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Abstract. We study the Atomtronics Quantum Interference Device employing a
semiclassical perspective. We consider an M site ring that is described by the Bose-
Hubbard Hamiltonian. Coherent Rabi oscillations in the flow of the current are feasible,
with an enhanced frequency due to to chaos-assisted tunneling. We highlight the
consequences of introducing a weak-link into the circuit. In the latter context we clarify
the phase-space considerations that are involved in setting up an effective “systems plus
bath” description in terms of Josephson-Caldeira-Leggett Hamiltonian.

1. Introduction

Atomtronics is a new quantum technology [1l 2], with potential for novel quantum
computing implementations [3, 4, [5, [6]. Theory and experiments with Atomtronic
superfluid circuits are in the focus of current research [7, 8, [0, T0]. A major objective
is to realize a Quantum Interference Device (AQUID) that possibly includes one or
two weak-links [I1I]. This is analogous to a superconducting circuit, or to its low
dimensional version (fluxon, Josephson vortex qubit) [12, 13|, 14, [I5]. However the
design considerations of such device are still somewhat vague.

We study an Atomtronic superfluid circuit that is described by the Bose-Hubbard
Hamiltonian (BHH) [5]. Namely, we consider N bosons in an M site rotating ring
such that the model parameters are (N, M, K, U, ®), where K is the hopping frequency
between the sites, U is the on-site interaction, and the rotation is formally equivalent to
having an Aharonov-Bohm flux ®. If a weak-link is introduced, there is an additional
parameter « that characterizes the relative strength of the coupling.

For the purpose of qubit realization, the objective is to single out a two-level system
(TLS) that is quasi-isolated from all the other microscopic degrees of freedom (DOFs).
In the present context there are two flow-states that differ by their “winding number” m,
meaning that they are characterized by a different value of the persistent current (1,,).
The flow-states are required to be meta-stable, meaning that each of them will not
decay in time. If they are quasi-degenerate, one would like to witness coherent Rabi
oscillations. During a Rabi-based protocol the system evolves into a superposition of
macroscopically distinct flow-states [16].
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The introduction of a weak-link allows control over the coupling A, between the
flow-states. Without a weak-link this coupling might be too small for operational
purpose, meaning that the time period (27/Ag) of coherent Rabi oscillations might
become too large for practical implementations. On the other hand if the relative
strength of the weak-link («) is smaller than some critical value, then the meta-stability
is destroyed, which is effectively like having a disconnected ring. The dependence of A
on N and on M in the case of an AQUID has been recently addressed in Ref.[] following
[10], highlighting the subtle interplay of interactions and quantum fluctuations. The
present work is in a sense complementary and provides a semi-classical perspective for
the analysis of a few-site ring that is described by the BHH, with or without a weak-link.

Formally our BHH system has d = M—1 coupled DOFs: the dimer (M = 2) is
the so-called bosonic Josephson junction; while the trimer (M = 3) is the minimal
superfluid circuit. Our main focus is on BHH circuits with small number of sites. The
following specific questions arise: (A) In what range of the model parameters is it
possible to have metastable flow-states? (B) Can we treat two quasi-degenerate flow-
states as a coherent two-level-system? If yes, (C) how the frequency of the coherent
Rabi oscillation is determined? And if a weak-link is introduces then, (D) can we
derive the dynamics from an effective “system plus bath” Hamiltonian. Question (A)
has been partially addressed in our previous publications [17, [I8], and its physics is
briefly summarized in In the present work we would like to further address
questions (B-D).

Our main observations are: (1) In the absence of a weak-link, coherent Rabi
oscillations are feasible, with frequency that is possibly determined by chaos-assistance
tunneling, leading to weaker dependence on the number of particles. (2) In particular
we demonstrate numerically Rabi oscillations between metastable flow-states in a non-
rotating (® = 0) circuit that consists of M = 4 sites. (3) We find what is the critical
strength of a weak-link, below which superfluidity is diminished. (4) We illuminate how
our considerations connect with the familiar “system plus bath” framework of Caldeira
and Leggett.  (5) We show that with weak-link the threshold to chaos is pushed
up in energy, which is a necessary condition for the validity of the single Josephson-
junction description. (6) We point out that the requirement for observing coherent
Rabi oscillation in large M rings might be in clash with the quantum Mott transition.

