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Scope

I Consider N bosons in an M site ring, that are condensed into
a single plane-wave orbital. This is called a “vortex state”. It
has a macroscopically large current.

I The conventional paradigm associates vortex states with a
stationary stable fixed-points in phase space. Consequently
the Landau criterion, and more generally the Bogoliubov de
Gennes stability analysis, are normally used to determine the
viability of superfluidity.

I We challenge the application of the traditional paradigm to
low-dimensional circuits and highlight the role of chaos in their
analysis.

The model

A rotating Bose-Hubbard system with M sites and N bosons.

H =
M∑

j=1

[
U
2

a†j a
†
j ajaj −

K
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(
ei(Φ/M)a†j+1aj + e−i(Φ/M)a†j aj+1
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Dimensionless parameters (Φ,u):

u =
NU
K
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M2

2π
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meff

)
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K
Upon quantization we have:

~ =
1
N

The number of particles N is a constant of motion:

N =
M∑

j=1

a†j aj

hence the model has effectively d = M−1 degrees of freedom.
M = 2 Bosonic Josephson junction, Integrable (d=1).
M = 3 Minimal circuit, Chaotic (mixed) phase-space
M ≥ 4: High dimensional chaos (Arnold diffusion)
M →∞: Continuous ring, Integrable.

Fixed-points and Stability

In a semi-classical context one define phase-space
action-angle coordinates as follows:

aj =
√

nje
iϕj , z = (ϕ1, · · · ,ϕM ,n1, · · · ,nM)

The dynamics is generated by: (equivalent to DNLS)

ż = J∂H , J =

(
0 I
−I 0

)
Coherent states are supported by stable fixed-points (∂H = 0)
of the classical Hamiltonian.
Linear stability analysis (BdG):

ż = JAz , Aν,µ = ∂ν∂µH

Spectral stability: Energy minima (Landau criterion)
Dynamical stability: Zero Lyapunov exponents (real
Bogoliubov frequencies)

Beyond the traditional view

I Dynamical instability of a vortex state does not necessarily
mean that superfluidity is diminished, due to KAM structures.
Chaotic and irregular vortex states.

I Dynamical stability of a vortex state does not always imply
actual stability. For M ≥ 4 KAM tori do not block transport
(Arnold diffusion).

I Due to the quantum uncertainty width of a vortex-state,
stability is required within a Plank cell around the fixed-point.
Phase-diagram should be ~ dependent

Launching trajectories at the vicinity of the vortex fixed-point
we encounter the following possibilities:
the trajectories are:

1. locked at the vortex fixed point (regular vortex state)
2. quasi-periodic in phase-space (breathing vortex)
3. chaotic but unidirectional (chotic vortex)

Spectrum

For each eigenstate |Eα〉 we calculate the bond averaged
current and the one-body reduced probability matrix:

Iα ≡ −
〈
∂H
∂Φ

〉
α

ρij =
1
N
〈a†j ai〉α

Sα ≡ trace(ρ2)

1/S ∈ [1,M]

1/S = # of participating orbitals.
1/S = 1 means a coherent state.
1/S = M is a maximum fragmentation.

Vortex state = Condensation in momentum orbital.
Self-trapped state = Condensation in site orbital.

Regime Diagram for M = 3

The I of a maximal current state
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A stable vortex state carries current:

Im =
N
M

K sin
(

1
M

(2πm−Φ)

)
, (here m = 1)

Spectral stability: (solid) u >
3− 12 sin2

(
Φ
3 −

π
6

)
4 sin
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Φ
3 −

π
6

)
Dynamical instability: (dashed) u >

9
4

sin
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6
− Φ

3

)
& Φ <

π

2

Swap transition: (dotted) u = 18 sin
(
π

6
− Φ

3

)

Regime diagram for “Large” systems (M ≥ 4)

M = 4 , N = 16 M = 5 , N = 11
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I Energy surface is 2d − 1 dimensional
I KAM tori are d dimensional
I Arnold diffusion: the KAM tori in phase space are not effective

in blocking the transport on the energy shell if d > 2.
I As u becomes larger this non-linear leakage effect is

enhanced, stability of the motion is deteriorated, and the
current is diminished.

I Due to the finite uncertainty width of the vortex state
superfluidity can be diminished even in the spectrally stable
region.

Representative Wavefunctions M = 3,4

(a) Regular coherent vortex state.
(b) Self-trapped state (“bright soliton”).
(c) Typical state in the chaotic sea.
(d) Chaotic vortex state.
(e) Breathing vortex state.
(f) Regular coherent vortex state.
(g) Irregular vortex state.

Images of |〈n|Eα〉|2 (Fock basis representation).
Insets: underlying classical dynamics.
Panels (a-e) are for M = 3, panels (f-g) are for M = 4.
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Phase-space structure M = 3
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Poincare sections: red (blue) = large positive (negative) current

Semiclassical reproduction of the regime diagram M = 4

We launch a Gaussian cloud of trajectories that have an
uncertainty width that corresponds to N.
The fraction of trajectories that escape is used as a measure
for the stability.
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Results are displayed for clouds that have uncertainty width
∆ϕ ∼ π/2 (left) and ∆ϕ ∼ π/4 (right).

Conclusions

I The recent experimental realization of confining potentials with
toroidal shapes and tunable weak links has opened a new
arena of studying superfluidity in low dimensional rings. In
particular a discrete ring has been realized.

I We challenge the application of traditional BdG analysis to
low-dimensional superfluid circuits.

I We have highlighted a novel type of superfluidity that is
supported by irregular or chaotic or breathing vortex states.

I In a larger perspective we emphasize that the role of chaos
should be recognized in the analysis of superfluidity.
Furthermore we believe that a global understanding of the
mixed phase-space structure is essential in order to analyse
dynamical processes such as phase-slips.
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