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Abstract. We study the Atomtronics Quantum Interference Device employing a

semiclassical perspective. We consider an M site ring that is described by the Bose-

Hubbard Hamiltonian. Coherent Rabi oscillations in the flow of the current are feasible,

with an enhanced frequency due to to chaos-assisted tunneling. We highlight the

consequences of introducing a weak-link into the circuit. In the latter context we clarify

the phase-space considerations that are involved in setting up an effective “systems plus

bath” description in terms of Josephson-Caldeira-Leggett Hamiltonian.

1. Introduction

Atomtronics is a new quantum technology [1, 2], with potential for novel quantum

computing implementations [3, 4, 5, 6]. Theory and experiments with Atomtronic

superfluid circuits are in the focus of current research [7, 8, 9, 10]. A major objective

is to realize a Quantum Interference Device (AQUID) that possibly includes one or

two weak-links [11]. This is analogous to a superconducting circuit, or to its low

dimensional version (fluxon, Josephson vortex qubit) [12, 13, 14, 15]. However the

design considerations of such device are still somewhat vague.

We study an Atomtronic superfluid circuit that is described by the Bose-Hubbard

Hamiltonian (BHH) [5]. Namely, we consider N bosons in an M site rotating ring

such that the model parameters are (N,M,K,U,Φ), where K is the hopping frequency

between the sites, U is the on-site interaction, and the rotation is formally equivalent to

having an Aharonov-Bohm flux Φ. If a weak-link is introduced, there is an additional

parameter α that characterizes the relative strength of the coupling.

For the purpose of qubit realization, the objective is to single out a two-level system

(TLS) that is quasi-isolated from all the other microscopic degrees of freedom (DOFs).

In the present context there are two flow-states that differ by their “winding number” m,

meaning that they are characterized by a different value of the persistent current (Im).

The flow-states are required to be meta-stable, meaning that each of them will not

decay in time. If they are quasi-degenerate, one would like to witness coherent Rabi

oscillations. During a Rabi-based protocol the system evolves into a superposition of

macroscopically distinct flow-states [16].
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The introduction of a weak-link allows control over the coupling ∆s between the

flow-states. Without a weak-link this coupling might be too small for operational

purpose, meaning that the time period (2π/∆s) of coherent Rabi oscillations might

become too large for practical implementations. On the other hand if the relative

strength of the weak-link (α) is smaller than some critical value, then the meta-stability

is destroyed, which is effectively like having a disconnected ring. The dependence of ∆s

on N and on M in the case of an AQUID has been recently addressed in Ref.[6] following

[10], highlighting the subtle interplay of interactions and quantum fluctuations. The

present work is in a sense complementary and provides a semi-classical perspective for

the analysis of a few-site ring that is described by the BHH, with or without a weak-link.

Formally our BHH system has d = M−1 coupled DOFs: the dimer (M = 2) is

the so-called bosonic Josephson junction; while the trimer (M = 3) is the minimal

superfluid circuit. Our main focus is on BHH circuits with small number of sites. The

following specific questions arise: (A) In what range of the model parameters is it

possible to have metastable flow-states? (B) Can we treat two quasi-degenerate flow-

states as a coherent two-level-system? If yes, (C) how the frequency of the coherent

Rabi oscillation is determined? And if a weak-link is introduces then, (D) can we

derive the dynamics from an effective “system plus bath” Hamiltonian. Question (A)

has been partially addressed in our previous publications [17, 18], and its physics is

briefly summarized in Appendix A. In the present work we would like to further address

questions (B-D).

Our main observations are: (1) In the absence of a weak-link, coherent Rabi

oscillations are feasible, with frequency that is possibly determined by chaos-assistance

tunneling, leading to weaker dependence on the number of particles. (2) In particular

we demonstrate numerically Rabi oscillations between metastable flow-states in a non-

rotating (Φ = 0) circuit that consists of M = 4 sites. (3) We find what is the critical

strength of a weak-link, below which superfluidity is diminished. (4) We illuminate how

our considerations connect with the familiar “system plus bath” framework of Caldeira

and Leggett. (5) We show that with weak-link the threshold to chaos is pushed

up in energy, which is a necessary condition for the validity of the single Josephson-

junction description. (6) We point out that the requirement for observing coherent

Rabi oscillation in large M rings might be in clash with the quantum Mott transition.

The outline is as follows: In Section 2 we introduce the model and the methods; In

Section 3 we discuss the coherent dynamics in the absence of a weak-link. In Sections 4

and 5 we analyze how a weak-link affects a ring with few or many sites respectively. We

care to make a bridge between the semiclassical and the “system plus bath” perspectives.

Finally we summarize the overall picture in Section 6.
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2. Model and Methods

We consider N Bosons in an M site ring that is described by the Bose-Hubbard

Hamiltonian (BHH):

HBHH =
M∑
j=1

[
U

2
nj(nj − 1)− Kj

2

(
ei(Φ/M)a†j+1aj + h.c.

)]
. (1)

where aj (a†j) are bosonic annihilation (creation) operators on the jth site, and

nj = a†jaj is the corresponding number operator. Periodic boundaries are imposed,

meaning that aM ≡ a0. The parameter U takes into account the finite scattering

length for the atomic two-body collisions on the same site. The hopping parameters

are constant Kj = K except in the weak-link where it is K ′. The ring is pierced by

an artificial (dimensionless) magnetic flux Φ, which can be experimentally induced for

neutral atoms as a Coriolis flux by rotating the lattice at constant velocity [19, 20], or as

a synthetic gauge flux by imparting a geometric phase directly to the atoms via suitably

designed laser fields [21, 22, 23]. The presence of the flux Φ in Eq.(1) has been taken

into account through the Peierls substitution: Kj → e−i(Φ/M)Kj.