The outline is as follows: In Section 2 we introduce the model and the methods; In
Section 3 we discuss the coherent dynamics in the absence of a weak-link. In Sections 4
and 5 we analyze how a weak-link affects a ring with few or many sites respectively. We
care to make a bridge between the semiclassical and the “system plus bath” perspectives.
Finally we summarize the overall picture in Section 6.
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2. Model and Methods

We consider N Bosons in an M site ring that is described by the Bose-Hubbard
Hamiltonian (BHH):

M
U K; /.
Hpan = Z [Enj(nj -1)-- <e2(<1>/M)a;f.+1aj + h.c.>] . (1)

j=1
where a; (a;) are bosonic annihilation (creation) operators on the jth site, and
f
j
meaning that ap; = ag. The parameter U takes into account the finite scattering

n; = a;a; is the corresponding number operator. Periodic boundaries are imposed,
length for the atomic two-body collisions on the same site. The hopping parameters
are constant K; = K except in the weak-link where it is K’. The ring is pierced by
an artificial (dimensionless) magnetic flux ®, which can be experimentally induced for
neutral atoms as a Coriolis flux by rotating the lattice at constant velocity [19] 20], or as
a synthetic gauge flux by imparting a geometric phase directly to the atoms via suitably
designed laser fields [21) 22, 23]. The presence of the flux ¢ in Eq. has been taken
into account through the Peierls substitution: K; — e 4®/M [,

In the quantum analysis, we diagonalize Eq., and display the spectrum as in
Fig[lh. For each eigenstate E, we calculate the fragmentation measure M as defined in

while the average current is obtained using the following formula:

I, = <E o E> @)

In a classical context the average is taken over time for a very long trajectory.

2.1. Semiclassical perspective

For the purpose of semiclassical analysis it is convenient to write the BHH using action-
angle variables: a +— /ne’. Accordingly the Hamiltonian describes an M degrees of
freedom (DOFs) system, namely,

M
U o
H =), {5"5 — Kjy/mjam; cos (90j+1—90j - M)} (3)
j=1
Since the total number of particles N = ) m; is a constant of motion of the

system, the Hamiltonian above describes d = M —1 coupled pendula. The interaction is
characterized by the dimensionless parameter
NU

v = — (4)

The classical dynamics is governed by
:=1J0H, JE( 0 H) (5)
I 0

where z = (¢1, -+, M, M1, -+, ny) are the canonical coordinates. The notation 0,
stands for derivative with respect to z,, and J is the symplectic matrix. It is important
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to emphasize that upon re-scaling the only dimensionless parameters that affect the
classical trajectories are (u, ®) and K’/K. The effective Planck constant is A = 1/N.
The latter parameter, does not appear in the “classical” equations of motion Eq.,
but only in the full quantum treatment of Eq..

2.2. System plus bath perspective

The conventional approach for analyzing a SQUID/AQUID is based on a “system plus
bath” perspective. This perspective becomes meaningful once a weak-link is introduced,
which is like having a “slow DOF”. In order to motivate the conventional phenomenology
one can regard the BHH Eq. as describing masses that are connected by nonlinear
springs. If one spring is very “weak”, then at low energies the equal-partition theorem
justifies an harmonic approximation for the small vibrations of the other springs.
Accordingly we can regard the system has having one non-linear DOF (”pendulum”)
coupled to phonons ("harmonic bath”). The canonical coordinates that describe the
weak-link are the phase difference ¢ = (¢ — 1), and its conjugate n = (ny — nq)/2.
Hence we obtain the Josephson Circuit Hamiltonian (JCH)

Hien = FEon’+ %ELQOQ — Ej cos(¢p — D) + Hpatn (6)
with Ec =U, and E;, = [(N/M)/(M — 1)]K, and E; = (N/M)K'. The bath
Hamiltonian has the standard Caldeira-Leggett form

1 1 . Cm 2
Hbath - Z (mn% + §mmw72n (‘Pm - mmw?n SD> ) (7)

m

For small M the “bath” is merely a set of several oscillators, and possibly can be
neglected, because the w,, are typically large compared with the natural frequency of
the junction. For large M one can characterize the bath oscillators by an Ohmic spectral
function

J(w) = gz Cm Mw—wn) = Nw(w<w), (8)

My Wi,

The detailed derivation and the explicit expressions for the bath parameters in terms
of the BHH parameters are presented in [Appendix C] and will be further discussed in
a later section. We note that in [12] [5, 14] the finite-temperature partition-function of
the BHH ring has been introduced, and the reduced “system plus bath” action has been
deduced. From the reduced action one could figure-out what is the effective JCH. In the
present approach to the same system, we do not assume finite temperature, but merely
re-arrange the Hamiltonian in a way that allows a “system plus bath” description. This
is a valid procedure even if the ring is prepared (say) in a micro-canonical state with
some arbitrary energy E. One may say that in our treatment £ /M plays the role of the
temperature.

Within the framework of the JCH treatment, the possibility of having metastable
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flow-states is controlled by the parameter

E J K’
a = 4= - (9)
For ® = 7 the condition for having at least two local minima in the potential floor of
the JCH, is a > a,, where a, = 1. Disregarding small quantum fluctuations, the two
local minima can support a quasi-degenerate pair of flow-states. If the bath is ignored,
then from the WKB approximation it follows that the tunnel splitting is given by some

variation of the following expression [12]

|E
Ay, =~ +/EcEj; exp|-C E_J
c

where C' is a numerical prefactor. We would like to emphasize that there are several

(10)

variations of this formula, depending on the relative size of (E¢, Er, E;), but they are
all based on the assumption that Eq.(@ is a valid description.

