm) ≡ γφ + Γrlx (16.38)

where the first term originates from the Ω = 0 generator, while the second term originates from the Ω ̸= 0 transitions.
We note that the above results can by derived from heuristic consideration, without going through the heavy machinery
of the master equation formalism. Taking the white noise master equation as a starting point, it is enough to realize
that the elements of ρnm can be classified according to their unperturbed frequencies (En − Em). Elements that are
oscillating with different frequencies, have a negligible cross interaction. In particular the dynamics of the pn, that
have ∼ 0 frequencies, decouple from the dynamics of the off-diagonal elements, leading to FGR picture of transitions.
For the off diagonal terms the reasoning is similar, and there is an additional dephasing γφ due to the noisy detuning.
The finite temperature case is merely a variation on the same reasoning.

====== [16.9] Damped harmonic oscillator

Recall that for a damped particle with coupling −xF , an Ohmic bath has the spectral function J(ω) = ηω, such
that the power spectrum of the fluctuations is S(ω) = 2J(ω)[1 + f(ω)] for ω > 0, and S(ω) = 2J(|ω|)f(|ω|) for ω < 0,
where f(ω) = 1/(eω/T − 1). For a particle of mass m such bath produces friction that leads to damping rate γ = η/m.

Consider the the case of damped Harmonic oscillator of frequency Ω and damping rate γ. Here it is customary to
write the interaction as (2mΩ)−1/2[a+ a†]F . Accordingly the WΩ operators are (2mΩ)−1/2a and its conjugate. In
the secular approximation we get the master equation

dρ

dt
= −i[Ωa†a, ρ] + γ(1 + f(Ω))

[
aρa† − 1

2
{a†a, ρ}

]
+ γf(Ω)

[
a†ρa− 1

2
{aa†, ρ}

]
(16.39)
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The adjoint equation for the expectation value of n = a†a implies relaxation towards equilibrium with damping rate γ,
namely, (d/dt) ⟨n⟩ = −γ[⟨n⟩ − f(Ω)].

====== [16.10] The Bloch equation

Let us consider a two level system. The probability matrix is conveniently expressed using the Bloch vector

S⃗ = (Sx, Sy, Sz), were Sj = ⟨σj⟩, namely,

ρ(t) =
1

2

(
1 + Sxσx + Syσy + Szσz

)
(16.40)

Note that Sz = p+ − p− is the population probability difference, while Sx and Sy are the so called ”coherences”.
Using the adjoint equation one can easily show that the equation of motion for the Bloch vector takes the form

dS

dt
= −Ω⃗× S − γ (S − Seq) (16.41)

where S is regarded as a column vector, and γ = diag(γx, γy, γz) is a diagonal matrix. The first term is generated by

the unperturbed Hamiltonian: We assume H = −(Ω/2)σz, hence Ω⃗ = (0, 0,Ω).

We consider the effect of having a coupling term −WF (t), where F (t) represents a bath or a noise source. Even
without going through the master equation formalism it is clear that consistency with the canonical formalism implies
that the equilibrium states is

Seq =

(
0, 0, tanh

(
Ω

2T

))
(16.42)

We now refer separately to different versions of the Bloch equation. The different versions are distinguished by the
assumptions regarding W , the intensity ν of the F (t) fluctuations, and their spectral characteristics.

Pure dephasing.– The simplest possibility is to have a so-called pure dephasing effect due to a W = σz inter-
action with a white noise source that has an intensity νφ. In the master equation it introduces a diffusion term
(νφ/2)[W, [W,ρ]]. The implication is to have in the Bloch equation

γ[Dephasing] = diag (2νφ, 2νφ, 0) (16.43)

The interaction with the noise commutes with H therefore there is no equilibration in the Sz direction. For this reason
if we replace the noise source by a finite temperature bath, it will have a similar effect.

Ohmic version.– Next in complexity is to consider a high temperature Ohmic bath coupled via W = σx. Using the
notations of the previous sections we have here a ”position” coordinateW = σx and a conjugate ”velocity” coordinate
V = Ωσy. Consequently, after some straightforward algebra we deduce that

γ[Ohmic] = diag (0, 2ν, 2ν) (16.44)

Due to the lack of commutation we have an additional ”friction” term 2ηΩ in the master equation for dSz/dt, which
implies Seq = (0, 0, ηΩ/ν). This is consistent with the canonical expectation, upon the substitution ν/η = 2T , provided
the condition (Ω/T )≪ 1 is satisfied. This is the regime where the high temperature Ohmic approximation is valid.

The dephasing in the Ohmic version of the Bloch equation is non-isotropic in the transverse XY plane. Note that the
Sy transverse component satisfy the equation

S̈y + 2νṠy +Ω2Sy = 0 (16.45)
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which leads to damped frequency Ωeff =
√
Ω2 − ν2. In the secular and NMR versions that we discuss in the next

paragrpahs the dephasing is isotropic in the XY plane and therefore Ω is not affected.

Secular version.– We now consider what comes out, for the same coupling, within the framework of the secular
approximation. Note that this approximation, unlike the high temperature Ohmic version, assumes large Ω. Using
the Pauli equation prescription we realize that the FGR average transition rate is ν. Hence we get

γ[Secular] = diag (ν, ν, 2ν) (16.46)

One observes that due to the perturbative nature of this approximation the transverse relaxation looks isotropic.
Disregarding this artifact, one should keep in mind that the secular approximation allows to consider the case of non-
Ohmic bath. From the general derivation it should be realized that ν in the above equation is determined exclusively
by the C̃(±Ω) components of the fluctuations.

NMR version.– The so called nuclear-magnetic-resonance version of the Bloch equation consider a general W .
Formally it is like to add to the secular version of the previous paragraph an additional pure dephasing effect.
Accordingly we write the Bloch equation as

dSz

dt
= − 1

T1
(Sz − Seq) (16.47)

dSx,y

dt
= −[Ω× S]x,y −

1

T2
Sx,y (16.48)

where the equilibrium value is

Seq =
w+− − w−+

w+− + w−+
(16.49)

as in the secular version. The rates for the diagonal relaxation and for the off-diagonal transverse depahsing are:

1

T1
= w+− + w−+ ≡ γrlx (16.50)

1

T2
=

γrlx
2

+ γφ ≡ γ

2
(16.51)

The pure dephasing rate γφ originates from the diagonal elements of Wnm and hence is formally proportional to

the intensity C̃(0), while the FGR transition rates originate from the off-diagonal elements of Wnm, and hence are

proportional to C̃(±Ω), were Ω = |E+ − E−| is the level spacing.

====== [16.11] Dicke super-radiance

Consider N two-level atoms that each of then interact with a local bath, namely the interaction term is∑
j(1/2)σ

x
j Fj(t). The term “bath” refers here to modes of the electromagnetic field. Each of the atoms satisfies a Bloch

equation. If we sum over over all the Bloch equations we get an equation for the expectation value of S =
∑

j(1/2)σj .

At zero temperature we have only spontaneous emissions and the equation takes the form (d/dt)Sz = −γ[Sz − S]
where S = (N/2). Note that the zero temperature equilibrium state of all spins ”up” corresponds in our convention
to having all the atoms in the lower level.

If the atoms are packed densely, such that all of them interact with the same bath-modes, the interaction term takes
the form

∑
j(1/2)σ

x
j F (t), which equals SzF (t). In the secular approximations we keep only the interaction with

W = S+ = (Sz + iSy). Working out the Lindblad term we get the modified Bloch equation

d

dt
Sz = −γ [(1 + Sz)Sz − (1 + S)S] (16.52)



128

Note that for N = 1 this is the regular Bloch equation. But for N ≫ 1 it can be approximated by

d

dt
Sz = −γ

[
S2
z −

(
N

2

)2
]

(16.53)

Assuming that we start with excited atoms (all spins ”down”), the rate of decay accelerates, and enhanced by factor
N2 during the time when Sz ∼ 0. This is in contrast with normal uncorrelated decay where the enhancement factor
is N . The explicit solution of this equation is

Sz(t) =
N

2
tanh

[
N

2
γ (t− t0)

]
(16.54)

where t0 is the time when Sz crosses zero, and the emission rate attains its maximal super-raddiance value.

====== [16.12] The Bloch equations in Laser physics

The minimal model for a Laser consist of cavity mode that has frequency Ω, and N two-level atoms (below for
simplicity N = 1) that each of them has excitation energy E . The cavity mode is like damped harmonic oscillator,
because it can leak outside with rate κ, and the atoms can decay with rate γ↓, but are also pumped with rate γ↑. We
define γ = γ↑ + γ↓ and f = γ↑ − γ↓. We also define γ⊥ = γ + γφ which includes an optional pure dephasing effect.
Without the κ and the γ-s the system is described by the Hamiltonian

H = Ωa†a+
E
2
σz + g(a† + a)σx (16.55)

where g is the coupling constant, ans in the so-called Rabi model. With the dissipation terms we can derive semi-
classical equations that couple the Bloch dynamics to the damped oscillator:

d

dt
a = −

(
iΩ+

κ

2

)
a− igσx (16.56)

d

dt
c = −

(
iE + γ⊥

2

)
c+ ig(a† + a)σz (16.57)

d

dt
σz = −γσz + f + 2g(a† + a)σy (16.58)

Above we defined the lowering operator c = (1/2)[σx − iσy], such that σx = c† + c. For N atoms the equations are
written with S =

∑
j(1/2)σj . For g = 0 the equations for S are the standard Bloch equations with steady state at

Sz = (N/2)[f/γ]. Below we keep N=1. In the absence of driving (γ↑ = 0) the system relaxes to the normal ground

state (a=0, σz=− 1) provided g <
√
ΩE/2. Otherwise it relaxes to a so-called super-radiant ground state with a ̸= 0.

The term “super-radiant” is a bit misleading here - there are no oscillations, and therefore no radiation is emitted
once the equilibrium is reached. In order to have lasing f should be large enough. Above a threshold value the
steady state is a non-equilibrium limit-cycle (NELC), aka the lasing state. In order to find the NELC it is convenient
to transform the equations into a “rotating frame” such that E ∼ Ω 7→ 0. Counter-rotating (non-resonant) terms in
the Rabbi interaction term are neglected (so-called Tavis-Jaynes-Cummings approximation). Reduced equations are
obtained for the variables n = a†a and Sz = (1/2)σz, namely

d

dt
n = −

[
κ− 2

g2

γ⊥
Sz

]
n (16.59)

d

dt
Sz = −

[
γ + 2

g2

γ⊥
n

]
Sz +

f

2
(16.60)

Note that Sz + n is a constant of motion due to the rotating wave approximation. From (d/dt)n = 0 it follows that
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at steady state either n = 0 or Sz = (1/2)(κγ⊥/g
2). Then from (d/dt)Sz = 0 it follows that at steady state

n[SS] =
f

2κ
− γγ⊥

2g2
(16.61)

The threshold condition f > κγγ⊥/g
2 to get lasing is implied by positivity of the RHS. Below threshold the attractor

is the trivial fixed point at n = 0.