In the quantum analysis, we diagonalize Eq.(1), and display the spectrum as in

Fig.1a. For each eigenstate Eν we calculate the fragmentation measureM as defined in

Appendix B, while the average current is obtained using the following formula:

Iν =

〈
Eν

∣∣∣∣−∂H∂Φ

∣∣∣∣Eν〉 (2)

In a classical context the average is taken over time for a very long trajectory.

2.1. Semiclassical perspective

For the purpose of semiclassical analysis it is convenient to write the BHH using action-

angle variables: a 7→
√
neiϕ. Accordingly the Hamiltonian describes an M degrees of

freedom (DOFs) system, namely,

H =
M∑
j=1

[
U

2
n2
j −Kj

√
nj+1nj cos

(
ϕj+1−ϕj −

Φ

M

)]
(3)

Since the total number of particles N =
∑

nj is a constant of motion of the

system, the Hamiltonian above describes d = M−1 coupled pendula. The interaction is

characterized by the dimensionless parameter

u =
NU

K
(4)

The classical dynamics is governed by

ż = J∂H, J ≡

(
0 I
−I 0

)
(5)

where z ≡ (ϕ1, · · · ,ϕM ,n1, · · · ,nM) are the canonical coordinates. The notation ∂µ
stands for derivative with respect to zµ, and J is the symplectic matrix. It is important
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to emphasize that upon re-scaling the only dimensionless parameters that affect the

classical trajectories are (u,Φ) and K ′/K. The effective Planck constant is ~ = 1/N .

The latter parameter, does not appear in the “classical” equations of motion Eq.(5),

but only in the full quantum treatment of Eq.(1).

2.2. System plus bath perspective

The conventional approach for analyzing a SQUID/AQUID is based on a “system plus

bath” perspective. This perspective becomes meaningful once a weak-link is introduced,

which is like having a “slow DOF”. In order to motivate the conventional phenomenology

one can regard the BHH Eq.(3) as describing masses that are connected by nonlinear

springs. If one spring is very “weak”, then at low energies the equal-partition theorem

justifies an harmonic approximation for the small vibrations of the other springs.

Accordingly we can regard the system has having one non-linear DOF (”pendulum”)

coupled to phonons (”harmonic bath”). The canonical coordinates that describe the

weak-link are the phase difference ϕ = (ϕM −ϕ1), and its conjugate n = (nM − n1)/2.

Hence we obtain the Josephson Circuit Hamiltonian (JCH)

HJCH = EC n2 +
1

2
ELϕ

2 − EJ cos(ϕ− Φ) +Hbath (6)

with EC = U , and EL = [(N/M)/(M − 1)]K, and EJ = (N/M)K ′. The bath

Hamiltonian has the standard Caldeira-Leggett form

Hbath =
∑
m

(
1

2mm

ñ2
m +

1

2
mmω

2
m

(
ϕ̃m −

cm
mmω2

m

ϕ

)2
)

(7)

For small M the “bath” is merely a set of several oscillators, and possibly can be

neglected, because the ωm are typically large compared with the natural frequency of

the junction. For large M one can characterize the bath oscillators by an Ohmic spectral

function

J(ω) ≡ π

2

∑
m

c2
m

mmωm
δ(ω − ωm) = ηω (ω < ωc), (8)

The detailed derivation and the explicit expressions for the bath parameters in terms

of the BHH parameters are presented in Appendix C, and will be further discussed in

a later section. We note that in [12, 5, 14] the finite-temperature partition-function of

the BHH ring has been introduced, and the reduced “system plus bath” action has been

deduced. From the reduced action one could figure-out what is the effective JCH. In the

present approach to the same system, we do not assume finite temperature, but merely

re-arrange the Hamiltonian in a way that allows a “system plus bath” description. This

is a valid procedure even if the ring is prepared (say) in a micro-canonical state with

some arbitrary energy E. One may say that in our treatment E/M plays the role of the

temperature.

Within the framework of the JCH treatment, the possibility of having metastable
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flow-states is controlled by the parameter

α ≡ EJ
EL

= (M − 1)
K ′

K
(9)

For Φ = π the condition for having at least two local minima in the potential floor of

the JCH, is α > αc, where αc = 1. Disregarding small quantum fluctuations, the two

local minima can support a quasi-degenerate pair of flow-states. If the bath is ignored,

then from the WKB approximation it follows that the tunnel splitting is given by some

variation of the following expression [12]

∆s ≈
√
ECEJ exp

[
−C
√
EJ
EC

]
(10)

where C is a numerical prefactor. We would like to emphasize that there are several

variations of this formula, depending on the relative size of (EC , EL, EJ), but they are

all based on the assumption that Eq.(6) is a valid description.

2.3. Two-level system perspective

The objective is obviously to realize a two-level system (TLS) that is quasi-isolated from

all the other microscopic DOFs [24, 25, 3, 26, 27, 28, 6]. In the present context there

are two flow-states that differ by their “winding number” m, meaning that they are

characterized by a different value of the persistent current (Im). We label these states

as � and 	, and write the TLS Hamiltonian as

HTLS =

(
E� ∆s/2

∆s/2 E	

)
(11)

We refer to ∆s as the splitting: if we draw the eigenenergies versus Φ we get an avoided

crossing. The flow-states are required to be meta-stable, meaning that each of them

will not decay in time. If they are quasi-degenerate, one would like to witness coherent

Rabi oscillations. The quasi-degeneracy is controlled by Φ, and happens for Φ = 0 (say

m = ±1) or for Φ = π (say m = 0, 1). During the Rabi oscillation the system evolves

into a superposition of these macroscopically distinct flow-states. Such superposition is

commonly termed “cat state”.