2.3. Two-level system perspective

The objective is obviously to realize a two-level system (TLS) that is quasi-isolated from
all the other microscopic DOF's [24] 25, 3], 26], 27, 28, [6]. In the present context there
are two flow-states that differ by their “winding number” m, meaning that they are
characterized by a different value of the persistent current (7,,). We label these states
as O and O, and write the TLS Hamiltonian as

s = (a0 37 (1)

We refer to Ay as the splitting: if we draw the eigenenergies versus ® we get an avoided
crossing. The flow-states are required to be meta-stable, meaning that each of them
will not decay in time. If they are quasi-degenerate, one would like to witness coherent
Rabi oscillations. The quasi-degeneracy is controlled by ®, and happens for & = 0 (say
m = £1) or for ® = 7 (say m = 0,1). During the Rabi oscillation the system evolves
into a superposition of these macroscopically distinct flow-states. Such superposition is
commonly termed “cat state”.

The conventional procedure to engineer a TLS is as follows: (i) To introduce a
ring with a weak-link; (ii) To ensure that the weak-link DOF is only weakly-coupled
to all the other ring DOFs; (iii) To analyze the operation of the device using the
“system plus bath” paradigm of Caldeira and Leggett. The introduction of a weak-
link allows the reduction of the many-body BHH Eq.(]) into the simpler JCH Eq.({]).
Furthermore it allows control over the coupling A, between the flow-states. Without a
weak-link this coupling might be too small for operational purpose, meaning that the
time period (27/A;) of coherent Rabi oscillations might become too large for practical
implementations.

If the bath is taken into account then there are two effects. One is “dressing” of the
bare parameters, and the other is “noise”. It is well known from the work of Caldeira
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and Leggett that coherent Rabi oscillations can be observed provided n < 7., where 7,
is of order unity (7. = 7 for the spin-boson model). We shall come back to this issue
when we discuss the large M limit.

3. Coherent dynamics in the absence of a weak-link

The stationary orbitals of a single particle in a clean ring are the momentum states with
wavenumber k = (27 /M )m, where m is an integer modulo M. Coherent flow-states have
N particles condensed into the same momentum orbital:

my = (af,)" |0) (12)

Implying a macroscipically large current

T. = Nx (%) sin (%(ZWm - @)) (13)

In the absence of interaction (U = 0) these coherent flow-states are the eigenstates of the
BHH. For ® = 7 the m = 0 and m = 1 flow-states are degenerate in energy. If we add
not-too-strong interaction they become coupled and may form a doublet whose dynamics
is generated by the TLS Hamiltonian Eq.. The energy-difference 0F = E., — E is
determined by the deviation 6® = (& — 7), and the coupling A, is determined by the
strength of the interaction. An example for such doublet if provided in Fig/[l]

Assuming that we have a TLS doublet of flow-states with energy splitting A;, one
would expect to witness pure Rabi oscillations. If the system has been prepared (say)
in a flow-state with clockwise current, the subsequent evolution would be

T(t) = cos(A;t)m) —z’sm(%)m (14)

implying alternating current with frequency A, namely,

(Z(t)) = cos? (%) 7., + sin? <%> T (15)

If we add weak-link or weak-disorder, the flow-states remain stable, provided the

perturbation is not too strong. This is the essence of superfluidity. The stability is
due to the non-zero interaction U. The interaction stabilizes the flow-states: instead
of being located on a flat potential floor, the flow-states are located in local minima
of the potential floor. Local minima are structurally-stable with respect to the added
disorder, i.e. the local minima do not diminished by a weak perturbation. The common
conception is that the two minima are separated by a “forbidden region”. This is the
same reasoning that leads to Eq., but here we refer to the multi-dimensional phase-
space of the BHH Eq. and not to the reduced single DOF description of Eq.@.
Nevertheless, both perspectives connect smoothly. Namely, we can write Eq. in a
way that illuminates the semiclassical expression for tunnel-splitting:

A, ~ Ay exp {—C?M \/E] (16)
u



Analysis of the AQUID 7

where h=1/N, while (u,«) are the “classical” parameters, and the prefactor Cy,
has some dependence on M. In the absence of a weak-link one formally makes the
substitution « — (M —1) as implied by Eq.@. The energy scale Ay = (EpEc)'? is
like the “attempt frequency” of the Gamow-formula. In a later section we identify Ag
as the frequency spacing between the phononic modes.

In the JCH based picture, the splitting A, is exponentially small in N due to
the existence of a classically “forbidden region” between the two local minima, which
necessitates tunneling. This very small A, creates difficulties in witnessing coherent
two-level dynamics in such configuration. In order to have a bigger A a smaller « is
required. But is should not be smaller than o, = 1 else the meta-stability is diminished.
Note also that there is a trade-off between the weakness of the link and the quality of
the superposition state [27].