====== [16.13] Many body rate equations

In the simplest approximation quantum master equation are approximated by Pauli master equation with Fermi-
Golden-Rule rates. In the many body context it is more convenient to consider the adjoint equations, which are the
equations of motion for the expectation values, and possibly for higher moments. Below we consider consider many
body rate equations. By this we mean equations of motion for the expectation values of the occupation operators,
namely, nj ≡ ⟨nj⟩. For a closed system

∑
j nj = N is a constant of motion.

Recall that the dynamics of a single particle is described by a master equation (d/dt)pj =
∑

i[Ii→j − Ij→i] where the
probability current from orbital i to orbital j is Ii→j = wjipi. If the transitions are induced by a heat bath we have

wij

wji
= exp[−(εi − εj)/T ] (16.62)

This implies that the system relaxes to a canonical equilibrium. The simplest many-body variation is to consider a
system of classical non-interacting particles. The adjoint equation for the occupations is

d

dt
nj =

∑
i

[Ii→j − Ij→i] (16.63)

where the current of particles that are transported from orbital i to orbital j is Ii→j = wjini. If the transitions are
induced by the same heat bath as in the single particle problem, the detailed balance condition [Ii→j − Ij→i] = 0
implies ni/nj = exp[−(εi − εj)/T )], and therefore we get the Boltzmann distribution nj = f(εj − µ), where µ is
determined by N .

Bosons / Fermions.– Consider a system of Bosons or a system of Fermions. The transitions are induced by a

bath that couples to operators that induce hopping, namely, a†
jai. The Fermi-Golden-Rule implies that the current

of particles that are transported from orbital i to orbital j is

Ii→j = wji (1± nj) ni (16.64)

In order to address all possibilities in a compact way we can interpret ± as ”0” for classical particles, ”+1” for Boson,
and ”-1” for Fermion. The detailed balance condition [Ii→j − Ij→i] = 0 is satisfied by the Boltzmann / Bose / Fermi
distributions respectively, namely nj = f(εj − µ), where µ is determined by N . To prove this statement note that
the respective distribution functions satisfy the identity

f(ω)

1± f(ω)
= exp[−ω/T ] (16.65)

Condensation.– Here it is appropriate to recall that condensation of Bosons in the ground orbital is implied if N
is large. From dynamical point of view the ground orbital, labeled by ”0”, is characterized by w0,j > wj,0 for any j.
The Bose function is finite for any εj > µ, and any excess amount of particles forces µ = ε0, such that i = 0 can
accommodate an arbitrary large number of them.
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Additional topics

[17] The kinetic picture

====== [17.1] The Boltzmann distribution function

The number of one particle states within a phase space volume is dN = d3rd3p/(2πℏ)3. The occupation of this phase
space volume is:

dN ≡ f(r,p)
drdp

(2πℏ)3
(17.1)

where f(r,p) is called Boltzmann distribution function. In equilibrium we have

f(r,p)
∣∣∣
eq

= fβ(ϵp − µ) (17.2)

where fβ(ϵ − µ) is either the Bose or the Fermi occupation function, or possibly their Boltzmann approximation. If
we use (r,v) with measure d3rd3v instead of (r,p) we have

f(r,v) =
( m

2π

)3
f(r,p) (17.3)

By integrating over r and over all directions we get the velocity distribution

F (v) = L3 × 4πv2
( m

2π

)3
fβ

(
1

2
mv2 − µ

)
(17.4)

If we use Boltzmann approximation for the occupation function and express µ using N and T we get

F (v) = N
( m

2πT

)3/2
4πv2 e−

1
2mv2/T (17.5)

We note that

N =
x drdp

(2πℏ)3
f(r,p) =

∫
dϵg(ϵ)fβ(ϵ− µ) =

∫
F (v)dv (17.6)

====== [17.2] The Boltzmann equation

The Liouville equation for ρ(r, p) is merely a continuity equation in phase space. It can be written as (d/dt)ρ = 0
where d/dt unlike ∂/∂t is the total derivative reflecting the change in the occupation of a phase space cell. The
Boltzmann equation for f(r, p) is formally identical to the Liouville equation in the absence of collisions, and with
collisions becomes (d/dt)ρ = g(r, p), where g(r, p) is the net rate in which particles are generated at (r, p) due to
collisions. Accordingly the Boltzmann equation is

[ ∂
∂t

+ v(p) · ∂
∂x

+ F(r) · ∂
∂p

]
f(r, p) = g[f ](r, p) (17.7)

where v(p) = p/m is the dispersion relation, and F(r) = −V ′(r) is the force due to some external potential. The
notation emphasizes that g(r, p) is a functional of the f distribution. It can be written as a difference of ingoing
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and outgoing fluxes due to collisions. A distribution that gives zero in the left hand side of the Boltzmann equation
is called ”ergodic”. A distribution that gives g = 0 at any point is ”locally equilibrated”. If a locally equilibrated
distribution is ergodic it constitutes an equilibrium solution of the Boltzmann equation. If there is no such solution,
one can look for a non-equilibrium steady-state (NESS) solution. For example, assume that g is different in two
regions of space reflecting the presence baths with different temperatures; In such case there exists a non-ergodic
NESS solution that features a non-zero heat transport through the system.

The standard Boltzmann expression for g(r, p) is based on 2body collision mechanism and ”molecular chaos” assump-
tion. See chapter 4 of Huang or chapter 14 of Reif. Assuming that collisions from (p, p0) to (p1, p2) has the same
rate as that of the inverse process, it takes the following form:

g[f ](r, p) =

∫
dp0
2π

∫
dp1
2π

dp2
2π

w(p, p0|p1, p2) [f(r, p2)f(r, p1)− f(r, p0)f(r, p)] (17.8)

The gas reaches a steady state in accordance with the Boltzmann H theorem. The formal solution for the steady state
implies the Maxwell-Boltzmann distribution for the velocities. A much simpler expression for g(r, p) appears while
discussing electronic transport. See chapters 16 and 13 of Ashcroft & Mermin. Here the scattering mechanics is
1body collisions of the electrons with the lattice, leading to

g[f ](r, p) =

∫
dp′

2π
[wp,p′f(r, p′)− wp′,pf(r, p)] (17.9)

Note that the first term, that corresponds to electrons that are scattered out of the phase-space cell can be written
as −(1/τ)f where (1/τ) ∼ Nw is the decay rate to the other N cells to which it is connected. If we assume that f
is close to an equilibrium solution fβ , it follows that we can approximate f ≈ fβ in the ingoing flux term. Hence we
get the so called relaxation time approximation:

g[f ](r, p) ≈
fβ(ϵ(p)− µ)− f(r, p)

τ
(17.10)

NESS is reached if β(r) or µ(r) or the potential V (r) are non-uniform in space. Using the relaxation time approxi-
mation the solution that can be written schematically as follows:

f(t) =

∫ t

−∞

[
1

τ
exp

(
− t− t

′

τ

)]
fβ(t

′) dt′ (17.11)

where fβ(t
′) stands for fβ that is evaluated at the point (r(t′), p(t′)), which is connected by an unscattered classical

trajectory that ends at (r, p) at time t. Assuming τ to be small one can easily obtain a first order solution. For
example, in the presence of a constant field of force the NESS becomes

f(r, p) ≈ fβ − τFv(p)
(
−∂fβ
∂ϵ

)
(17.12)

where fβ(ϵ(p)) is the the equilibrium occupation function that is calculated in the absence of the field. The above
NESS carries current whose density can be written as J = σF , where

σ =

∫
d3p

(2π)3
τv2

(
−∂fβ
∂ϵ

)
=

∫
g(ϵ)

V
τv2

[
−f ′β(ϵ− ϵF )

]
=

g(ϵF )

V
v2F τ (17.13)

The last equalities assume a zero temperature Fermi occupation. If g(ϵ) corresponds to the standard dispersion
relation, one obtains the Drude formula σ = (N/V)(τ/m).
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====== [17.3] The calculation of incident flux

Given N gas particles that all have velocity v we can calculate the number of particles that hit a wall element per unit
time (=flux), and also we can calculate the momentum transfer per unit time (=force). Using spherical coordinates,
such that normal incidence is θ=0, one obtains (per unit area):

J =
x

|θ|<π/2

[
dΩ

4π

N

V

]
v cos(θ) =

[
1

2

∫ 1

0

cos(θ)d cos(θ)

]
N

V
v =

1

4

(
N

V

)
v (17.14)

P =
x

|θ|<π/2

[
dΩ

4π

N

V

]
v cos(θ) 2mv cos(θ) =

[∫ 1

0

cos2(θ)d cos(θ)

]
N

V
mv2 =

1

3

(
N

V

)
mv2 (17.15)

If we have the distribution F (v) of the velocities, or optionally if we are provided with the one-particle energy
distribution, the total flux is given by an integral:

Jincident =

∫ ∞

0

1

4

(
F (v)dv

V

)
v =

∫ ∞

0

1

4

(
g(ϵ)f(ϵ)dϵ

V

)
vϵ (17.16)

Similar expression holds for the pressure P , where one can make the identification ϵ = (1/2)mv2ϵ , and recover the
familiar Grand canonical result.