The conventional procedure to engineer a TLS is as follows: (i) To introduce a

ring with a weak-link; (ii) To ensure that the weak-link DOF is only weakly-coupled

to all the other ring DOFs; (iii) To analyze the operation of the device using the

“system plus bath” paradigm of Caldeira and Leggett. The introduction of a weak-

link allows the reduction of the many-body BHH Eq.(1) into the simpler JCH Eq.(6).

Furthermore it allows control over the coupling ∆s between the flow-states. Without a

weak-link this coupling might be too small for operational purpose, meaning that the

time period (2π/∆s) of coherent Rabi oscillations might become too large for practical

implementations.

If the bath is taken into account then there are two effects. One is “dressing” of the

bare parameters, and the other is “noise”. It is well known from the work of Caldeira
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and Leggett that coherent Rabi oscillations can be observed provided η < ηc, where ηc
is of order unity (ηc = π for the spin-boson model). We shall come back to this issue

when we discuss the large M limit.

3. Coherent dynamics in the absence of a weak-link

The stationary orbitals of a single particle in a clean ring are the momentum states with

wavenumber k = (2π/M)m, where m is an integer modulo M . Coherent flow-states have

N particles condensed into the same momentum orbital:

|m〉 ≡
(
ã†m
)N |0〉 (12)

Implying a macroscipically large current

Im = N ×
(
K

M

)
sin

(
1

M
(2πm− Φ)

)
(13)

In the absence of interaction (U = 0) these coherent flow-states are the eigenstates of the

BHH. For Φ = π the m = 0 and m = 1 flow-states are degenerate in energy. If we add

not-too-strong interaction they become coupled and may form a doublet whose dynamics

is generated by the TLS Hamiltonian Eq.(11). The energy-difference δE ≡ E� − E	 is

determined by the deviation δΦ ≡ (Φ − π), and the coupling ∆s is determined by the

strength of the interaction. An example for such doublet if provided in Fig.1.

Assuming that we have a TLS doublet of flow-states with energy splitting ∆s, one

would expect to witness pure Rabi oscillations. If the system has been prepared (say)

in a flow-state with clockwise current, the subsequent evolution would be

|Ψ(t)〉 = cos

(
∆st

2

)
| �〉 − i sin

(
∆st

2

)
| 	〉 (14)

implying alternating current with frequency ∆s, namely,

〈I(t)〉 = cos2

(
∆st

2

)
I� + sin2

(
∆st

2

)
I	 (15)

If we add weak-link or weak-disorder, the flow-states remain stable, provided the

perturbation is not too strong. This is the essence of superfluidity. The stability is

due to the non-zero interaction U . The interaction stabilizes the flow-states: instead

of being located on a flat potential floor, the flow-states are located in local minima

of the potential floor. Local minima are structurally-stable with respect to the added

disorder, i.e. the local minima do not diminished by a weak perturbation. The common

conception is that the two minima are separated by a “forbidden region”. This is the

same reasoning that leads to Eq.(10), but here we refer to the multi-dimensional phase-

space of the BHH Eq.(3) and not to the reduced single DOF description of Eq.(6).

Nevertheless, both perspectives connect smoothly. Namely, we can write Eq.(10) in a

way that illuminates the semiclassical expression for tunnel-splitting:

∆s ∼ ∆0 exp

[
−CM

~

√
α

u

]
(16)
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where ~ = 1/N , while (u, α) are the “classical” parameters, and the prefactor CM
has some dependence on M . In the absence of a weak-link one formally makes the

substitution α 7→ (M−1) as implied by Eq.(9). The energy scale ∆0 ≡ (ELEC)1/2 is

like the “attempt frequency” of the Gamow-formula. In a later section we identify ∆0

as the frequency spacing between the phononic modes.

In the JCH based picture, the splitting ∆s is exponentially small in N due to

the existence of a classically “forbidden region” between the two local minima, which

necessitates tunneling. This very small ∆s creates difficulties in witnessing coherent

two-level dynamics in such configuration. In order to have a bigger ∆s a smaller α is

required. But is should not be smaller than αc = 1 else the meta-stability is diminished.

Note also that there is a trade-off between the weakness of the link and the quality of

the superposition state [27].

The question arises whether one can manage without introducing a weak-link. In

fact there is a loophole. In order to realize this loophole, one should be aware, following

[18], that there are novel flow-states that are not supported by local minima of the

potential, but by a “stability island” or by a “chaotic pond”, or by an “Arnold web”

region. We summarize all these possibilities in Appendix A - the exact details are

not important. The important point is that the phase-space locations, where the flow-

states reside, are not separated by a “forbidden region”. Instead they are separated

by a “chaotic-sea”. A visualization of this possibility is provided by the quantum

spectrum in Fig.2, which should be contrasted with that of Fig.1. The way we plot

the quantum spectrum (following [18]) is in one-to-one correspondence with a section of

the classical phase-space: In Fig.1 the two flow-states at the bottom are separated by a

“forbidden region” where no states can reside; In contrast to that, in Fig.2, between the

two metastable states there are many other states with roughly the same energy that

reside in the “chaotic-sea”.

If the coupling between the quasi-degenerate eigenstates is mediated by a chaotic

sea, then ∆s is much larger. This is known as chaos-assisted tunneling [29, 30, 31, 32].

Possibly the term tunneling is not the best description for the mathematics that is

involved. The rough idea is that the quantum-coupling between the two metastable

states is mediated by some intermediate state in the chaotic sea. The coupling is

roughly estimated using second-order perturbation theory as ∆s ∼ U2/∆, where ∆ is the

detuning from exact resonance. This expression does not contain a WKB suppression

exponent, so it is not small, but nevertheless it is very sensitive to the model parameters,

as in the theory of universal conductance fluctuations.

