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BHH - dimers and trimers

The Bose-Hubbard Hamiltonian (BHH):
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Dimer (M=2): minimal BHH; Bosonic Josephson junction; Pendulum physics [1,5].

Driven dimer: Landau-Zener dynamics [2], Kapitza effect [3], Zeno effect [4], Standard-map physics [5].
Linear trimer: minimal model for chaos; Coupled pendula physics.

Triangular trimer: minimal model with topology, Superfluidity [6], Stirring [7].

Coupled trimers: minimal model for mesoscopic thermalization [8].
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N particles in a double well
is like spin j = N/2 system

UJ? - KJ,

z

J, = occupation difference

The BHH for a dimer is like a pendulum
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Quasi stability

7(0” preparation - all bosons are condensed in the lower orbital

"7 preparation - all bosons are condensed in the upper orbital

¢ preparation - all bosons are condensed in |1) + e!¥|2)
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e The ”7” preparation is classically unstable: irreversible decay

e Quantum mechanically the m preparation is quasi-periodic trecurrances ~ log(IN)

e Generic ¢ preparations that are quasi-irreversible trecurrances ~ VIN

Notes:

e Similar, but not the same: Scars at hyperbolic points [Heller, Kaplan]; Anderson localization

e You can stabilize the w preparation using high frequency periodic driving (Kapitza)

e You can stabilize the m preparation using noisy driving (Zeno) - it is a classical effect!




The Trimer

A rotating M =3 site system with /N bosons:
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This is like M coupled oscillators with an additional constant of motion:
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Dimensionless parameters (®,u):
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Upon quantization we have:




Eigenstates

For N = ni+na+ng3 the standard basis is [r) where r| = (n2 —n1)/N and v, = ng/N

= |{r|Ea)|? = occupation probability distribution

For each eigenstate |E,) we calculate: Representative Eigenstates:

One-body reduced probability matrix —

pij = (1/N){alai)a

The number of participating orbitals —

1< (1/Sa) < M
So = trace(p?)
1/5=1 means a coherent state.

1/5=3 means maximum fragmentation.

Bond averaged current —
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energy spectrum of the
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e Mott Transition (ground state)
e Self-Trapping (upper state)
e Metastable vortex state?

Self-trapped state = condensation in site orbital.

Vortex state = condensation in momentum orbital.
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Self Trapping

1/S of upper energy state I of upper energy state
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e Self-trapping can occur for arbitrarily small interaction.




Quasi-stability of the intermediate vortex state

1/S of maximum current state I of maximum current state

e The quantum metastability regime extends beyond the classically expected.

e Quantum scarring related effect(?).




The energy landscape
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Concluding Remarks

The essence of superfluidity is the possi- E
a

bility to witness metastable vortex states

.. . unstable vortex state
(” dissipationless current”)

In the standard classical stability analysis
one finds that vortex states whose rotation
velocity is less than a critical velocity are

stable vortex sta
metastable (”Landau criterion”)

For a non-rotating 3-site model the same
type of classical analysis implies that there
are no metastable vortex states [1,2]

We have explored the full regime diagram. In the presence of rotation we find (€2, u) regimes
where metastable vortex states exists.

In the quantum analysis we find that the intermediate vortex state is quasi-stable beyond the

classical expectation, even for non-rotating device.
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