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We show that the standard Landau and Bogoliubov superfluidity criteria fail in low-dimensional
circuits. Proper determination of the superfluidity regime-diagram must account for the crucial role
of chaos, an ingredient missing from the conventional stability analysis. Accordingly, we find novel
types of superfluidity, associated with irregular or chaotic or breathing vortex states.

The hallmark of superfluidity is the appearance of a
quantized metastable circulating current. Consider a uni-
directional flow of particles in a ring. At first it appears
that any amount of scattering will randomize the veloc-
ity, as in the Drude model, and eventually the ergodic
steady state will be characterized by a vanishingly small
fluctuating current. However, Landau and followers have
shown that this is not always the case [1–5]. If elemen-
tary excitations (e.g. phonons) have higher velocity than
that of the flow, simple kinematic considerations imply
metastability: the energy of the motion cannot dissipate
into phonons. On the other hand if this Landau criterion
is violated the circulating current can decay.

Metastability.– The Landau criterion associates su-
perfluidity with spectral stability. The metastability of a
circulating flow is determined by checking for accessible
elementary excitations (phonons, rotons) connecting the
initial state to the quasi-continuum of other states with
the same energy [a]. In low dimensional rings superflu-
idity can persist even if spectral stability is lost [6–10],
because dynamical stability can still be maintained (see
also [11, 12]). But even if dynamical stability is lost,
and all regions of the energy-shell are inter-connected,
still it does not mean that traffic is allowed between
them. Kolmogorov-Arnold-Moser (KAM) surfaces might
effectively block completely the passage between different
phase-space regions. More generally, remnants of inte-
grable structures may allow only a slow percolation-like
penetration process, namely Arnold diffusion. These ob-
servations suggest a new paradigm of metastability as
discussed below.

Low dimensional circuits.– Integrable (non-
chaotic) 1D rings have been extensively studied as models
for superfluid circuits [13–20]. However, dimensionality
can be further reduced by considering discrete systems
of M Bosonic sites. Translational invariance is lost, re-
sulting in the predominance of chaos at low M . Due
to number conservation, an M -site model has effectively
d = M−1 degrees of freedom. Intensive studies have fo-
cused on the Bosonic Josephson Junction (M=2 hence
d=1), which is again an integrable system.

The recent experimental realization of confining po-
tentials with toroidal shapes and tunable weak links [21–
23] has opened a new arena of studying superfluidity in
low dimensional rings. Of particular notice is the experi-

ment of [15], where a discrete ring has been realized. We
are thus motivated to study few-site Bose-Hubbard rings
where M > 2. In these small discrete circuits the chaos
perspective becomes essential for the analysis. The mini-
mal model of interest is the trimer [24–36] which has both
non-trivial topology and mixed chaotic phase-space.

The traditional view.– An M site Bosonic system is
formally equivalent to a set of coupled oscillators. From
a phase-space perspective, the traditional criteria asso-
ciate stability with the existence of stationary stable fixed
points. Accordingly, Bogoliubov de Gennes (BdG) linear-
stability-analysis is assumed sufficient for determination
of the regime where superfluidity is anticipated.

Beyond the traditional view.– The mixed classical
phase-space of low dimensional circuits implies three po-
tential aspects in which the traditional stability paradigm
is challenged: (i) Dynamical instability of a vortex state
does not necessarily mean that superfluidity is dimin-
ished, because its collapse may be topologically arrested
by KAM structures; (ii) Linear BdG stability of a vor-
tex state does not always imply actual stability, because
Arnold diffusion can provide detour paths out of seem-
ingly elliptical regions; (iii) Due to the quantum uncer-
tainty width of a vortex-state, stability is required within
a Plank cell around the fixed-point.

The result of these three observations is a novel phase-
diagram for the regimes of superfluidity, quite distinct
from the one that would be obtained using standard cri-
teria. Considering that the effective number of freedoms
is d = M−1 and that Arnold diffusion can only take place
when d > 2, there should be a dramatic difference be-
tween trimers (M = 3) and larger rings (M > 3): For
the trimer, item (i) implies that superfluidity can per-
sist even if the motion becomes chaotic; For larger rings,
item (ii) implies that BdG (linear) dynamical stability
is not a sufficient condition; while item (iii) implies that
global analysis of phase-space topography is essential. In
the extreme limit of M →∞ one should remember that
the dynamics become integrable due to rotational sym-
metry. Below we demonstrate how the above ideas affect
the regime diagram of a few site ring. For the trimer
(M = 3) superfluidity manifests itself beyond the regime
of dynamical stability, while for M > 3 we find a much
more intricate situation.