In Fig.2 we provide a numerical demonstration of chaos-assisted Rabi oscillations.

In this example the device is non-rotating (Φ=0), and the Rabi oscillations are between

the metastable m = ±1 flow-states. The dependence of ∆s on the number of particles

for “chaos assisted tunneling” is contrasted with “under the barrier tunneling” in Fig.3.

Summarizing this section, we observe that the coupling between metastable flow-

states can be via chaos-assisted tunneling, implying a relatively large ∆s when compared

with the conventional expectation. A weak-link in a few-site ring is not essential for
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Figure 1. Spectrum of M=3 ring with N=24 bosons, interaction u=5, and Φ∼π
rotation (left panel, a); accompanied with simulation of Rabi oscillations for Φ = π

rotation (right panel, b). The units of time (here and in the subsequent figures) are

fixed by the hopping frequency K = 1. In (a) each point represents an eigenstate,

positioned according to its energy Eν (vertical axis) and its current Iν (horizontal

axis). The current is in units of NK/M . The color encodes the fragmentation of

each eigenstate (blue M ∼ 1 to red M ∼ M). The quasi-degenerate flow-states

at the bottom of the energy landscape are energetically-stable (“Landau stability”)

and are separated by a forbidden-region. The tunnel-coupling allows coherent Rabi

oscillations with extremely slow frequency ∆s. If we did not slightly perturbed Φ,

the diagonalization would give zero current cat-states (symmetric and anti-symmetric

superposition of the pertinent flow-states). In (b) the initial state is an m = 1 coherent

state, and the system has exactly Φ=π rotation. This initial state has large overlap with

the pair of quasi-degenerate cat eigenstates. Consequently we observe Rabi oscillations

of the current with frequency ∆s that is determined by the tunnel coupling.
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Figure 2. Spectrum of M=4 ring with N=16 bosons, interaction u=1 and

Φ ∼ 0 rotation (left panel, a); accompanied with simulation of Rabi oscillations (right

panel ,b). Here the quantum meta-stability of the flow-states m = ±1 is related to

quantum localization on an Arnold web. The coupling is mediated by a chaotic sea.

Consequently we observe chaos-assisted coherent Rabi oscillations with relatively short

period, which is important for practical qubit implementation.
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Figure 3. The frequency of the Rabi oscillations ∆s is plotted as a function of the

number of particles N , for an M = 4 site ring. The “classical” parameter u = 1 is

kept constant. The lower curve is the ∆s for oscillations between m = 0 and m = 1 at

Φ = π. The upper curve is the ∆s for oscillations between m = +1 and m = −1 for

Φ = 0. The large ∆s in the latter case is due to chaos-assisted tunneling.

getting large ∆s. In fact its introduction is likely to be harmful for the device operation

(see next section).

4. weak-link in a few site ring

In this section we discuss what happens if a weak-link is introduced into a ring that

has a small number of sites (M = 3, 4). In particular we ask what remains of the

JCH phenomenology. The first implication of the JCH phenomenology is the prediction

of a critical α below which a quasi-degenerate doublet of flow states cannot exist. If

we naively use Eq.(9) we deduce that the condition α > 1 for getting such doublet is

K ′/K > 1/2 for M = 3 and K ′/K > 1/3 for M = 4. In order to inquire what is the

actual threshold we plot quantum spectra for various values of u and K ′/K. See Fig.4.

We look for doublets at the bottom of the spectrum. A practical measure for that is

M = [trace(ρ2)]−1, where ρ is the reduced one-body probability matrix, see Appendix

B. The value of M indicates the fragmentation of the many-body state. It is M = 1

for a coherent state, andM∼M for a quantum-ergodic state. In the case of a doublet

the ground-state becomes a superposition of two coherent states henceM∼ 2. Looking

at Fig.4 we see that for rings with M = 3, 4 sites, the α border is slightly higher than

expected. We have verified using Poincare sections (see below) that for large u the

border is in agreement with αc = 1. For completeness we also show that for very large u

(of order N2) the value of M for the ground-state becomes of order M , reflecting the

Mott transition [17].

To understand what determines the αc border we display in Fig.5 so-called Poincare

sections of classical trajectories that are generated by the Hamiltonian Eq.(3). Namely,

for display purpose a pair of canonical coordinates (Q,P ) is selected, and for each

trajectory the sequence of points (Q(tj), P (tj)) where it intersects a specified phase-
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Figure 4. The fragmentation (M) of the ground state is imaged as a function of u and

K ′/K for M=3 ring with N=30 particles (left) and for M=4 ring with N=20 particles

(right). The value M = 1 indicates a coherent state (all particles are condensed in a

single orbital). The value of M∼ 2 indicates quasi degeneracy of the ground state (a

doublet of flow-states). The valueM∼M indicates a fragmented state: here it is due

to the quantum Mott transition. The vertical dashed line corresponds to the αc = 1

border, which in the absence of a Mott transition would become valid for large u.
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Figure 5. Quantum spectrum (upper panels) and phase-space landscape (lower

panels). The quantum spectra are for an M=3 ring with N=45 particles, dimensionless

interaction u = 2.5, and weak-link coupling ratio K ′/K = 1, 0.8, 0.65, 0.4 (from left to

right). Axes and and color code are the same as in Fig.1. In each case an n3−n1 = 0

Poincare section is displayed. The section coordinates are Q = (n1 − n2)/(2N) and

P = (ϕ1 − ϕ2). The energy is chosen to be slightly above the ground state. The solid

black line marks the borders of the allowed phase-space regions. The outer regions

are “forbidden” energetically. The color code represents the averaged current for

each classical trajectory: red for larger clockwise current; blue for large anti-clockwise

current; and yellow-to-green for very small current.
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Figure 6. The energy landscape of the Josephson circuit Hamiltonian. Here the

vertical axis represents the energy Eϕ of the weak-link DOF (the total energy E should

include the bath DOFs as well). The dashed line indicates the threshold Eu for chaotic

motion. Trajectories below Eu are quasi-regular. The JCH description is valid if Eu
is located well above Eb.

space section is recorded. We see clearly that in the α < αc regime the two stability

islands merge, reflecting that we no longer have the “double well” structure in phase

space.