====== [17.4] Blackbody radiation

The modes of the electromagnetic field are labeled by the wavenumber k and the polarization α. For historical reasons
we use k instead of p for the momentum and ω instead of ϵ for the energy. The dispersion relation is linear ω = c|k|.
The density of modes is

g(ω)dω = 2× V

(2πc)
3 4πω

2dω (17.17)

Recall that the canonical state of oscillators can be formally regarded as the grand canonical equilibrium of µ = 0
Bose particles, with the occupation function

⟨nkα⟩ =
1

eβωkα − 1
≡ f (ωkα) (17.18)

For the total energy E we have

E =

∫ ∞

0

ωdω g(ω) f(ω) = V

∫ ∞

0

dω
1

π2c3

(
ω3

eβω − 1

)
(17.19)

For the total number of photons N we have a similar integral but without the ω. The calculation of the incident flux
of photons is the same as in the case of non-relativistic particles with v 7→ c. Accordingly we get J = (1/4)(N/V)c.
For the flux of energy we just have to replace N by E, namely

Jincident[energy] =
1

4

(
E

V

)
c =

∫ ∞

0

dω

[
1

4π2c2

(
ω3

eβω − 1

)]
(17.20)

The calculation of the pressure (the rate of momentum transfer) is again the same as in the case of non-relativistic
particles, with mv 7→ (ω/c). Accordingly we get for the radiation pressure P = (1/3)(E/V). Note that P 7→ (1/2)P
for an absorbing surface.
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Considering the thermal equilibrium between blackbody radiation from the environment, and an object that has an
absorption coefficient a(ω), detailed balance consideration implies that

Jemitted (ω) dω = a(ω)Jincident (ω) dω (17.21)

It follows that we can regard a(ω) as the emissivity of the object. From here we get the Planck formula

Jemitted(ω) = a(ω)
1

4π2c2

(
ω3

eβω − 1

)
=

a(ω)

4π2c2
T 3

(
ν3

eν − 1

)
(17.22)

where ν = ω/T is the scaled frequency. See Figure below taken from hyperphysics. Note that the peak of a blackbody
radiation is at ν ≈ 3 which is known as Wein’s law. Upon integration the total blackbody radiation is

Jemitted =

∫ ∞

0

Jemitted(ω)dω =
1

4π2c2

(
π4

14

)
T 4 (17.23)

which is know as Stephan-Boltzmann Law. Note that the units of the flux are energy per time per unit area.

====== [17.5] Viscosity

We have considered above the rate in which momentum is transferred to a wall due to ballistic collisions, leading
to pressure. There is a somewhat related effect that is called ”viscosity”. It is simplest to explain the concept with
regard to a gas whose particles have a short mean free path ℓ, such that in equilibrium each gas particle has a diffusion
coefficient D = vT ℓ, where vT is the mean thermal velocity.

Assume out of equilibrium steady state in which the average velocity of the gas particles u(x, y, z) is in the x direction
but its magnitude varies in the y direction. Due to the transverse diffusion there will be momentum transfer across
the y = 0 plane, which implies that the ”upper” flow exerts a force on the ”lower” region of the fluid (which is possibly
the boundary layer of some ”wall”). We shall explain below that if the area of the boundary region is A, then the
force on it is given by the ”stress-shear equation”

Fx = µA
dux
dy

(17.24)

where µ = ρD is the viscosity, and ρ is the mass density of the gas. The argument goes as follows: Divide the y axis
into layers of width dy. Define w, the effective transition rate of particles between layers, such that D = wdy2. Define
the flow of momentum between layers as J(y) = [(ρdy)ux(y)] × w. Hence J(dy/2) − J(−dy/2) is the rate in which
momentum is transferred across y = 0, leading to the desired result.

http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html
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====== [17.6] The Navier-Stokes equation

The variables that describe the flow of gas or liquid are the density ρ(x) and the velocity u(x). More generally we
can add also temperature θ(x), and heat flow q(x). The conservation laws are for the mass, for the momentum, and
for the energy. The conservation of the momentum corresponds to the second law of Newton, and formally can be
written as [Huang section 5.3]:

duj

dt
≡

(
∂

∂t
+
∑
i

ui
∂

∂xi

)
uj =

1

ρ

[
fj −

∑
i

∂

∂xi
Pij

]
(17.25)

Following the presentation as in Huang one obtains the Navier-Stokes equation [Wiki] that describes the rate of
change of the velocity due to momentum transfer in a vicious fluid:

ρ
du

dt
= f −∇

(
P − µ

3
∇ · u

)
+ µ∇2u (17.26)

This equation is valid in the hydrodynamics regime, where the mean free path is small compared with to the geometrical
length scales. The left hand side contains the non-linear advection term ρu∂u. The right hand side includes a scalar-
pressure term, a viscosity term, and an optional external force term (say gravitation). For incompressible flow
∇ · u = 0, and Euler equation is obtained if the viscosity is completely neglected.

Sound waves.– As we see the viscosity µ plays a major role in the Navier-Stokes equation. Usually the equation is
supplemented by a continuity equations for the mass, and for the energy, as well as by state equation that connects
the pressure to the density. For compressible fluid with state equation P [ρ] the continuity and the Euler equations
for the time derivatives of ρ(x) and u(x) lead to sound waves with velocity

c2 =
∂P

∂ρ
=

κ

ρ
(17.27)

Once the viscosity is taken into account we get damping of the sound waves.

Stokes law.– A well known result that comes from the Navier-Stokes equation is Stokes law for the friction force
that is exerted on a spherical object of radius R

F [stick] = −6πµR vsphere, F [slip] = −4πµR vsphere (17.28)

Roughly the shear is 1/R while the area is R2 hence the friction is proportional to R. and not to the area of the
sphere. The traditional version (with 6π) assumes no-slip boundary conditions. The way to derive it is to find the
velocity field for the flow, and then to use the “stress-shear equation” of the previous section. For details see Huang
p.119 and [PRA 1970]. The optional derivation via a microscopic theory is quite complicated, see [JCP 1980].

Reynolds number.– The dimensionless parameter in the Navier-Stokes equation, that characterizes the effect of
the non-linear advection term, is the Reynolds number. Consider for example the Stokes problem where the relevant
length scale is R, we define

Re =
ρv

µ
R =

v

D
R (17.29)

The original geometry that has been considered by Reynolds refers to flow of fluid via a pipe, whereR is the downstream
distance from the injection point. A boundary layer of thickness δ ∼

√
Dt is formed near the walls of the pipe after

a distance that correspond to t = R/v. The flow is laminar for R < δ. At larger downstream distance (larger “Re”)
the laminar flow becomes turbulent. This turbulence arises due to loss of stability of the laminar solution. Let us
consider again the motion of a spherical particle in a fluid. The derivation of Stokes law assumes small “Re”. For
large “Re” a turbulent region is formed downstream after the particle, and the v dependence of the friction acquire
a fractional exponent. If the translation velocity v is very large the friction becomes proportional to v2 reflecting
transfer of momentum by a moving wall. This should be contrasted by Stokes law that assumes a flow that curves
smoothly to the sides of the sphere, and joins at the back of the sphere.

http://en.wikipedia.org/wiki/Navier-Stokes_equations
http://link.aps.org/doi/10.1103/PhysRevA.2.2005
http://link.aip.org/link/doi/10.1063/1.439952
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====== [17.7] Heat current in an open geometry

If we have two boxes, and energy can flow from one to the other, then the heat current IQ is simply defined as the
rate IE of energy transfer. But if we have a flow IN of particles, this simple-minded reasoning fails. We would like to
argue below the the correct expression for the heat current is

IQ = IE − µIN (17.30)

This expression assumes quasi-reversible flow at well-defined temperature and energy.

First of all let us recognize that if dN particles are transferred from one box to a second box, then the transferred
energy dE is ill-defined. Assume for example that the particles are transferred from an energy level ϵ of the first
box to an energy level with the same energy at the second box. We get dE = ϵdN , which depends on the arbitrary
energy reference of the Hamiltonian, and hence has no physical significance. But the quantity dQ = dE − µdN is well
defined. The question is how to rationalize that dQ is indeed the appropriate definition of heat in this context.

Referring to a box with N particles and energy E, recall that a quasi-reversible process of taking an energy −dE
requires the supply of energy dQ = dE, such as dS = 0. In complete analogy, taking −dN particles with energy −dE
requires compensation dQ = dE − µdN , such as dS = 0.

====== [17.8] Thermo-electricity

Reversible flow through a conductor, with no entropy production due to Joule heating, can be regarded as a sequence
of quasi-reversible transfer operations. In each step heat is taken or given to the phonons that dwell in another
segment of the conductor. The net results is the transfer of energy from one end of the wire to the other end. This
reasoning leads to the Mott analysis of the Peltier effect. The expression for the electric current of charge e carriers
has the form (Here J = I/A is the current density):

JN = e2E
∫
c(ε) (−f ′(ε− µ)) dε ≡ σE (17.31)

while the expression for the quasi-reversible heat current is

JQ = eE
∫
(ε− µ) c(ε) (−f ′(ε− µ)) dε ≡ σSTE (17.32)

Using the Sommerfeld expansion we deduce that

IQ =
π2

3e
T 2 c

′(µ)

c(µ)
IN ≡ ST IN (17.33)

where Π = ST is known as the Peltier coefficient, and S is known as the Seebeck coefficient. From the Onsager
reciprocity it follows that the same coefficient appears in the linear relation between JN and ∇T , as explained below.

A thermal current can be induced also by a temperature gradient. Namely,

JQ = −κ∇T (17.34)

A relation between the thermal conductivity κ and the electrical conductivity σ can be obtained using a straightforward
extension of the above derivation (see Ashcroft p.253):

κ =
π2

3e2
Tσ (17.35)
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This is known as the Wiedemann-Franz law. We now turn to discuss more general circumstances of having both
potential and temperature gradients.

Considering again two boxes, the natural thermodynamic coordinates are φN = (N2 −N1)/2 and φE = (E2 − E1)/2.
Note that JN = φ̇N and JE = φ̇E . In the continuum limit J is re-defined as the current density. The entropy function
is S(XN , XE), and the conjugate variables are XN = ∇(µ/T ) and XE = −∇(1/T ). Here ∇ is the difference, while in
the continuum limit it becomes the gradient. The linear relation between the Js and the Xs involves coefficients γij .
The Onsager relation is invariant under the change of reference energy, but the coefficients depend on the choice of
reference. It is customary to set µ = 0 as the reference. Accordingly the linear relations take the following form:

JN = γσ
E
T

+ γ⊥∇
(
1

T

)
≡ σ (E − S∇T ) (17.36)

JQ = γ⊥
E
T

+ γκ∇
(
1

T

)
≡ σST E − κ∇T (17.37)

From the JN equation it follows that in an open circuit a temperature gradient would be balanced by an induced
electric field E = S∇T . This is called Seebeck effect.
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[18] Scattering approach to mesoscopic transport
The most popular approach to transport in mesoscopic devices takes the scattering formalism rather than the Kubo
formalism as a starting point, leading to the Landauer and the BPT formulas. We first cite these formulas and then
summarize their common derivation. This should be compared with the Kubo-based derivation of the previous section.