The question arises whether one can manage without introducing a weak-link. In
fact there is a loophole. In order to realize this loophole, one should be aware, following
[18], that there are novel flow-states that are not supported by local minima of the
potential, but by a “stability island” or by a “chaotic pond”, or by an “Arnold web”
region. We summarize all these possibilities in - the exact details are
not important. The important point is that the phase-space locations, where the flow-
states reside, are not separated by a “forbidden region”. Instead they are separated
by a “chaotic-sea”. A visualization of this possibility is provided by the quantum
spectrum in Fig2] which should be contrasted with that of Fig[ll The way we plot
the quantum spectrum (following [18]) is in one-to-one correspondence with a section of
the classical phase-space: In Fig[l] the two flow-states at the bottom are separated by a
“forbidden region” where no states can reside; In contrast to that, in Fig[2] between the
two metastable states there are many other states with roughly the same energy that
reside in the “chaotic-sea”.

If the coupling between the quasi-degenerate eigenstates is mediated by a chaotic
sea, then Ay is much larger. This is known as chaos-assisted tunneling [29] 30], 311 [32].
Possibly the term tunneling is not the best description for the mathematics that is
involved. The rough idea is that the quantum-coupling between the two metastable
states is mediated by some intermediate state in the chaotic sea. The coupling is
roughly estimated using second-order perturbation theory as A, ~ U?/A, where A is the
detuning from exact resonance. This expression does not contain a WKB suppression
exponent, so it is not small, but nevertheless it is very sensitive to the model parameters,
as in the theory of universal conductance fluctuations.

In Fig[2] we provide a numerical demonstration of chaos-assisted Rabi oscillations.
In this example the device is non-rotating ($=0), and the Rabi oscillations are between
the metastable m = 41 flow-states. The dependence of Ay on the number of particles
for “chaos assisted tunneling” is contrasted with “under the barrier tunneling” in Fig[3|

Summarizing this section, we observe that the coupling between metastable flow-
states can be via chaos-assisted tunneling, implying a relatively large A, when compared
with the conventional expectation. A weak-link in a few-site ring is not essential for
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Figure 1. Spectrum of M=3 ring with N=24 bosons, interaction u=>5, and ®~7
rotation (left panel, a); accompanied with simulation of Rabi oscillations for ® = 7
rotation (right panel, b). The units of time (here and in the subsequent figures) are
fixed by the hopping frequency K = 1. In (a) each point represents an eigenstate,
positioned according to its energy E, (vertical axis) and its current I, (horizontal
axis). The current is in units of NK/M. The color encodes the fragmentation of
each eigenstate (blue M ~ 1 to red M ~ M). The quasi-degenerate flow-states
at the bottom of the energy landscape are energetically-stable (“Landau stability”)
and are separated by a forbidden-region. The tunnel-coupling allows coherent Rabi
oscillations with extremely slow frequency A;. If we did not slightly perturbed @,
the diagonalization would give zero current cat-states (symmetric and anti-symmetric
superposition of the pertinent flow-states). In (b) the initial state is an m = 1 coherent
state, and the system has exactly ®=m rotation. This initial state has large overlap with
the pair of quasi-degenerate cat eigenstates. Consequently we observe Rabi oscillations
of the current with frequency Ay that is determined by the tunnel coupling.
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Figure 2. Spectrum of M=4 ring with N=16 bosons, interaction u=1 and
® ~ 0 rotation (left panel, a); accompanied with simulation of Rabi oscillations (right
panel ,b). Here the quantum meta-stability of the flow-states m = =£1 is related to
quantum localization on an Arnold web. The coupling is mediated by a chaotic sea.
Consequently we observe chaos-assisted coherent Rabi oscillations with relatively short
period, which is important for practical qubit implementation.
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Figure 3. The frequency of the Rabi oscillations Ay is plotted as a function of the
number of particles NV, for an M = 4 site ring. The “classical” parameter u =1 is
kept constant. The lower curve is the Ag for oscillations between m = 0 and m =1 at
® = 7. The upper curve is the A, for oscillations between m = +1 and m = —1 for
® = 0. The large A, in the latter case is due to chaos-assisted tunneling.

getting large A,. In fact its introduction is likely to be harmful for the device operation
(see next section).

4. weak-link in a few site ring

In this section we discuss what happens if a weak-link is introduced into a ring that
has a small number of sites (M = 3,4). In particular we ask what remains of the
JCH phenomenology. The first implication of the JCH phenomenology is the prediction
of a critical o below which a quasi-degenerate doublet of flow states cannot exist. If
we naively use Eq.@ we deduce that the condition o > 1 for getting such doublet is
K'JK > 1/2 for M = 3 and K'/K > 1/3 for M = 4. In order to inquire what is the
actual threshold we plot quantum spectra for various values of u and K'/K. See Fig..
We look for doublets at the bottom of the spectrum. A practical measure for that is
M = [trace(p?)]!, where p is the reduced one-body probability matrix, see
Bl The value of M indicates the fragmentation of the many-body state. It is M =1
for a coherent state, and M ~ M for a quantum-ergodic state. In the case of a doublet
the ground-state becomes a superposition of two coherent states hence M ~ 2. Looking
at Fig[] we see that for rings with M = 3,4 sites, the a border is slightly higher than
expected. We have verified using Poincare sections (see below) that for large u the
border is in agreement with o, = 1. For completeness we also show that for very large u
(of order N?) the value of M for the ground-state becomes of order M, reflecting the
Mott transition [17].