But this is not enough. The JCH should be trusted also when we analyze tunneling

or phase-slips through the forbidden region. For this purpose it should describe correctly

the dynamics up to some energy well above the barrier. This means the threshold Eu
for chaotic motion should be above the threshold Eb for barrier crossing. See illustration

in Fig.6. We therefore plot in Fig.7b, a Poincare section for an energy that is slightly

above Eb. What we see is that trajectories that go across the barriers are chaotic rather

than regular. This indicates that a JCH description of the dynamics is in fact not valid.

Let us try to understand the reason for the failure of the JCH description. In the

vicinity of a single flow-state worst case scenario is that a phase difference π has to be

supported by the ring. The harmonic approximation requires π/(M − 1) < π/2 on each

bond. This is marginally satisfied for M = 3. But if we want the JCH description to be

valid over a 2π range of ϕ, then the requirement becomes 2π/(M − 1) < π/2, meaning

we have to consider rings with M ≥ 5 sites. Similar claim has appeared in [12]. In Fig.8

we verify that for an M = 6 ring with weak-link the chaos border Eu is indeed well

above the barrier energy Eb. Up to Eu the dynamics looks like that of a pendulum that

is slightly affected by the other “bath” DOFs. Above Eu the motion becomes chaotic

and the JCH description is no longer applicable.
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Figure 7. Poincare sections at different energies. Panel (a) is a zoomed version of

Fig.5b. Panels (b) and (c) are for the same model parameters but the total energy

is, respectively, E/N = −0.036 (slightly above the barrier energy Eb) and E/N = 1.48

(close to the upper most energy in the spectrum). In each panel all the trajectories

have the same total energy. But if we subtract the bath energy, they correspond

to the different trajectories of Fig.6. In panel (c) the island contain self-trapped

trajectories, hence it can support self-trapped states (condensation in one site). This

should be contrasted with panel (a) where the two islands can support different flow-

states (condensation in momentum).
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Figure 8. Representative (ϕ(t), n(t)) trajectories of an M=6 ring with weak-link.

The lower panels are for the weak-link energy Eϕ(t) measured relative to the top of the

barrier. The system parameters are u=200, andKJ/K=0.3, and Φ=π. In all the panels

the initial condition is in the vicinity of the barrier, with equal populations nj = N/6.

The actual starting point is with n1 = (1/6 + δ)N and n6 = (1/6− δ)N . In (a) the

junction energy is mostly below the barrier (δ = 0.01), and we see that the dynamics

is in qualitative agreement with the JCH: we observe regular flow-motion with rare

jumps to the opposing flow-motion due to an activation by the “bath” DOFs. In (b)

the junction energy is above the barrier (δ = 0.08), and we still observe pendulum-

like regular motion. In (c) the energy is above the chaos threshold (δ = 0.16), and

we get irregular chaotic motion that is no longer described by the JCH. This should

be contrasted with the M = 3 trajectories of Fig.7b where the chaos threshold Eu
coincides with Eb, invalidating the JCH phenomenology.
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5. weak-link in a many site ring

Consider N bosons in a ring of length L, such that the average density is ρ = N/L. The

so called Lieb-Liniger parameter that controls the quantum aspect of the interaction is

γ = mg/ρ. For γ � 1 the hard-core bosons are like fermions, while for γ � 1 we can

use a “classical” description. In the latter case the “trajectories” obey the so-called

Gross-Pitaevskii (GP) equation. In fact the parameter γ does not appear in the GP

treatment of the model. The only dimensionless parameter of the GP description is

uL = N2γ = NLmg (17)

We shall refer to it as the “classical” dimensionless parameter, while ~ = 1/N can be

regarded as the dimensionless Planck constant. Within the framework of the “classical”

(GP) treatment the low excitations of the systems are phonons with sound velocity

c = (gρ/m)1/2. For a finite length ring the spacing in the frequencies of the phononic

modes is ∆0 = πc/L.

If we add a periodic potential that divides the ring into M sites, we get a system that

possibly can be described by the BHH Eq.(1). The analogue of the GP is the discrete

nonlinear Schrodinger (DNLS) equation. The distance between the sites is a = L/M

and the average number of particles per site is n̄ = N/M . The effective parameters of

the BHH are accordingly U = g/a and

K =
1

ma2
e−S0 ≡ 1

m∗a2
(18)

where S0 reflects the height of the barrier. The effective quantum parameter is

γ∗ ≡ m∗g

ρ
= γeS0 =

U

n̄K
(19)

This parameter controls the quantum Mott transition. Namely for γ∗ > 1 superfluidity is

diminished if n̄ is close to integer. In addition we can define the “classical” dimensionless

parameter which is analogous to uL of Eq.(17) as

uM = Mu = N2γ∗ (20)

The uM parameter controls the DNLS equation, and determines the stability of the

steady flow solutions, as well as the thresholds for self-trapping and soliton formation.