====== [18.1] The Buttiker-Pretre-Thomas-Landauer formula

We assume without loss of generality that there are three parameters (x1, x2, x3) over which we have external control,
where x3 = Φ is the AB flux. The expression for the current IA that goes out of lead A, assuming DC linear response,
can be written as

IA = −
∑
j

G3j ẋj (18.1)

where −ẋ3 = −Φ̇ is the EMF, and therefore G33 is the conductance in the usual sense. The Büttiker-Prétre-Thomas-
Landauer formula for the generalized conductance matrix is

G3j =
e

2πi
trace

(
PA

∂S

∂xj
S†
)

(18.2)

In particular for the Ohmic conductance we get the Landauer formula:

G33 =
e2

2πℏ
trace(tt†) (18.3)

In order to explain the notations in the above formulas we consider a two lead system. The S matrix in block form
is written as follows:

S =

(
rB tABe

−iϕ

tBAe
iϕ rA

)
(18.4)

where r and t are the so called reflection and transmission (sub) matrices respectively. We use the notation ϕ = eΦ/ℏ.
In the same representation, we define the left lead and the right lead projectors:

PA =

(
0 0

0 1

)
, PB =

(
1 0

0 0

)
(18.5)

The following identity is important in order to obtain the Landauer formula from the BPT formula:

dS

dΦ
= i

e

ℏ
(PASPB − iPBSPA) = i

e

ℏ
(PAS − SPA) = −i e

ℏ
(PBS − SPB) (18.6)

Another important identity is

trace(PASPBS
†) = trace(tt†) =

∑
a∈A

∑
b∈B

|tab|2 (18.7)

The trace() operataion is over the channel indexes.
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====== [18.2] Floquet theory for periodically driven systems

The solution of the Schrodinger equation

i
dψ

dt
= Hψ (18.8)

with time independent H is

|ψ(t)⟩ =
∑
E

e−iEt|ψ(E)⟩ (18.9)

where the stationary states are found from

H|ψ(E)⟩ = E|ψ(E)⟩ (18.10)

Consider now the more complicated case where H depends periodically on time. Given that the basic frequency is ω
we can write

H(t) =
∑
H(n)e−inωt (18.11)

The solution of the Schrodinger equation is

|ψ(t)⟩ =
∑
E

∞∑
n=−∞

e−i(E+nω)t|ψ(E,n)⟩ (18.12)

where the Floquet states are found from

∑
n′

H(n−n′)|ψ(E,n′)⟩ = (E + nω)|ψ(E,n)⟩ (18.13)

and E is defined modulo ω.

====== [18.3] The Floquet scattering matrix

In scattering theory we can define a Floquet energy shell E . The solution outside of the scattering region is written as

|ψ(t)⟩ =
∞∑

n=nfloor

e−i(E+nω)t
∑
a

[
Aan

1
√
van

e−ikanr −Ban
1
√
van

e+ikanr

]
⊗ |a⟩ (18.14)

where van and kan are determined by the available energy E + nω. The current in a given channel is time dependent,
but its DC component is simply

∑
n(|Ban|2 − |Aan|2). Therefore the continuity of the probability flow implies that

we can define an on-shell scattering matrix

Bbnb
=
∑
ana

Sbnb,ana
Aana

(18.15)

We can write this matrix using the following notation

Sbnb,ana
≡ Snb−na

b,a (E + naω) (18.16)



139

Unitarity implies that

∑
bnb

|Sbnb,ana
|2 =

∑
bn

|Sn
b,a(E)|2 = 1 (18.17)

∑
ana

|Sbnb,ana
|2 =

∑
an

|Sn
b,a(E + nω)|2 = 1 (18.18)

If the driving is very slow we can use the adiabatic relation between the incoming and outgoing amplitudes

Bb(t) =
∑
a

Sba(X(t)) Aa(t) (18.19)

where Sba(X) is the conventional on-shell scattering matrix of the time independent problem. This relation implies
that

Sn
b,a(E) =

ω

2π

∫ ω/2π

0

Sba(X(t)) einωtdt (18.20)

For sake of later use we note the following identity

∑
n

n|Sn
b,a|2 =

i

2π

∫ 2π/ω

0

dt
Sba(X(t))

∂t
Sba(X(t)) (18.21)

====== [18.4] Current within a channel

Consider a one dimensional channel labeled as a. Let us take a segment of length L. For simplicity assume periodic
boundary condition (ring geometry). If one state n is occupied the current is

Ia,n =
e

L
va,n (18.22)

If several states are occupied we should integrate over the energy

Ia =
∑
n

fa(En)Ia,n =

∫
fa(E)

LdE

2πva

( e
L
va

)
=

e

2π

∫
fa(E)dE (18.23)

For fully occupied states withing some energy range we get

Ia =
e

2π
(E2 − E1) =

e2

2π
(V2 − V1) (18.24)

If we have a multi channel lead, then we have to multiply by the number of open channels.

====== [18.5] The Landauer formula

Consider a multi channel system which. All the channels are connected to a scattering region which is described by
an S matrix. We use the notation

gba = |Sba|2 (18.25)
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Assuming that we occupy a set of scattering states, such that fa(E) is the occupation of those scattering states that
incident in the ath channel, we get that the outgoing current at channel b is

Ib =
e

2π

∫
dE

[(∑
a

gbafa(E)

)
− fb(E)

]
(18.26)

Inserting 1 =
∑

a gba in the second term we get

Ib =
e

2π

∫
dE

[∑
a

gba(fa(E)− fb(E))

]
(18.27)

Assuming low temperature occupation with

fa(E) = f(E − eVa) ≈ f(E)− f ′(E)eVa (18.28)

we get

Ib = −
e2

2π

∑
a

gba (Vb − Va) (18.29)

which is the multi channel version of the Landauer formula. If we have two leads A and B we can write

IB = − e
2

2π

[∑
b∈B

∑
a∈A

gba

]
(VB − VA) (18.30)

Form here it follows that the conductance is

G =
e2

2π

∑
b∈B

∑
a∈A

gba =
e2

2π
trace(PBSPAS

†) (18.31)

where PA and PB are the projectors that define the two leads.

====== [18.6] The BPT formula

Assuming that the scattering region is periodically driven we can use the Floquet scattering formalism. The derivation
of the expression for the DC component Ib of the current in channel b is very similar to the Landauer case, leading to

Ib =
e

2π

∫
dE

[(∑
a,n

|Sn
ba(E − nω)|2fa(E + nω)

)
− fb(E)

]
(18.32)

=
e

2π

∫
dE

[∑
a,n

|Sn
ba(E − nω)|2(fa(E − nω)− fb(E))

]
(18.33)

=
e

2π

∫
dE

[∑
a,n

|Sn
ba(E)|2(fa(E)− fb(E + nω))

]
(18.34)

≈ e

2π

∫
dE

[∑
a,n

nω|Sn
ba(E)|2(−f ′a(E))

]
=

e

2π

[∑
a,n

nω|Sn
ba(E)|2

]
(18.35)
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In the last two steps we have assumed very small ω and zero temperature Fermi occupation. Next we use an identity
that has been mentioned previously in order to get an expression that involves the time independent scattering matrix:

Ib = i
e

2π

∑
a

ω

2π

∫ 2π/ω

0

dt
Sba(X(t))

∂t
Sba(X(t)) (18.36)

which implies that the pumped charge per cycle is

Q = i
e

2π

∮
dX

∑
b∈B

∑
a

Sba(X)

∂X
Sba(X) ≡ −

∮
G(X)dX (18.37)

with

G(X) = −i e
2π

∑
b∈B

∑
a

Sba(X)

∂X
Sba(X) = −i e

2π
trace

(
PB

∂S

∂X
S†
)

(18.38)

Note: since S(X) is unitary it follows that the following generator is Hermitian

H(X) = i
∂S

∂X
S† (18.39)

The trace of a product of two hermitian operators is always a real quantity.

====== [18.7] BPT and the Friedel sum rule

If only one lead is involved the BPT formula becomes

dN = −i 1
2π

trace

(
∂S

∂X
S†
)
dX (18.40)

where dN is the number of particles that are absorbed (rather than emitted) by the scattering region due to change
dX in some control parameter. A similar formula known as the Friedel sum rule states that

dN = −i 1
2π

trace

(
∂S

∂E
S†
)
dE (18.41)

where N (E) counts the number of states inside the scattering region up to energy E. Both formulas have a very
simple derivation, since they merely involve counting of states. For the purpose of this derivation we close the lead
at r = 0 with Dirichlet boundary conditions. The eigen-energies are found via the equation

det(S(E,X)− 1) = 0 (18.42)

Let us denote the eigenphases of S as θr. We have the identity

i
∑
r

δθr = δ[ln detS] = trace[δ lnS] = trace[δSS†] (18.43)

Observing that a new eigenvalue is found each time that one of the eigenphases goes via θ = 0 we get the desired
result.
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[19] The theory of electrical conductance

====== [19.1] The Hall conductance

The calculation of the Hall conductance is possibly the simplest non-trivial example for adiabatic non-dissipative
response. The standard geometry is a 2D ”hall bar” of dimension Lx × Ly. In ”Lecture notes in quantum mechanics”
we have considered what happens if the electrons are confined in the transverse direction by a potential V (y). Adopting
the Landauer approach it is assumed that the edges are connected to leads that maintain a chemical potential
difference. Consequently there is a net current in the x direction. From the ”Landau level” picture it is clear that the
Hall conductance Gxy is quantized in units e2/(2πℏ). The problem with this approach is that the more complicated
case of disorder V (x, y) is difficult for handling. We therefore turn to describe a formal Kubo approach. From now
on we use units such that e = ℏ = 1.

We still consider a Hall bar Lx × Ly, but now we impose periodic boundary condition such that ψ(Lx, y) = eiϕxψ(0, y)
and ψ(x, Ly) = eiϕyψ(x, 0). Accordingly the Hamiltonian depends on the parameters (ϕx, ϕy,ΦB), where ΦB is the
uniform magnetic flux through the Hall bar in the z direction. The currents Ix = (e/Lx)vx and Iy = (e/Ly)vy
are conjugate to ϕx and ϕy. We consider the linear response relation Iy = −Gyxϕ̇x. This relation can be written as
dQy = −Gyxdϕx. The Hall conductance quantization means that a 2π variation of ϕx leads to one particle transported
in the y direction. The physical picture is very clear in the standard V (y) geometry: the net effect is to displace all
the filled Landau level ”one step” in the y direction.

We now proceed with a formal analysis to show that the Hall conductance is quantized for general V (x, y) potential.
We can define a ”vector potential” An on the (ϕx, ϕy) manifold. If we performed an adiabatic cycle the Berry phase
would be a line integral over An. By Stokes theorem this can be converted into a dϕxdϕy integral over Bn. However
there are two complementary domains over which the surface integral can be done. Consistency requires that the
result for the Berry phase would come out the same modulo 2π. It follows that

1

2π

∫ 2π

0

∫ 2π

0

Bndϕxdϕy = integer [Chern number] (19.1)

This means that the ϕ averaged Bn is quantized in units of 1/(2π). If we fill several levels the Hall conductance is
the sum

∑
nBn over the occupied levels, namely

Gyx =
∑

n∈band

∑
m

2Im[IynmI
x
mn]

(Em − En)2
(19.2)

If we have a quasi-continuum it is allowed to average this expression over (ϕx, ϕy). Then we deduce that the Hall
conductance of a filled band is quantized. The result is of physical relevance if non-adiabatic transitions over the gap
can be neglected.