To understand what determines the «, border we display in FigJ5|so-called Poincare
sections of classical trajectories that are generated by the Hamiltonian Eq.. Namely,
for display purpose a pair of canonical coordinates (@, P) is selected, and for each
trajectory the sequence of points (Q(t;), P(t;)) where it intersects a specified phase-
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Figure 4. The fragmentation (M) of the ground state is imaged as a function of v and
K'/K for M=3 ring with N=30 particles (left) and for M =4 ring with N=20 particles
(right). The value M = 1 indicates a coherent state (all particles are condensed in a
single orbital). The value of M ~ 2 indicates quasi degeneracy of the ground state (a
doublet of flow-states). The value M ~ M indicates a fragmented state: here it is due
to the quantum Mott transition. The vertical dashed line corresponds to the a. =1
border, which in the absence of a Mott transition would become valid for large u.
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Figure 5. Quantum spectrum (upper panels) and phase-space landscape (lower

panels). The quantum spectra are for an M =3 ring with N=45 particles, dimensionless
interaction u = 2.5, and weak-link coupling ratio K'/K = 1,0.8,0.65,0.4 (from left to
right). Axes and and color code are the same as in Figll] In each case an nz3—n; =0
Poincare section is displayed. The section coordinates are @ = (ny — ng)/(2N) and
P = (p1 — p2). The energy is chosen to be slightly above the ground state. The solid
black line marks the borders of the allowed phase-space regions. The outer regions
are “forbidden” energetically. The color code represents the averaged current for
each classical trajectory: red for larger clockwise current; blue for large anti-clockwise
current; and yellow-to-green for very small current.
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Figure 6. The energy landscape of the Josephson circuit Hamiltonian. Here the
vertical axis represents the energy E, of the weak-link DOF (the total energy E should
include the bath DOF's as well). The dashed line indicates the threshold E,, for chaotic
motion. Trajectories below E, are quasi-regular. The JCH description is valid if E,,
is located well above Ej.

space section is recorded. We see clearly that in the o < . regime the two stability
islands merge, reflecting that we no longer have the “double well” structure in phase
space.

But this is not enough. The JCH should be trusted also when we analyze tunneling
or phase-slips through the forbidden region. For this purpose it should describe correctly
the dynamics up to some energy well above the barrier. This means the threshold FE,
for chaotic motion should be above the threshold Ej, for barrier crossing. See illustration
in Figlfl We therefore plot in Fig[7h, a Poincare section for an energy that is slightly
above Ej,. What we see is that trajectories that go across the barriers are chaotic rather
than regular. This indicates that a JCH description of the dynamics is in fact not valid.

Let us try to understand the reason for the failure of the JCH description. In the
vicinity of a single flow-state worst case scenario is that a phase difference 7 has to be
supported by the ring. The harmonic approximation requires 7/(M — 1) < 7/2 on each
bond. This is marginally satisfied for M = 3. But if we want the JCH description to be
valid over a 27 range of ¢, then the requirement becomes 27/(M — 1) < /2, meaning
we have to consider rings with M > 5 sites. Similar claim has appeared in [12]. In F ig
we verify that for an M = 6 ring with weak-link the chaos border F, is indeed well
above the barrier energy F,. Up to E, the dynamics looks like that of a pendulum that
is slightly affected by the other “bath” DOFs. Above FE, the motion becomes chaotic
and the JCH description is no longer applicable.
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Figure 7. Poincare sections at different energies. Panel (a) is a zoomed version of
Fig[b. Panels (b) and (c) are for the same model parameters but the total energy
is, respectively, E/N = —0.036 (slightly above the barrier energy Ep) and E/N = 1.48
(close to the upper most energy in the spectrum). In each panel all the trajectories
have the same total energy. But if we subtract the bath energy, they correspond
to the different trajectories of Fig@ In panel (c) the island contain self-trapped
trajectories, hence it can support self-trapped states (condensation in one site). This
should be contrasted with panel (a) where the two islands can support different flow-
states (condensation in momentum).
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Figure 8. Representative (¢(t),n(t)) trajectories of an M=6 ring with weak-link.
The lower panels are for the weak-link energy E,(t) measured relative to the top of the
barrier. The system parameters are u=200, and K ;/K=0.3, and ®=m. In all the panels
the initial condition is in the vicinity of the barrier, with equal populations n; = N/6.
The actual starting point is with n; = (1/6 + d)N and ng = (1/6 —0)N. In (a) the
junction energy is mostly below the barrier (6 = 0.01), and we see that the dynamics
is in qualitative agreement with the JCH: we observe regular flow-motion with rare
jumps to the opposing flow-motion due to an activation by the “bath” DOFs. In (b)
the junction energy is above the barrier (§ = 0.08), and we still observe pendulum-
like regular motion. In (c) the energy is above the chaos threshold (§ = 0.16), and
we get irregular chaotic motion that is no longer described by the JCH. This should
be contrasted with the M = 3 trajectories of Fig[7p where the chaos threshold E,
coincides with Ej, invalidating the JCH phenomenology.
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5. weak-link in a many site ring