Due to the discretization we have effectively M phononic modes, whose spectrum is

characterized by the cutoff frequency

ωc = (n̄UK)1/2 ∼ M ∆0 (21)

Where ∆0 is formally the same as for a continuous ring, but with m∗.

For a regular ring with a weak-link the reduction to an effective JCH provides the

following expressions [4]: EC = g/L and EL = ρ/(mL) and EJ = αEL. The parameter

α is controlled by the tunnel-coupling, which is determined by the height of the barrier

at the weak-link. Our derivation in Appendix C has provided similar expressions, but

there are some differences. First of all the effective mass is of course m∗ and not m, and

therefore the effective quantum parameter γ becomes γ∗. A secondary difference is that
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EC = g/L is replaced by EC = g/L∗, where the effective length over which the density

varies might be as small as L∗ = a. The latter value reflects the extreme case of uniform

distribution of the particles along the ring. Expression Eq.(9) for the parameter α can

be written as

α ≡ EJ
EL

= M e−(SJ−S0) (22)

where S0 and SJ reflect the heights of the barriers in regular bonds, and at the weak-link

respectively.

We turn our attention to the bath. The derivation in Appendix C shows that

within the bilinear-coupling approximation the effective number of bath DOFs is dbath =

b(M−2)/2c. Consequently the bath Hamiltonian has the familiar Caldeira-Leggett form

Eq.(7), with mm = 1/U , and ω2
m = 2UKn̄(1 − cos km), and km = πm/(M − 1), and

cm = Kn̄[2/(M − 1)]1/2 sin km. From that follows that the dissipation coefficient is

η =
π√
γ∗

(23)

In Ref.[4], regarding regular ring, it has been claimed that if (EJ/N)� ∆0 (called there

“the small ring limit”) then the bath can be ignored. In the context of the present Bose-

Hubbard circuit this condition takes the form K ′ � ωc, meaning that the bath should

have high frequency cutoff compared with the hopping rate. But from the work on the

spin-boson problem we know that the condition for witnessing coherent oscillation is

η < π which implies that γ∗ should be large compared with unity. We identify that

this is a problematic non-semiclassical regime where the Mott transition takes place.

Namely, for γ∗ > 1 the superfluidity of the system depends sensitively on the filling

ratio N/M . In a grand-canonical perspective the system has the tendency to become a

Mott insulator.
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6. Discussion

We observe that a TLS modeling of quasi-degenerate flow-states in a few-site ring is

feasible, meaning that coherent Rabi oscillations are not over-damped. This is true with

or without a weak-link, and the frequency is possibly determined by chaos-assistance

tunneling. In particular we have demonstrated numerically Rabi oscillations between

metastable flow-states in a non-rotating (Φ = 0) circuit that consists of M = 4 sites.

We have determines what is the minimal value of α that does not endanger the

meta-stability of the Φ = π flow-states. Clearly below this minimal value a weak-link is

not useful. From a semi-classical perspective this value is the threshold for the merging

of two stability islands. For large rings, assuming that the JCH phenomenology is valid,

the minimal value is implied by the familiar condition α > αc with αc = 1 We note that

in a superconducting circuit, due to the Meisner effect, the effective inductance is larger,

and α is typically large.

In the semiclassical perspective the flow-states are supported by a local minimum

of the energy landscape (Landau stability), or by a region that is surrounded by KAM

tori. In the latter case, for rings with M > 3 sites the stabilization is due to a many-

body quantum localization effect, that suppresses the Arnold diffusion. Depending on

the type of states involved, the coupling might be via a forbidden-region (as implied by

the JCH phenomenology), or it might be mediated by a chaotic sea. In the latter case

the chaos-assisted tunneling provides a weaker dependence on the number of particles

involved.

The system plus bath perspective.– Formally the circuit has d = M−1 interacting

DOFs, while in the approximated JCH version we have a single DOF (ϕ,n) that

interacts with a “bath” that consists of a few DOFs. If the bath is ignored the motion

in the single DOF phase-space is regular, and looks formally the same as that of a

pendulum. If α > αc, a separatrix is formed, hence we have two stability-islands that

can support the two quasi-degenerate flow-states. But if the bath is taken into account,

the projected motion in the (ϕ,n) coordinates becomes “dressed” and “noisy”, in the

same sense as discussed by Caldeira, Leggett and followers. These effects endanger the

coherent Rabi oscillations.

Large M ring.– Considering a regular ring with bosons one can define the Lieb-

Liniger parameter γ. For γ > 1 the quantum effects become important (GP description

becomes problematic), but nevertheless there is no quantum phase-transition from

superfluid to insulator. Considering the BHH ring (Bose gas in an optical lattice),

we have defined an effective γ∗ that corresponds to the effective mass in the lattice. For

γ∗ > 1 the quantum effects are dramatic, namely, a transition to the Mott-regime, where

depending on the filling-ratio the ring can become a Mott-insulator. But the analysis

shows that γ∗ > 1 is the condition for witnessing coherent Rabi oscillations. So there

is a clash here: on the one hand we want the ring to be in a superfluid phase (avoid

Mott); on the other hand we want to have weak coupling to the bath in order to witness

coherent oscillations.
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Small M ring.– We wanted to understand how this standard JCH phenomenology

is modified if the ring consists of a small number of sites. Then the “bath” consists

of a small number of DOFs and the standard Caldeira-Leggett perspective becomes

questionable. One direction [33] is to say that the interaction with chaotic DOFs is

essentially like the interaction with infinitely many harmonic DOFs, hence coming back

to Caldeira-Leggett phenomenology. This type of argument might work for rings with

M ≥ 6 sites for which the effective number of bath DOFs is dbath ≥ 2. We did not take

this route here. Rather we discussed the whole issue in a much more fundamental level,

focusing on rings with small number of sites.