====== [19.2] The Drude formula

The traditional derivation of the Drude formula is based on the Boltzmann picture. Optionally one can adopt a
Langevine-like picture. The effect of the scattering of an electron in a metal is to randomize its velocity. This
randomization leads to a statistical ”damping” of the average velocity with rate 1/tℓ. On the other hand the electric
field accelerates the particle with rate eE/m. In steady state the drift velocity is vdrift = (eE/m)tℓ, and the current
density is J = (N/V)evdrift leading to the Drude conductivity σ = (N/V)(e2/m)tℓ. Consequently the conductance of
a ring that has a length L and a cross-section A is

G =
A

L
σ =

N

L2

(
e2

m

)
tℓ = e2

(
N

mvFL

)
ℓ

L
≡ e2

2πℏ
M ℓ

L
(19.3)

where ℓ = vF tℓ is the mean free path at the Fermi energy, andM is the effective number of open modes. Below we
would like to derive this result formally from the FD relation.
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The canonical version of the FD relation takes the form G = [1/(2T )]νT , where ν is the intensity of the current
fluctuations and G is the conductance. This is known as Nyquist version of the FD relation. One way to go is to
calculate νT for a many body electronic system, see how this is done in a previous lecture. But if the electrons are non-
interacting it is possible to do a shortcut, relating the conductance of the non-interacting many body electronic system
to its single particle fluctuations. This can be regarded as a generalizations of the canonical Nyquist formula. The
generalization is obtained by re-interpretation of f(E) as the Fermi occupation function (with total occupation N),
rather than probability distribution. Assuming a Boltzmann occupation one obtains G[N ] = [N/(2T )]νT . A similar
generalization holds for a microcanonical occupation, from which one can deduce results for other occupations. In
particular for low temperature Fermi occupation of non-interacting particles one obtains:

G[N ] =
1

2
g(EF ) νEF

=
1

2
g(EF )

( e
L

)2 ∫
⟨v∥(t)v∥(0)⟩dt =

( e
L

)2
g(EF )D0 (19.4)

The crossover from the high temperature ”Boltzmann” to the low temperature ”Fermi” behavior happens at
T ∼ EF . Assuming exponential velocity-velocity correlation function with time constant τ0, such that the mean
free path is ℓ = vF τ0, we get D0 = vF ℓ. disregarding numerical prefactors the density of states can be written as
g(EF ) = (L/vF )M, whereM is the number of open modes. From here we get the Drude formula

G[N ] =
( e
L

)2
g(EF )D0 =

e2

2πℏ
M ℓ

L
(19.5)

Relating to electrons that are moving in a lattice with static disorder, the mean free path can be deduced from the
Fermi Golden Rule (FGR) picture as follows: Assuming isotropic scattering, the velocity-velocity correlation function
is proportional to the survival probability P (t) = e−t/tℓ . Ignoring a factor that has to do with the dimensionality
d = 2, 3 of the sample the relation is

⟨v(t)v(0)⟩ ≈ v2E P (t) = v2Ee
−|t|/tℓ (19.6)

where the FGR rate of the scattering is

1

tℓ
= 2πϱE|Umn|2 =

πa

vE
W 2 (19.7)

In the last equality we have used |Unm|2 ≈ [a/(ML)]W 2, where a is the lattice spacing, and W is the strength of the
disorder. Disregarding prefactors of order unity we deduce the so-called Born approximation for the mean free path:

ℓ = vEtℓ ≈
1

a

(vE
W

)2
(19.8)

====== [19.3] Formal calculation of the conductance

The DC conductance G of a ring with N non-interacting electrons is related by Kubo/FD expression to the density

of one-particle states g(EF ) at the Fermi energy, and to the C̃vv(ω ∼ 0) fluctuations of velocity. The latter can be
deduced semi-classically from the velocity-velocity correlation function, or from the matrix elements of the velocity
operator using the quantum-mechanical spectral decomposition. Optionally one can use path integral or Green
function diagrammatic methods for the calculation.

Let us summarize some optional ways in which the Kubo/FD expression for the Ohmic conductance can be written.
If we use the spectral decomposition with pn = g(EF )

−1δ(En − EF ), we get

G =
1

2
g(EF )

( e
L

)2
C̃vv(0) = π

∑
nm

( e
L

)2
|vnm|2 δ(En − EF ) δ(Em − En) (19.9)
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It is implicit that the delta functions are ”broadened” due to the assumed non-adiabaticity of the driving, else we
shall get vanishing dissipation. The calculation of G is the adiabatic regime requires a more careful treatment, and
possibly goes beyond LRT. As long as the broadening is large compared to the level spacing, but small compared with
other energy scales, the result is not too sensitive to the broadening parameter, and small corrections are commonly
ignored, unless the ring is very small. Schematically the above expression can be written as

G = πℏ g(EF )
2
( e
L

)2
|vnm|2 = πℏ g(EF )

2 |Inm|2 (19.10)

where the bar indicates that an average should be taken over the near diagonal matrix elements of the velocity operator
near the Fermi energy. A somewhat more fancy way to write the same is

G = π trace
[
I δ(EF −H) I δ(EF −H)

]
=

1

π
trace [I Im[G(EF )] I Im[G(EF )]] (19.11)

where G = 1/(E−H+ i0) is the one-particle retarded Green function. This opens the way to formal calculations that
are based on path integral or diagrammatic methods.

For a chaotic ring, the dispersion |Inm|2 of the off-diagonal matrix elements is equal, up to a symmetry factor, to the
dispersion of the diagonal matrix elements. Note that Inn = −∂En/∂Φ. It is common to use the notation ϕ = (e/ℏ)Φ.
Hence one obtains the Thouless relation:

G[N ] = factor× e2

ℏ
× 1

∆2

∣∣∣∣∂En

∂ϕ

∣∣∣∣2 (19.12)

where the numerical factor depends on symmetry considerations, and ∆ is the mean level spacing at the Fermi energy.
There is a more refined relation by Kohn. The Thouless relation is a useful staring point for the formulation of the
scaling theory for localization.

====== [19.4] Conductivity and Conductance

Consider a ring geometry, and assume that the current is driven by the flux Φ. In order to have a better defined
model we should specify what is the vector potential A(r) along the ring. We can regard the values of A at different
points in space as independent parameters (think of tight binding model). Their sum (meaning

∮
A(r)·dr) should be

Φ. So we have to know how Φ is ”distributed” along the ring. This is not just a matter of ”gauge choice” because the
electric field E(r) = −Ȧ(r) is a gauge invariant quantity. So we have to know how the voltage is distributed along
the ring. However, as we explain below, in linear response theory this information is not really required. Any voltage
distribution that results in the same electro-motive force, will create the same current.

In linear response theory the current is proportional to the rate in which the parameters are being changed in time.
Regarding the values of A at different points in space as independent parameters, linear response theory postulates
a linear relation between ⟨J(r)⟩ and E(r′) that involves the conductivity matrix σ(r, r′) as a kernel. The current
density has to satisfy the continuity equation ∇ · ⟨J(r)⟩ = 0. From here it follows that if we replace A by A+∇Λ(r),
then after integration by parts we shall get the same current. This proves that within linear response theory the
current should depend only on the electromotive force −Φ̇, and not on the way in which the voltage is distributed.
Note that A 7→ A+∇Λ(r) is not merely a gauge change: A gauge transformation of time dependent field requires a
compensating replacement of the scalar potential (which is not the case here).

In the following it is convenient to think of a device which is composed of ”quantum dot” with two long leads, and
to assume that the two leads are connected together as to form a ring. We shall use the notation r = (r, s), where r
is the coordinate along the ring, and s is a transverse coordinate. In particular we shall distinguish a left ”section”
r = rB and a right section r = rA of the two leads, and we shall assume that the dot region is described by a scattering
matrix Sab.

We further assume that all the voltage drop is concentrated across the section r = rB, and we measure the current
IA through the section r = rA. With these assumptions we have two pairs of conjugate variables, which are (ΦA, IA)
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and (ΦB, IB). Note that the explicit expression for the current operator is simply

IA = e
1

2
(v δ(r − rA) + δ(r − rA)v) (19.13)

where v is the r component of the velocity operator. We are interested in calculating the conductance, as define
through the linear response relation ⟨IA⟩ = −GABΦ̇B. The Kubo expression takes the form

GAB =
ℏ
π

trace [IA Im[G] IB Im[G]] (19.14)

This is yet another version of the Kubo formula. Its advantage is that the calculation of the trace involves integration
that is effectively restricted to two planes, whereas the standard version (previous section) requires a double integration
over the whole ”bulk”.

====== [19.5] From the Kubo formula to the Landauer formula

Before we go on we recall that it is implicit that for finite system Im[G] should be ”smeared”. In the dot-leads setup
which is described above, this smearing can be achieved by assuming very long leads, and then simply ”cutting” them
apart. The outcome of this procedure is that G± is the Green function of an open system with outgoing wave (ingoing
wave) boundary conditions. As customary we use a radial coordinate in order to specify locations along the lead,
namely r = ra(r), with 0 < r <∞. We also define the channel basis as

⟨r, s|a, r⟩ = χa(s) δ(r − ra(r)) (19.15)

The wavefunction in the lead regions can be expanded as follows:

|Ψ⟩ =
∑
a,r

(
Ca,+e

ikar + Ca,−e
−ikar

)
|a, r⟩ (19.16)

We define projectors P+ and P− that project out of the lead wavefunction the outgoing and the ingoing parts
respectfully. It follows that P+G+ = G+, and that P−G+ = 0, and that G−P− = 0 etc. We define the operator

ΓA =
∑
a∈A

|a, rA⟩ℏva⟨a, rA| (19.17)

= δ(r − rA)⊗
∑
a∈A

|a⟩ℏva⟨a| (19.18)

where va = (ℏka/mass) is the velocity in channel a. The matrix elements of the second term in Eq.(19.18) are

ΓA(s, s
′) =

∑
a∈A

χa(s) ℏva χ∗
a(s

′) (19.19)

The operator ΓB is similarly defined for the other lead. Note that these operators commute with the projectors P±.
It is not difficult to realize that the current operators can be written as

IA = (e/ℏ)[−P+ΓAP
+ + P−ΓAP

−] (19.20)

IB = (e/ℏ)[+P+ΓBP
+ − P−ΓBP

−] (19.21)

Upon substitution only two (equal) terms survive leading to the following version of Kubo formula:

GBA =
e2

2πℏ
trace

[
ΓB G+ ΓA G−] (19.22)
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There is a well known expression (Fisher-Lee) that relates the Green function between plane A and plane B to the S
matrix. Namely:

G+(sB, sA) = −i
∑
a,b

χb(sB)
1√
ℏvb

Sba
1√
ℏva

χ∗
a(sA) (19.23)

Upon substitution we get

GBA =
e2

2πℏ
∑
a∈A

∑
b∈B

|Sba|2 (19.24)

This is the Landauer formula. Note that the sum gives the total transmission of all the open channels.