Consider N bosons in a ring of length L, such that the average density is p = N/L. The
so called Lieb-Liniger parameter that controls the quantum aspect of the interaction is
v =mg/p. For 7> 1 the hard-core bosons are like fermions, while for v <« 1 we can
use a “classical” description. In the latter case the “trajectories” obey the so-called
Gross-Pitaevskii (GP) equation. In fact the parameter v does not appear in the GP
treatment of the model. The only dimensionless parameter of the GP description is

up = N?y = NLmg (17)

We shall refer to it as the “classical” dimensionless parameter, while i = 1/N can be
regarded as the dimensionless Planck constant. Within the framework of the “classical”
(GP) treatment the low excitations of the systems are phonons with sound velocity
¢ = (gp/m)!/?
modes is Ag = m¢/L.

. For a finite length ring the spacing in the frequencies of the phononic

If we add a periodic potential that divides the ring into M sites, we get a system that
possibly can be described by the BHH Eq.. The analogue of the GP is the discrete
nonlinear Schrodinger (DNLS) equation. The distance between the sites is a = L/M
and the average number of particles per site is n = N/M. The effective parameters of
the BHH are accordingly U = g/a and

1 1

_ —S —
K = me 0 = m*aQ (18)

where Sy reflects the height of the barrier. The effective quantum parameter is
. m*g S U
= = e = — 19
7 p 7 nk (19)

This parameter controls the quantum Mott transition. Namely for v* > 1 superfluidity is

diminished if n is close to integer. In addition we can define the “classical” dimensionless
parameter which is analogous to uy, of Eq. as

uy = Mu = N>y (20)

The wuy; parameter controls the DNLS equation, and determines the stability of the
steady flow solutions, as well as the thresholds for self-trapping and soliton formation.
Due to the discretization we have effectively M phononic modes, whose spectrum is
characterized by the cutoff frequency

we = (AUK)Y? ~ M A, (21)

Where A is formally the same as for a continuous ring, but with m*.

For a regular ring with a weak-link the reduction to an effective JCH provides the
following expressions [4]: E¢ = g/L and Er, = p/(mL) and E; = aEy. The parameter
« is controlled by the tunnel-coupling, which is determined by the height of the barrier
at the weak-link. Our derivation in has provided similar expressions, but
there are some differences. First of all the effective mass is of course m* and not m, and
therefore the effective quantum parameter v becomes v*. A secondary difference is that
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Ec¢ = g/L is replaced by Ec = g/L*, where the effective length over which the density
varies might be as small as L* = a. The latter value reflects the extreme case of uniform
distribution of the particles along the ring. Expression Eq.@ for the parameter « can

be written as
a = s _ M e~ (57=50) (22)
Ey
where Sy and S reflect the heights of the barriers in regular bonds, and at the weak-link
respectively.

We turn our attention to the bath. The derivation in shows that
within the bilinear-coupling approximation the effective number of bath DOFs is dy.n =
|(M—2)/2]. Consequently the bath Hamiltonian has the familiar Caldeira-Leggett form
Eq.(7), with m,, = 1/U, and w?, = 2UKR(1 — cosky,), and k,, = mm/(M — 1), and
cm = Kn[2/(M — 1)]*/?sin k,,. From that follows that the dissipation coefficient is

7
RV
In Ref.[4], regarding regular ring, it has been claimed that if (E;/N) < Aq (called there
“the small ring limit”) then the bath can be ignored. In the context of the present Bose-
Hubbard circuit this condition takes the form K’ < w,., meaning that the bath should
have high frequency cutoff compared with the hopping rate. But from the work on the

(23)

spin-boson problem we know that the condition for witnessing coherent oscillation is
n < m which implies that v* should be large compared with unity. We identify that
this is a problematic non-semiclassical regime where the Mott transition takes place.
Namely, for v* > 1 the superfluidity of the system depends sensitively on the filling
ratio N/M. In a grand-canonical perspective the system has the tendency to become a
Mott insulator.



Analysis of the AQUID 15

6. Discussion

We observe that a TLS modeling of quasi-degenerate flow-states in a few-site ring is
feasible, meaning that coherent Rabi oscillations are not over-damped. This is true with
or without a weak-link, and the frequency is possibly determined by chaos-assistance
tunneling. In particular we have demonstrated numerically Rabi oscillations between
metastable flow-states in a non-rotating (® = 0) circuit that consists of M = 4 sites.

We have determines what is the minimal value of o that does not endanger the
meta-stability of the ® = 7 flow-states. Clearly below this minimal value a weak-link is
not useful. From a semi-classical perspective this value is the threshold for the merging
of two stability islands. For large rings, assuming that the JCH phenomenology is valid,
the minimal value is implied by the familiar condition o > . with a. =1 We note that
in a superconducting circuit, due to the Meisner effect, the effective inductance is larger,
and « is typically large.