Interaction with a chaotic surrounding is the low dimensional version of having a

“bath”. Even for weak chaos there is so-called Arnold-diffusion that is induced by the

stochastic motion (“noise”) of the other DOFs. It follows rigorously that a necessary

condition for the applicability of the “system plus bath” paradigm with regard to a

circuit with a weak-link requires more than 3 sites. But this is not a sufficient condition.

We have emphasized that a JCH modeling implies regular motion up to an energy that

exceeds the barrier height. Such high threshold for chaos is apparently feasible only for

rings that have more than 5 sites.

Acknowledgements.– We thank Luigi Amico for motivating the present study. This

research has been supported by by the Israel Science Foundation (grant No. 29/11).
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Appendix A. Superfluidity in low dimensional circuits

In this Appendix we provide a brief summary for the “big picture” of mesoscopic

superfluidity. The key issue is the meta-stability of the flow-states. We follow [18],

while some preliminaries regarding the energy landscape and the dynamical stability

issues can be found in [17] and [34] respectively.

In the conventional “Landau criterion” picture the flow-states are energetically

stable, i.e. they are located in local minima of the energy landscape. Hence they are

separated by a “forbidden region” and the coupling requires tunneling.

But metastability can be achieved even in the absence of energetic-stability. For

M = 3 ring, the flow-state can be dynamically stable, protected in phase-space by

Kolmogorov Arnold and Moser (KAM) tori. Then the generic picture is two islands

that are separated by a chaotic sea, and not by a forbidden region.

For M > 3 rings, the KAM tori are not able to divided phase-space into territories.

The dynamics takes place on an “Arnold web” of resonances. This leads to so-called

Arnold diffusion: if we look on the weak-link degree of freedom (ϕ, n) we expect to see

diffusion of its energy. We emphasize that such diffusion does not occur in M = 3 ring:

there it is arrested by the KAM tori.

The discussion above might give the impression that flow-states cannot survive

in M > 3 rings. But in fact quantum mechanics saves us: dynamical stability can

be maintained in-spite of Arnold diffusion. This can be regarded as a many-body

localization effect. It follows from the following simple consideration: The time to

escape an Arnold web region might be very long; if the required time is larger than the

quantum breaktime (inverse level spacing) then the escape will never happen.

Appendix B. Definition of the fragmentation measure M

The eigenstates of the Hamiltonian Eq.(1) can be characterized by their fragmentation

M = [trace(ρ2)]−1, where the one-body reduced probability matrix is

ρij =
1

N
〈a†jai〉 (B.1)

Roughly speaking M tells us how many orbitals are occupied by the bosons. A

value of M = 1 indicates that the state it not fragmented, hence it can be written

as (b†k)
N |vacuum〉. Here b†k =

∑
j c

k
ja
†
j creates a particle in some superposition of the

site modes, with coefficients ckj . Such states are the many-body coherent-states in the

generalized sense of Perelomov [35]. Their phase-space representations are minimal

wave packets situated at some point (ϕ,n) of phase space. A higher value 1 <M≤M

indicates that the bosons are fragmented into several orbitals.
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Appendix C. Derivation of the Josephson Circuit Hamiltonian

Consider N Bosons in an M site ring described by the BHH Eq.(1). In the limit

u � M it is common to neglect the fluctuations of the number of atoms in each well

[36], and approximate the Bose-Hubbard model with the so called quantum-phase-model

(“coupled rotors”) which is formally equivalent to an array of Josephson junctions:

H =
M∑
j=1

[
U

2
n2
j − n̄Kj cos

(
(ϕj+1−ϕj)−

Φ

M

)]
(C.1)

Where nj and ϕj are canonically conjugate variables. Without lost of generality, we

can employ a gauge transformation such that the phase Φ vanishes at all bonds except

the weak-link. Namely,

H =
M∑
j=1

U

2
n2
j − n̄K

M−1∑
j=1

cos (ϕj+1−ϕj)− n̄K ′ cos (ϕ1−ϕM − Φ) (C.2)

With a weak-link K ′ � K, the phase difference at the M − 1 regular bonds becomes

small such that cos (ϕj+1−ϕj) ∼ 1. The Hamiltonian can then be written, up to a

constant, as:

H =
M∑
j=1

U

2
n2
j +

n̄K

2

M−1∑
j=1

(ϕj+1−ϕj)2 − n̄K ′ cos (ϕ1−ϕM − Φ) (C.3)

The second sum can be written as:
M−1∑
j=1

(ϕj+1−ϕj)2 = ϕ2
1 + ϕ2

M − 2ϕ1ϕ2 − 2ϕM−1ϕM +
M−1∑
i,j=2

Aijϕiϕj (C.4)

=
ϕ2

+

2
+
ϕ2
−

2
− ϕ+(ϕ2 + ϕM−1)− ϕ−(ϕ2 − ϕM−1) +

M−1∑
i,j=2

Aijϕiϕj (C.5)

Where we introduced the notation ϕ± = ϕ1±ϕM , and Aij = 2δij− δi,j±1. Consequently

H =
U

4

(
n2
− + n2

+

)
+
n̄K

4

(
ϕ2
− + ϕ2

+

)
(C.6)

− n̄K ′ cos (ϕ− − Φ)− n̄K

2
[ϕ−(ϕ2 − ϕM−1) + ϕ+(ϕ2 + ϕM−1)]

+
U

2

M−1∑
j=2

n2
j +

n̄K

2

M−1∑
i,j=2

Aijϕiϕj

The last line can be easily diagonalized:

U

2

M−1∑
j=2

n2
j +

n̄K

2

M−1∑
i,j=2

Aijϕiϕj =
M−2∑
m=1

(
U

2
ñ2
m +

ω2
m

2U
ϕ̃2
m

)
(C.7)

with

ω2
m = 2UKn̄(1− cos km) (C.8)

km = πm/(M − 1) (C.9)

ϕ̃m =

√
2

M − 1
×

M−1∑
j=2

sin [km(j − 1)]ϕj (C.10)
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Due to the reflection symmetry of the “chain” (j = 2, ..,M − 1), the m = odd and

m = even modes are symmetric and anti-symmetric respectively. The coupling term

ϕ±(ϕ2 ± ϕM−1) can be expressed as follows:

ϕ±

√
2

M − 1
×

M−2∑
m=1

[sin (km)± sin (km(M − 2))] ϕ̃m (C.11)

= ϕ±

√
2

M − 1
×

M−2∑
m=1

sin (km)
[
1± (−1)m−1

]
ϕ̃m (C.12)

We see that ϕ+ is coupled only to the symmetric modes (m = odd), while ϕ− is

coupled only to the anti-symmetric modes (m = even). With the above substitutions

the Hamiltonian takes the form:

H =
U

4

(
n2
− + n2

+

)
+
n̄K

4

(
ϕ2
− + ϕ2

+

)
− n̄K ′ cos (ϕ− − Φ) (C.13)

− ϕ−

M−2∑
m=even

cmϕ̃m − ϕ+

M−2∑
m=odd

cmϕ̃m +
M−2∑
m=1

(
U

2
ñ2
m +

ω2
m

2U
ϕ̃2
m

)
(C.14)

with

cm = Kn̄[2/(M − 1)]1/2 sin km (C.15)

The Hamiltonian consist of the two freedoms ψ± which are coupled to an harmonic bath

of M−2 DOFs. But in-fact only the weak-link DOF ψ− and the m = even modes of the

bath are of interest. The freedom ψ+ can be thought of as a part of the m = odd modes

of the bath, which does not interact with the weak-link. So that the relevant part of

the Hamiltonian is:

H = Un2 +
n̄K

4
ϕ2 − n̄K ′ cos (ϕ− Φ) (C.16)

− ϕ
M−2∑

m=even

cmϕ̃m +
M−2∑

m=even

(
U

2
ñ2
m +

ω2
m

2U
ϕ̃2
m

)
(C.17)

where we have changed the notations, namely ϕ = ϕ− and the conjugate n = n−/2.

The effective number of bath DOFs is

dbath = b(M−2)/2c (C.18)

Re-writing the bath in the standard Caldeira-Leggett form Eq.(7) the JCH takes the

form

H = Un2 +
n̄K

4
ϕ2 − n̄K ′ cos (ϕ− Φ) + Vcounter +Hbath (C.19)

In order to get Eq.(6) one has to do some algebra with the counter-term:

Vcounter = − ϕ2

M−2∑
m=even

Uc2
m

2ω2
m

= −ϕ2 n̄K

2(M − 1)

M−2∑
m=even

sin2 km
1− cos km

(C.20)

= − ϕ2 n̄K

M − 1

M−2∑
m=even

cos2

(
km
2

)
= −1

4

(
M − 3

M − 1

)
n̄K ϕ2 (C.21)
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[31] Hensinger W K, Häffner H, Browaeys A, Heckenberg N R, Helmerson K, McKenzie C, Milburn

G J, Phillips W D, Rolston S L, Rubinsztein-Dunlop H et al. 2001 Nature 412 52–55

[32] Averbukh V, Osovski S and Moiseyev N 2002 Phys. Rev. Lett. 89(25) 253201 [link]

[33] Cohen D and Kottos T 2004 Phys. Rev. E 69(5) 055201 [link]

[34] Wu B and Niu Q 2003 New J. Phys. 5 104 [link]

[35] Perelomov A 1972 Communications in Mathematical Physics 26 222–236 ISSN 0010-3616 [link]

[36] Paraoanu G S 2003 Phys. Rev. A 67(2) 023607 [link]

http://link.aps.org/doi/10.1103/PhysRevLett.104.150405
http://dx.doi.org/10.1038/srep04298
http://link.aps.org/doi/10.1103/PhysRevLett.95.063201
http://link.aps.org/doi/10.1103/PhysRevLett.110.025302
http://dx.doi.org/10.1038/nature12958
http://link.aps.org/doi/10.1103/PhysRevLett.113.025301
http://link.aps.org/doi/10.1103/PhysRevLett.111.205301
http://link.aps.org/doi/10.1103/PhysRevB.87.174513
http://www.sciencemag.org/content/326/5949/113.abstract
http://link.aps.org/doi/10.1103/PhysRevA.89.013601
http://dx.doi.org/10.1038/srep13433
http://link.aps.org/doi/10.1103/PhysRevE.50.145
http://dx.doi.org/10.1126/science.1061569
http://link.aps.org/doi/10.1103/PhysRevLett.89.253201
http://link.aps.org/doi/10.1103/PhysRevE.69.055201
http://stacks.iop.org/1367-2630/5/i=1/a=104
http://dx.doi.org/10.1007/BF01645091
http://link.aps.org/doi/10.1103/PhysRevA.67.023607

	Introduction
	Model and Methods
	Semiclassical perspective
	System plus bath perspective
	Two-level system perspective

	Coherent dynamics in the absence of a weak-link
	weak-link in a few site ring
	weak-link in a many site ring
	Discussion
	Superfluidity in low dimensional circuits
	Definition of the fragmentation measure M
	Derivation of the Josephson Circuit Hamiltonian