====== [19.6] From the Kubo formula to the BPT formula

It should be emphasized that the original derivations of the Landauer and the BPT formulas are based on a scattering
formalism which strictly applies only in case of an open system (= system with leads which are connected to reservoirs).
In contrast to that Kubo formula is derived for a closed system. However, it can be shown that by taking an appropriate
limit it is possible to get the BPT formula from the Kubo formula. Namely,

ηkj =
ℏ
π

trace
[
F k Im[G+] F j Im[G+]

]
(19.25)

=
ℏ
4π

trace

[
∂S†

∂xi

∂S

∂xj

]
(19.26)

B3j = − iℏ
2π

trace
[
F 3 (G++G−) F j Im[G+]

]
(19.27)

=
e

4πi
trace

[
PA

(
∂S

∂xj
S† − ∂S†

∂xj
S

)]
+ intrf (19.28)

So the sum is

G3j =
e

2πi
trace

(
PA

∂S

∂xj
S†
)

(19.29)

For more details see Phys. Rev. B 68, 201303(R) (2003).
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[20] Irreversibility and Nonequilibrium processes

====== [20.1] The origin of irreversibility

Assume an isolated system with HamiltonianH(X), whereX is a set of control parameters that determine the “fields”.
For simplicity assume that at t = 0 the system is in a stationary state. A driving process means that X = X(t) is
changed in time. In particular a cycle means that X(tfinal) = X(t=0). A driving process is called reversible is we
can undo it. In the latter case the combined process (including the ”undo”) is a closed cycle, such that at the end
of the cycle the system is back in its initial state. Generally speaking a driving cycle becomes reversible only in the
adiabatic limit. Otherwise it is irreversible.

Micro-reversibility.– One should not confuse reversibility with micro-reversibility. The latter term implies that the
mechanical evolution has time reversal symmetry (TRS). This TRS implies that if we could reverse that state of the
system at some moment (and also the magnetic field if exists) then ideally the system would come back to its initial
state. This is called Lodschmit Echo. In general it is impossible to reverse the state of the system, and therefore in
general micro-reversibility does not imply reversibility!

Sudden process.– The irreversibility of typical systems is related to chaos. The simplest example is free expansion.
In this example X is the location of a piston. At t = 0 the system is prepared in an ergodic state, say a microcanonical
state on the energy surface H(XA) = E. The piston is moved outwards abruptly form XA to XB . After some time
of ergodization the system will become ergodic on H(XB) = E. There is no way to reverse this process.

Slow driving.– The more interesting scenario is a slow cycle. Using the assumption of chaos it can be argued that
at the end of the cycle the state will occupy a shell around H(XA) = E. If the system is driven periodically (many

cycles), the thickness of this shell grows like
√
DEt with DE ∝ Ẋ2. This diffusion in energy space implies (with some

further argumentation) monotonic increase of the average energy. Thus irreversibility implies dissipation of energy:
The system is heated up on the expense of the work which is being done by the driving source.

Non equilibrium steady state.– Another reason for irreversibility is having a ”frustrated” system that is connected
to several baths, each in different temperature, as in the prototype problem of heat conduction. Typically, after a
transient, a steady state is reached. But this steady state is not a canonical thermal equilibrium state. With such
configuration one can associate a rate of ”entropy production”.

====== [20.2] The notion of Entropy

The term ”entropy” is used in a diverse way. In order to avoid confusion we distinguish between the Shanon entropy,
the Von-Neumann entropy, the Boltzmann entropy, and the Thermodynamic entropy. All are calculated by the same
look-alike formula S = −

∑
r pr log(pr), but the context and the meaning of the pr is in general not the same.

Information entropy:– If {pr} are the probabilities to get an output r of a measurement, then S provides a
measure for the uncertainty which is involved in our knowledge of the statistical state. This point of view that regards
S as an information measure has been promoted by Shanon. In the quantum mechanical context we define “classical
state” as implying 100% certainty for any measurement. Such states do not exist in Nature. Rather the states of
minimum uncertainty in N dimensional Hilbert space are the pure states, and they have finite information entropy.
See quant-ph/0401021. They should be contrasted with the worst mixed state whose entropy is S = log(N).

Von-Neumann entropy:– Von-Neumann has used a Shanon look-alike formula in order to characterize the purity
of a quantum state. In the Von-Neumann definition, the pr are the weights of the pure states in the mixture, namely
S = −trace[ρ ln ρ], where ρ is the probability matrix. It is important to realize that the Von-Neumann entropy has
nothing to do with the theory of irreversibility. If we consider for example the free expansion of a wavepacket in a big
chaotic box, then we have S = 0 at any moment. Still it is nice that the Von-Newman entropy of a canonical state
coincides with the thermodynamic definition.

Boltzmann entropy:– Boltzmann has defined S is a way that allows to discuss irreversibility. The idea was to
divide the phase space of a system into small cells, and to characterize the statistical state in this representation
using S. Then Boltzmann has proposed that S has the tendency to increase with time if the motion is chaotic (a
variation of this idea is the “H theorem” that refers to the reduced one-particle description of a gas particle). The

http://arxiv.org/abs/quant-ph/0401021
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same reasoning can be carried out in the quantum mechanical context where the division of Hilbert space into “cells”
is defined by a complete set of projectors. Obviously in the latter context recurrences imply that the dynamics of a
quantized closed chaotic system looks irreversible only for a limited time.

Thermodynamic entropy:– Using ideal gas thermometer we have identified the empirical temperature θ = 1/β,
a notion that is postulated by the 0th law of thermodynamics. Later we have shown that d̄Q =

∑
r dprEr has an

integration factor T = 1/β as postulated in thermodynamics (see below). Thus we can write d̄Q = TdS, where the
definition of S is implied. It turns out that S(T ) = −trace[ρeq ln ρeq], where ρeq is a canonical state of temperature T .

====== [20.3] Digression - traditional thermodynamics

Let us discuss how ”entropy” is defined in ”traditional thermodynamics” without relaying on Statistical Mechanics.
The first step is to characterize any thermal state by empirical temperature θ. This is well defined by the ”zeroth
law” of thermodynamics. The second step is to represent all the thermal states as points in a X = (X, θ) space. Now
we can define ”adiabatic surface” as the set of states that can be reached via a reversible adiabatic process that does
not involve exchange of energy with the environment. We can label each surface by an number S(X), that we call
”entropy” (with quotations marks). The convention would be that S[A] < S[B] if we can get from A to B via an
irreversible process.

If we have a reversible process that starts at point X, and ends at point X + dX the change in ”entropy” is
dS = ∇S · dX. At the same time we can write for the heat d̄Q = F · dX. By definition both dS = 0 and d̄Q = 0
define the same adiabatic surfaces. It follows that there is an ”integration factor” such that F = T (X, θ)∇S, and
hence one can write d̄Q = TdS. We now postulate that there is a possibility to define S such that T is a function of
θ alone. This leads to the definitions of the “absolute temperature” and of the “thermodynamic entropy”.

Let us rephrase the thermodynamic postulate in a more illuminating way. Consider a reversible isothermal process at
temperature θH that connects two adiabatic surfaces. Consider a second reversible isothermal process at temperature
θC that connects the same surfaces. To say that d̄Q has an integration factor that depends on θ alone means that the
ratio d̄QH/d̄QC depends only on the temperatures θH and θC . Hence we can define “absolute temperature” using the
definition of Carnot, and the definition of S is implied.

In Carnot’s picture the ratio d̄QH/d̄QC has to do with the efficiency of the heat transfer process. According to Carnot
the maximal ratio d̄QH/d̄QC depends only on the temperatures θH and θC . In ”traditional thermodynamics” Carnot’s
statement is regarded as the consequence of either Clausius or Kelvin’s statements that we derive later. If Carnot’s
statement were false, one would be able to combine two reversible processes that do not have the same ”efficiency”
in order to produce a device that can pump heat from cold to hot bath without investing work.

During a reversible quasi-static process the change of the entropy of a system a is
∫
d̄Qa/Ta, while that of a second

system is
∫
d̄Qb/Tb. If we have Ta = Tb = θ, it follows that the total entropy change has an additive property, hence

entropy is an extensive quantity.

====== [20.4] The space of all possible states

Canonical states:– The following visualization is useful. Consider a systems that has energy levels ϵn(X). Any
canonical state ρ of the system can be represented as a point in a (X,T ) plane, and has some entropy S(T ;X). Note
that T = 0 states have zero entropy and energy E = ϵ0(X). We can use S as an optional coordinate instead of T ,
and define Eeq(X,S) as the energy of the canonical state that has entropy S.

Excited states.– We now add a 3rd vertical axis for the energy. In this extended (X,S,E) representation the
canonical states form a surface Eeq(X,S). We refer to this surface as the floor. Non-canonical states with the same
entropy as the canonical state have a higher energy and accordingly are represented by points above the floor.

E∗[energy of an excited state that has entropy S] > Eeq(X,S) (20.1)

These excited states are represented in the extended (X,S,E) space as points that reside ”above” the canonical state
Eeq(X,S). Accordingly, all states along a vertical line have the same entropy, but only the lowest state ”on the floor”
is canonical. The trivial example is of course the excited pure states, that by definition have zero entropy, while their
energy E∗ = ϵn(X) is larger than Eeq = ϵ0(X).
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General processes:– We visualize a thermodynamic process as a trajectory in the (X,S,E) space, or optinaly we
can project is on the (X,T ) plane. A reversible quasi-static process that connects points A and B on the floor is
represented by a solid line in the (X,T ) plane. An actual non-reversible process, that resides ”above” the floor, is
represented by a dashed line in the (X,T ) plane. In a closed system Boltzmann told us that the entropy during a
process always increases. Loosely speaking this means that the probability at the end of the process is scattered on
more ”energy levels”.