In the semiclassical perspective the flow-states are supported by a local minimum
of the energy landscape (Landau stability), or by a region that is surrounded by KAM
tori. In the latter case, for rings with M > 3 sites the stabilization is due to a many-
body quantum localization effect, that suppresses the Arnold diffusion. Depending on
the type of states involved, the coupling might be via a forbidden-region (as implied by
the JCH phenomenology), or it might be mediated by a chaotic sea. In the latter case
the chaos-assisted tunneling provides a weaker dependence on the number of particles
involved.

The system plus bath perspective.— Formally the circuit has d = M —1 interacting
DOFs, while in the approximated JCH version we have a single DOF (¢, n) that
interacts with a “bath” that consists of a few DOFs. If the bath is ignored the motion
in the single DOF phase-space is regular, and looks formally the same as that of a
pendulum. If o > a,, a separatrix is formed, hence we have two stability-islands that
can support the two quasi-degenerate flow-states. But if the bath is taken into account,
the projected motion in the (¢, n) coordinates becomes “dressed” and “noisy”, in the
same sense as discussed by Caldeira, Leggett and followers. These effects endanger the
coherent Rabi oscillations.

Large M ring.— Considering a regular ring with bosons one can define the Lieb-
Liniger parameter 7. For v > 1 the quantum effects become important (GP description
becomes problematic), but nevertheless there is no quantum phase-transition from
superfluid to insulator. Considering the BHH ring (Bose gas in an optical lattice),
we have defined an effective v* that corresponds to the effective mass in the lattice. For
~v* > 1 the quantum effects are dramatic, namely, a transition to the Mott-regime, where
depending on the filling-ratio the ring can become a Mott-insulator. But the analysis
shows that v* > 1 is the condition for witnessing coherent Rabi oscillations. So there
is a clash here: on the one hand we want the ring to be in a superfluid phase (avoid
Mott); on the other hand we want to have weak coupling to the bath in order to witness
coherent oscillations.
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Small M ring.— We wanted to understand how this standard JCH phenomenology
is modified if the ring consists of a small number of sites. Then the “bath” consists
of a small number of DOFs and the standard Caldeira-Leggett perspective becomes
questionable. One direction [33] is to say that the interaction with chaotic DOFs is
essentially like the interaction with infinitely many harmonic DOF's, hence coming back
to Caldeira-Leggett phenomenology. This type of argument might work for rings with
M > 6 sites for which the effective number of bath DOFSs is dpan > 2. We did not take
this route here. Rather we discussed the whole issue in a much more fundamental level,
focusing on rings with small number of sites.

Interaction with a chaotic surrounding is the low dimensional version of having a
“bath”. Even for weak chaos there is so-called Arnold-diffusion that is induced by the
stochastic motion (“noise”) of the other DOFs. It follows rigorously that a necessary
condition for the applicability of the “system plus bath” paradigm with regard to a
circuit with a weak-link requires more than 3 sites. But this is not a sufficient condition.
We have emphasized that a JCH modeling implies regular motion up to an energy that
exceeds the barrier height. Such high threshold for chaos is apparently feasible only for
rings that have more than 5 sites.

Acknowledgements.— We thank Luigi Amico for motivating the present study. This
research has been supported by by the Israel Science Foundation (grant No. 29/11).
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Appendix A. Superfluidity in low dimensional circuits

In this Appendix we provide a brief summary for the “big picture” of mesoscopic
superfluidity. The key issue is the meta-stability of the flow-states. We follow [I§],
while some preliminaries regarding the energy landscape and the dynamical stability
issues can be found in [I7] and [34] respectively.

In the conventional “Landau criterion” picture the flow-states are energetically
stable, i.e. they are located in local minima of the energy landscape. Hence they are
separated by a “forbidden region” and the coupling requires tunneling.

But metastability can be achieved even in the absence of energetic-stability. For
M = 3 ring, the flow-state can be dynamically stable, protected in phase-space by
Kolmogorov Arnold and Moser (KAM) tori. Then the generic picture is two islands
that are separated by a chaotic sea, and not by a forbidden region.

For M > 3 rings, the KAM tori are not able to divided phase-space into territories.
The dynamics takes place on an “Arnold web” of resonances. This leads to so-called
Arnold diffusion: if we look on the weak-link degree of freedom (¢, n) we expect to see
diffusion of its energy. We emphasize that such diffusion does not occur in M = 3 ring:
there it is arrested by the KAM tori.

The discussion above might give the impression that flow-states cannot survive
in M > 3 rings. But in fact quantum mechanics saves us: dynamical stability can
be maintained in-spite of Arnold diffusion. This can be regarded as a many-body
localization effect. It follows from the following simple consideration: The time to
escape an Arnold web region might be very long; if the required time is larger than the
quantum breaktime (inverse level spacing) then the escape will never happen.