Thermodynamic processes:– If the system can be attached to baths we can consider a more restricted set of
processes that we call ”Thermodynamic processes”. Such processes start and end at the ”floor”. In other words,
we assume that before and after the process the system is found in equilibrium with a heat bath. The process is
irreversible if during the intermediate stages it is represented by a dashed line that resides ”above” the floor.

====== [20.5] Statistical-Mechanics version of the second law

The Boltzmann entropy is defined as S = −
∑

r pr ln pr, where pr is the probability to be in the rth cell in phase
space. The Boltzmann version of the second law states that for any process from state ”A” to state ”B”

Suniverse[B]− Suniverse[A] > 0 (20.2)

The Boltzmann entropy is a theoretical construct and hence the statistical version of the second law has no practical
value. We have to ”translate” both the definition of entropy and the ”second law” into a thermodynamic language.
For this purpose it is essential to assume that both A and B are equilibrium states (while during the process the system
may be out of equilibrium). Then we can identify the Boltzmann entropies S(A) and S(B) with the thermodynamic
entropies of states A and B. We shall see in the next section how it helps to formulate a thermodynamic version of
the second law in terms of ”Heat” and ”Work”.

====== [20.6] Thermodynamic version of the second law

In order to translate this microscopic formulation of Boltzmann into the practical language of thermodynamics one
assumes: (1) In the initial and final states the system is in equilibrium with bodies that have well defined temperatures
TA and TB respectively; (2) During the process the system absorbs heat from equilibrated bodies that have well
defined temperatures, while the system itself might be out of equilibrium; (3) The change in the entropy of an
equilibrated body that has a well defined temperature T is −d̄Q/T , where d̄Q is the heat transfer with the usual sign
convention. With these assumptions we get the thermodynamic version of the second law:

S ≡
[
Ssys[B]− Ssys[A]

]
−
∫ B

A

d̄Q

Tbaths
> 0 (20.3)

In particular for a closed cycle we get the Clausius inequality for the entropy production

S = −
∮

d̄Q

Tbaths
> 0 (20.4)

Clausius statement:– The simplest application of the Clausius inequality concerns the direction of heat flow.
Consider a cycle (AB)# in which the system is in contact with TA, and later in contact with TB (work is not
involved). The result of such cycle is the transfer of an amount q of energy from TA to TB . Assuming TB < TA it
follows from the Clausius inequality that q must be positive, which loosely speaking means that heat can flow only
from the high to the low temperature. (work-free heat pumps do not exist).

Kelvin statement:– Another immediate implication of the Clausius inequality is that there exist no process whose
sole result is to transfer heat into work. If such process existed one would have at the end of each cycle a single bath
with Q > 0, and hence the total entropy of the universe would decrease. Also the inverse statement is true: if it were
possible to device a work-free pump that violates Clausius statement, then it would be possible to violate Kelvin’s
statement. The proof is based on the possibility to combine such pump device with a Carnot engine.
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Maximum work principle:– Consider an isothermal process. We use the standard assumptions: the temperature of
the bath is T0, the initial state is equilibrium, and also at the end of the process we wait until an equilibrium is reached.
Using the first law of thermodynamics (energy conservation) we can extract the heat Q from the the first law, namely,
Q = (E(B)− E(A))−W, where W is the work that has been done on the system. Using F (A) = E(A) − T0S(A)
and F (B) = E(B)− T0S(A), we express S(B)− S(A) in terms of of F (B)− F (A), leading to what we call Kelvin’s
expression for the entropy production:

S =
W − [F (B)− F (A)]

T0
≡ Wirvrs

T0
(20.5)

The last equality, that defines the notion of irreversible work, is physically-meaningful for an isothermal quasistatic
process (see argumentation below). Irrespective of that, in any case, the second law implies that

W > [F (B)− F (A)] = minimal work required to carry out the process (20.6)

The work that can be extracted from an engine is W = −W. Obviously in order to extract positive work W we need
F (A) > F (B). The maximum work that can be extracted is equal to the free energy difference [F (A)− F (B)]. In
particular it follows that if the universe included only one bath, with one temperature, it would not be possible to
extract work from a closed cycle.

Irreversible work:– Assuming that the state of the system is canonical-like at any instant of time, with a well
define temperature Tsys at any moment along the A 7→ B process. We have established that the change of energy can
be written as dE = −ydX +TsysdS

sys. The second term originates from transitions between levels. These transitions
are induced by the coupling to the environment and/or by the non-adiabaticity of the driving. On the the other hand
by definition dE = d̄W +d̄Q. We have identified dW = ydX as the reversible work that could be done by the system.
The irreversible work is the difference d̄Wirvrs = d̄W − (−dW ) = d̄W + ydX. Optionally, we can use the first law to
write d̄Wirvrs = TsysdS

sys −d̄Q. In an actual experiment, the total irreversible work can be calculated by integrating
over one of these expressions.

Quasistatic version of the second law:– The above discussed relation TsysdS
sys = d̄Wirvrs +d̄Q can be exploited

in order to obtain a quasi-static version of the second law:

S =

∫ B

A

d̄Wirvrs

Tsys
+

∫ B

A

(
1

Tsys
− 1

Tbaths

)
d̄Q > 0 (20.7)

This version reflects that the origin of reversibility in a quasi-static process is: (i) irreversible work due to e.g. frictional
effects; (ii) irreversible heat flow due to finite temperature difference between the system and the bath during heat
conduction.

====== [20.7] Mesoscopic version of the second law

Below we further discuss non-equilibrium fluctuation theorems (NFTs). These are mesoscopic versions of the second
law, where S is regarded a random variable. The statement is that

〈
e−S〉 = 1. From that it follows that ⟨S⟩ > 0.

The average is over many “runs” of the experiment.

We shall focus on two versions of NFT. The “heat version” is the Clausius statement for a closed cycle, while the
“work version” concerns processes that do not involve baths. For the “heat version” we adopt the Clausius definition
of S in terms of Qb. For the “work version” we assume that the temperature of the system in the beginning of the
cycle is T0, and adopt Kelvin’s expression for S.

It is important to realize that in the “work version” the definition of S is ad hoc, because the final state of the system
is ill-defined as far as thermodynamic entropy is concerned. It would be an error to regard S as entropy production: as
an extreme counter-example consider a strictly adiabatic process where the Boltzmann entropy stays constant, though
S is non-zero (it is zero only for an isothermal-adiabatic process). Nevertheless, we can add an additional step of
post-equilibration, during which work is not being done, in order to provide physical meaning to the ad-hoc definition
of S. In such revised protocol S is contributed by non-adiabaticity of the work process, and also by irreversible flow
of heat into the bath.
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====== [20.8] The Carnot Cycle paradigm

A strict adiabatic process is a quasi-static process during which the system is totally isolated from the environment.
For such process we have the adiabatic theorem. Namely, assuming that the motion is chaotic the system that has
been prepared with definite energy E will remain on the the same adiabatic surface (classical version) or in the
same energy level (quantum version) if a parameter X is being changed very slowly. If the system is prepared with
probability pn in some energy shell (classical) or energy level (quantum) then this probability will not change during
the process, and hence also the entropy will remain constant. In the classical version n is the phase space volume of
the evolving energy surface, while in the quantum mechanical formulation it is the index that labels the energy levels.
In the classical limit n ∈ [0,∞], and the associated energy is denoted as E = ϵn(X).

We can represent all the possible states of a system as points in (X,S,E) space as described in a previous section. The
thermo-adiabatic lines connects canonical points that have the same entropy. Such lines are going along the ”floor”
of the (X,S,E) space. A thermo-adiabatic process is defined as a quasi-static process along a thermo-adiabatic line.
We can think of such process as composed of many infinitesimal steps, where each step consists of a strict adiabatic
process followed by a contact interaction with a bath that has the appropriate temperature.

To see that the quasi-static limit exists, note the following: If a system is prepared in a canonical state Eeq(X0, S),
Then its energy after a strict adiabatic process is E∗ > Eeq(X,S) for any X away from X0. For a small variation
dX the energy difference can be expanded as dE∗ ∝ dX2. If after such a variation the system is connected to a bath
that has the appropriate temperature, such that S(T ;X) = S, it would relax to a canonical state with the same
entropy, but with the lower energy Eeq(X,S). This relaxation involves an entropy production dSenv = dE∗/T due to
the release of energy to the bath. Integrating dSenv over the whole process we see that in the quasi-static limit the
entropy production goes to zero.

A strict Carnot cycle involves only two heat baths. The cycle (ABB∗CDD∗) is illustrated in the Figure. The initial
preparation is canonical at A(T1, XA). The process from A(T1, XA) to B∗(XB) is strictly adiabatic. At the end of
this stage the obtained state is not canonical. The process from B∗(XB) to B(XB , T2) is the equilibration due to
contact with a bath that has the temperature T2. It is an irreversible relaxation process in which the system goes to
a lower energy with the same entropy. At the end of this process the obtained state is canonical. The process form
B(XB , T2) to C(XC , T2) is quasi-static in contact with the same heat bath. The process from C(XC , T2) to D

∗(XD)
is strictly adiabatic. The process from D∗(XD) to D(XD, T1) and later back to A(T1, XA) is in contact with the heat
bath T1.

T1

T2

XA XB XCXD

T2

T1

X

thermo−adiabatic line

C

D*

D

B

B*

A
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====== [20.9] Fluctuations away from equilibrium

It is customary to say that at equilibrium the expectation value of an observable reflects the typical value of this
observable, while the fluctuations are relatively small. If the central limit theorem applies the RMS/mean should scale

as 1/
√
N . However, it turns out that the full statistics might reveal interesting information about the underlying

dynamics. In the following we shall discuss processes where the distribution function of work or entropy production
does not satisfy the symmetry relation P (−s) = P (s). Rather it satisfies a detailed-balance look-alike relation:

P (−s) = e−βs P (s), [beta-symmetric distribution] (20.8)

It follows that P (s) can be written as a product of a symmetric function and an exponential factor eβs/2. Another
consequence of the β-symmetry is

⟨e−βs⟩ = 1, [convex average] (20.9)

The latter equality can be re-phrased as follows: In analogy with the definition of harmonic average and geometric
average that are defined as the inverse of ⟨(1/s)⟩ and as the exp of ⟨log(s)⟩ respectively, here we can define a convex
average that is defined as the log of the above expression. The convex average is zero for a β-symmetric distribution,
while the standard algebraic average is positive

⟨s⟩ > 0, [convex inequality] (20.10)

While for a symmetric distribution the average value ⟨s⟩ has to be zero, this is no longer true for a β-symmetric
distribution. Rather the average should be related to the variance. To be specific let us assume that s has Gaussian
distribution. It can be easily verified that such distribution has β-symmetry with β = 2µ/σ2, where µ = ⟨s⟩ is the
average value and σ2 = Var(s) is the variance. This relation between the first and second moment can be regarded
as a fluctuation dissipation relation:

⟨s⟩ =
1

2
β Var(s), [”fluctuation dissipation” relation] (20.11)

We can formalize this relation for non-Gaussian distribution in terms of comulant generating function g(λ) which is
defined through

⟨e−λs⟩ ≡ eg(λ) (20.12)

Note that due to normalization g(0) = 0, while g′(0) = −µ and g′′(0) = σ2. In particular for a Gaussian
g(λ) = −µλ+ (1/2)σ2λ2. For a symmetric distribution g(−λ) = g(λ). But for β-symmetry we must have

g(β − λ) = g(λ), [characterization of beta-symmetric distribution] (20.13)

Again we see that for a Gaussian β-symmetry implies a relation between the mean and the variance.

In the following we shall consider two versions of the non-equilibrium fluctuation theorem. In one version we consider
the statistics P (W) of the workW that is done by an agent during a cycle that involves a thermally isolates system. In
the second version we consider the statistics P (S) of the entropy production S during a cycle that involves exchange
of energy with several heat baths.
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====== [20.10] The distribution function of the work

The Crooks relation and Jarzynski equality concern the probability distribution of the work that is done during a
non-equilibrium process. For presentation purpose let us consider a gas in cylinder with a movable piston. Initially
the piston is in position A, and the gas in equilibrium with temperature T0. The canonical probabilities are

p(A)
r =

1

Z(A)
e−(1/T0)E

(A)
r , where Z(A) = exp

[
−F (A)

T0

]
(20.14)

Now we displace the piston to position B doing work W. After that we can optionally allow the system to relax to
the bath temperature T0, but this no longer affects W. The distribution of work is defines as

PA;B(W) =
∑
r

p(A)
r δ

(
W − (E(B)

r − E(A)
r )

)
(20.15)

It is implicit here that we assume a conservative deterministic classical system with a well-defined invariant measure
that allows division of phase space into ”cells”. The phase-space states |r(B)⟩ are associated with |r(A)⟩ through the
dynamics in a one-to-one manner. In other words, the index r in the above definition labels a trajectory that starts

at r. If the dynamics is non-adiabatic the order of the cells in energy space is likely to be scrambled: if the E
(A)
r are

indexed in order of of increasing energy; it is likely that E
(B)
r will become disordered.

If the dynamics is not deterministic the above definition can be modified in an obvious way. To be specific let
us consider the quantum case, where the probability to make a transition form an eigenstate |n(A)⟩ of the initial
Hamiltonian, to an eigenstate |m(A)⟩ of the final Hamiltonian, is given by

PA;B(m|n) =
∣∣∣⟨m(B)|UA;B |n(A)⟩

∣∣∣2 (20.16)

Then we define the spectral kernel:

PA;B(ω) =
∑
n,m

p(A)
n PA;B(m|n) δ

(
ω − (E(B)

m − E(A)
n )

)
(20.17)

Since we consider here a closed system, we can identify the work as the energy differenceW = ω. For further discussion
of how work can be defined in the quantum context see arXiv:1202.4529

====== [20.11] The Crooks relation

We have defined the probability distribution PA;B(W) for a process that starts at equilibrium with the piston at
position A. The probability distribution PB;A(W) is defined in the same way for a reversed process: initially the
piston is in position B, and the gas in equilibrium with temperature T0, then the piston is displaced to position A.
The Crooks relation states that

PB;A(−W)

PA;B(W)
= exp

[
−W − (F (B)− F (A))

T0

]
(20.18)

The derivation of this relation using the ”quantum” language is trivial and follows exactly the same steps as in the
derivation of the detailed balance relation for any spectral function S̃(ω). The only difference is that here we have an

extra factor exp[F (B) − F (A)], on top of the Boltzmann factor, that arises because the p
(A)
n in the forward process

involves a normalization factor 1/Z(A), while the p
(B)
m is the reversed process involves a normalization factor 1/Z(B).

The Crooks relation can be written as P (−S)/P (S) = e−S , where

S ≡ W − (F (B)− F (A))
T0

(20.19)

http://arxiv.org/abs/1202.4529
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corresponds to entropy production. To see that there is a consistency with the Clausius definition of entropy pro-
duction, consider a protocol with an additional stage, during which the system equilibrates with a bath that has
temperature T0. The result would be the transfer of extra heat −∆Q =W − (F (B)− F (A)), that corresponds to the
irreversible work, hence S = −∆Q/T0 is the entropy production.

====== [20.12] The Jarzynski equality

Multiplying both sides of the Crooks relation by PB;A(W), integrating over W, and taking into account the normal-
ization of P (−W), one obtains the Jarzynski equality

〈
exp

[
−W
T0

]〉
= exp

[
−F (B)− F (A)

T0

]
(20.20)

It follows from the Jarzynski equality that ⟨W⟩ > [F (B)− F (A)], which is consistent with Kelvins’s work principle.
It reduces toW = (F (B)− F (A)) in the the case of a quasi-static adiabatic isothermal process. The term ‘isothermal’
requires clarification in the present context. For a small mesoscopic system the quasi-static adiabatic limit implies
that P (W) has a distribution over the possible valuesWn = En(B)− En(A). But if the system consists also of a very
large bath, then it is possible to prove that the quasi-static adiabatic limit, when applied to the extended system,
implies W = F (B)− F (A) with probability one in the thermodynamic limit.

An optional one-line derivation of the Jarzynski equality in the context of deterministic classical dynamics is as follows:

〈
exp

[
−W
T0

]〉
=

1

Z(A)

∑
r

e−(1/T0)Er(A) exp

[
−Er(B)− Er(A)

T0

]
= exp

[
−F (B)− F (A)

T0

]
(20.21)

The Crooks relation could have been derived in a similar way, but we had preferred to get it using the ”quantum”
language, and to regard the Jarzynski equality as its implication.

====== [20.13] The fluctuation dissipation relation

Let us see what is the implication on the Crooks relation with regard to a simple closed cycle for which F (B) = F (A).
In such case P (W) is a β-symmetric distribution. It follows that there is a ”fluctuation dissipation relation”

⟨W⟩ =
1

2T
Var(W) (20.22)

Considering a multi-cycle process Var(W) = 2DEt and ⟨W⟩ = Ẇt, leading to the dissipation-diffusion relation that

we have derived in past lecture Ẇ = (1/T )DE , from which follows the dissipation-fluctuation relation η = ν/(2T ).

====== [20.14] The non-equilibrium fluctuation theorem

The non-equilibrium fluctuation theorem (Bochkov, Kuzovlev, Evans, Cohen, Morris, Searles, Gallavotti) regards the
probability distribution of the entropy production during a general non-equilibrium process. The clearest formulation
of this idea assumes that the dynamics is described by a rate equation. The transition rates between state n and
state m satisfies

w(m|n)
w(n|m)

= exp

[
−Em − En

Tnm

]
(20.23)

Where Tnm is the temperature that controls the nm transition. We can regard the rate equation as describing
a random walk process. Consider a trajectory x(t). If the particle makes a transition from m to n the entropy
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production is (Em − En)/Tnm. Hence we get for example

w(1|2)w(2|3)w(3|4)
w(4|3)w(3|2)w(2|1)

= exp

[
−E1 − E2

T1,2
− E2 − E3

T2,3
− E3 − E4

T3,4

]
≡ e−S[1;2;3;4] (20.24)

In general we write

P [x(−t)]
P [x(t)]

= exp
[
− S[x]

]
(20.25)

From this ”microscopic” relation we deuce that the probability distribution of the energy production satisfies
P (−S)/P (S) = e−S , hence

〈
e−S〉 = 1 and ⟨S⟩ > 0.

====== [20.15] Fluctuations of current in a ring

A simple example for the practicality of this relation concerns the fluctuations of the current I that emerge due to the
motion of a particle in a ring. Given a trajectory q ≡ It is the winding number and S ≡ qΦ is the entropy production.
The non-equilibrium fluctuation theorem implies that P (−q)/P (q) = exp(−qΦ). Note that in the case of an electric
current Φ = eV/T , where V is the electro-motive force.

====== [20.16] Thermodynamic Uncertainty Relations

The prototype thermodynamic uncertainty relations concerns a stochastic cyclic process (e.g. the motion of a molecular
motor) that is described by a rate equation. The rate of a forward step is w+, and the the rate of a backward step is
w−. The ratio is w−/w+ = exp(Q0/T ), where Q0 is the energy of the chemical reaction. Thus the count q of cycles
(the net number of ”steps” of the molecular rotor) executes a biased random walk process, with ⟨q⟩ = (w+ − w−)t
and Var(q) = (w+ + w−)t. The associated entropy production is S = ⟨q⟩ × (Q0/T ). It follows that the signal to noise
ratio (SNR) is

SNR =
⟨q⟩√
Var(q)

=

√
S
T

Q0
tanh

(
Q0

2T

)
<

√
S

2
(20.26)

This relation expresses the observation that the the SNR of a stochastic process is bounded by the entropy production.

====== [20.17] Analysis of heat conduction

A prototype application of the non-equilibrium fluctuation theorem concerns the analysis of heat flow form hot bath TH
to cold bath TC . The temperature difference is ϵ = TH − TC . We assume that the conductor that connects the two
baths can be modeled using a master equation. The transition between states of the conductor are induced by the
bath and are like a random walk. With any trajectory we can associate quantities QH and QC that represent that
heat flow from the baths into the conductor. From the fluctuation theorem it follows that

P (−QH ,−QC)

P (QH , QC)
= exp

[
QC

TC
+
QH

TH

]
(20.27)

Next we define the absorbed energy Q̄ = QH +QC and the heat flow Q = (QH −QC)/2. We realize that in the long
time limit Q ∼ t while the fluctuations of Q̄ are bounded. Accordingly we get

P (−Q)

P (Q)
= exp

[
−
(

1

TC
− 1

TH

)
Q

]
(20.28)
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If we use a Gaussian approximation, we get a ”fluctuation-dissipation” relation

⟨Q⟩ =
1

2

(
1

TC
− 1

TH

)
Var(Q) (20.29)

The relation can be linearized with respect to ϵ = TH − TC . The thermal conductance is defined through ⟨Q⟩ = Kϵ× t,
and the intensity of fluctuations through Var(Q) = ν × t. Thus we deduce that

⟨Q̇⟩ = K × (TH − TC), with K =
1

2T 2
ν (20.30)
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