Appendix B. Definition of the fragmentation measure M

The eigenstates of the Hamiltonian Eq. can be characterized by their fragmentation
M = [trace(p?)] ™!, where the one-body reduced probability matrix is

pij = %(a}aﬁ (B.1)
Roughly speaking M tells us how many orbitals are occupied by the bosons. A
value of M =1 indicates that the state it not fragmented, hence it can be written
as (bL)¥|vacuum). Here bl = 37 ; c?a} creates a particle in some superposition of the
site modes, with coefficients c;? . Such states are the many-body coherent-states in the
generalized sense of Perelomov [35]. Their phase-space representations are minimal
wave packets situated at some point (¢, n) of phase space. A higher value 1 < M < M

indicates that the bosons are fragmented into several orbitals.
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Appendix C. Derivation of the Josephson Circuit Hamiltonian

Consider N Bosons in an M site ring described by the BHH Eq.(I). In the limit
u > M it is common to neglect the fluctuations of the number of atoms in each well
[36], and approximate the Bose-Hubbard model with the so called quantum-phase-model

(“coupled rotors”) which is formally equivalent to an array of Josephson junctions:
M
U _ )
H = Z [5”3 — 1K cos ((gpj+1—g0j) - M)} (C.1)
j=1
Where n; and ¢; are canonically conjugate variables. Without lost of generality, we
can employ a gauge transformation such that the phase ® vanishes at all bonds except

the weak-link. Namely,
M M-1
H = Z Enf —nK Z cos (pjr1—p;) — nK' cos (p1—pn — @) (C.2)
j=1 j=1
With a weak-link K’ < K, the phase difference at the M — 1 regular bonds becomes
small such that cos (¢j11—¢;) ~ 1. The Hamiltonian can then be written, up to a
constant, as:

M =,
W= DGy S ik s =) (€3
The second sum can be written as:
M-1 M—1
Z (<Pj+1—§0j)2 = 7+ ¢ — 20102 — 200190 + Z Aijpip;  (C4)
=1 i,j=2
QO @2 M-—1
= S T —oi(pa T em) — o (pa — par1) + Z Aijpip;  (C.5)
2 2 Py
Where we introduced the notation ¢+ = ¢y £ ¢, and A;; = 26;; — ; j+1. Consequently
U nk
Ho= = (n2+nl)+ o (¢ +¢2) (C.6)
nk
— K" cos (p- — D) — TN [p— (2 — om—1) + P+ (P2 + rr-1)]
M—1 M—1
U nk
+ B 3 + N Z Aijoip;
j=2 i,j=2
The last line can be easily diagonalized:
M—1 M—1 M—2
U 5, nK U_y  wi o
j= 1,j=2 m=1
with
w2 =2UKn(1 — cosk,,) (C.8)
km =mm/(M — 1) (C.9)
5 M—1
P = 71 % Z sin [kn(J — 1)] ¢4 (C.10)
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Due to the reflection symmetry of the “chain” (j = 2,..,M — 1), the m = odd and
m = even modes are symmetric and anti-symmetric respectively. The coupling term
v+ (2 £ @pr—1) can be expressed as follows:

o M2— T X : [sin (ky,) £ sin (kp (M — 2))] @m (C.11)
=y MQ_ - % 2 sin (k) [1£ (1) '] ¢ (C.12)

We see that ¢, is coupled only to the symmetric modes (m = odd), while ¢_ is
coupled only to the anti-symmetric modes (m = even). With the above substitutions
the Hamiltonian takes the form:

nK
H = % (n> +n%) + nT (¢* + %) — nK'cos (o — ®) (C.13)
M—2 M—2 M—2 U 2
- Y- Z Cm(ﬁm — P+ Z Cm@m + Z (Eﬁgn + ﬁ@gn) (014)
m=even m=odd m=1
with
cm = Kn[2/(M —1)]Y?sinky, (C.15)

The Hamiltonian consist of the two freedoms 1. which are coupled to an harmonic bath
of M—2 DOFs. But in-fact only the weak-link DOF v _ and the m = even modes of the
bath are of interest. The freedom ), can be thought of as a part of the m = odd modes
of the bath, which does not interact with the weak-link. So that the relevant part of
the Hamiltonian is:

nk
’H:Un2+nTg02—ﬁK’cos(go—<I>) (C.16)
M—2 M2 2
o 3 it Y (Gt tg) (€17)

where we have changed the notations, namely ¢ = ¢_ and the conjugate n = n_/2.
The effective number of bath DOF's is

dpatn = [(M—2)/2] (C.18)

Re-writing the bath in the standard Caldeira-Leggett form Eq. the JCH takes the
form

nk
In order to get Eq.(@ one has to do some algebra with the counter-term:
M—2 M—-2 .
Uc? nk sin? k
‘/coun er — 2 m— — T C.20
‘ 7 2wl 7 2(M —1) mgv:en 1 — cosky, ( )

k 1 /M-3
_ S cos? (M) = 2 e 2
@M—l 2 cos (2) 4(M_1)nkg0 (C.21)
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