Model.– Consider N Bosons in a rotating M site ring
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system. For theoretical analysis it is more convenient to
transform into the rotating frame where the potential is
time-independent. In this frame we have Coriolis force,
which is formally like having a magnetic flux Φ through
the ring (note other options for experimental realization
that are mentioned in the concluding paragraphs). Ac-
cordingly the system is described by the Bose-Hubbard
Hamiltonian [37, 38]

H =

M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
ei(Φ/M)a†j+1aj + h.c.

)]
.(1)

Here jmod(M) labels the sites of the ring, ai and a†i
are destruction and creation operators. K is the hop-
ping frequency, and U is the on-site interaction. The
phase Φ is proportional to the rotation frequency of the
device. Without loss of generality Φ ∈ [0, π], and K > 0,
and U > 0. Negative U is the same as positive U with a
flipped energy landscape (H 7→ −H). Negative K is the
same as positive K with Φ 7→ Φ + π for odd M . Neg-
ative Φ is related to positive Φ by time reversal. The
Hamiltonian H commutes with the total particle num-
ber N =

∑
i a
†
iai, hence the operator N is a constant of

motion.
In a semi-classical context one defines phase-space

action-angle coordinates as follows:

aj =
√
nje

iϕj (2)

z = (ϕ1, · · · ,ϕM ,n1, · · · ,nM ) (3)

The Hamiltonian (1) is then expressed as H = H(z), and
the dynamics is generated by ż = J∂H. The notation ∂ν
stands for derivative with respect to zν , and

J =

(
0 I
−I 0

)
(4)

In the classical equation of motion, after standard rescal-
ing of the variables, there are only two dimensionless pa-
rameters: one is the dimensionless interaction

u = NU/K (5)

and the other is the phase Φ. Note that the re-scaling
of the canonical variables implies that n is replaced by
n/N . Hence upon quantization ϕ and n are conjugate
with dimensionless Plank constant ~ = 1/N .

Regime diagram.– In Fig.1 and Fig.2 we plot the
numerically determined (Φ, u) regime diagram for the su-
perfluidity of rings with M = 3, 4, 5 sites. Image colors
depict I = 〈(−∂H/∂Φ)〉 for the eigenstate that carries
maximal current. The solid line indicates the spectral
stability border and the dashed lines indicates the dy-
namical stability borders as determined from the BdG
analysis (see below). The regime diagrams do not agree
with the traditional analysis: For the M = 3 ring super-
fluidity persists beyond the border of dynamical stability,
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FIG. 1: Regime diagram for the meta-stability of the inter-
mediate vortex state of a Bose-Hubbard trimer with N=37
particles. The model parameters are (Φ, u). The I of the
state that carries maximal current is imaged at the back-
ground. The solid line indicates the spectral stability bor-
der. The dashed lines indicate the dynamical stability bor-
ders. The dotted line indicates the “swap” transition (see
SM). For clarity we also include a negative u region which is
in fact a duplication of the upper sheet.
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FIG. 2: Regime diagram for an M=4 ring with N=16 parti-
cles (left), and for an M=5 ring with N=11 particles (right).
The image and the lines are defined as in Fig.1. Here the
dynamical stability condition is not sufficient to ensure su-
perfluidity due to “Arnold diffusion”. As u becomes larger
this non-linear leakage effect is enhanced, the stability of the
vortex state is deteriorated, and the current is diminished.

while for M > 3 the dynamical stability condition is not
sufficient.

In principle, stability should also be verified with re-
spect to added disorder W (random on-site energies).
Some reflection leads to the realization that the meta-
stability of the vortex fixed-point (see below) is main-
tained as long as W < U . This means that superfluidity
requires finite strength of interaction. To be sure, we
have verified that the numerically determined regime di-
agrams are not affected by adding weak disorder.

Vortex states.– The stationary orbitals of a single
particle in a clean ring are the momentum states with
wavenumber k = (2π/M)m, where m is an integer mod-
ulo M . Coherent vortex states have N particles con-
densed into the same momentum orbital. From a semi-
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classical perspective, a coherent state is represented by a
minimal-Gaussian-like phase-space distributions.

Stability analysis.– A stable stationary fixed point
of the classical Hamiltonian can support a coherent eigen-
state. Here we focus on vortex states (there are also soli-
tons [24, 25, 27–29, 31, 33] and modulated solutions [39],
see SM). A stationary fixed point is the solution of the
equation ∂H = 0. In the vicinity of a fixed point the
equation of motion takes the from ż = JAz, where the
Hessian matrix is

Aν,µ = ∂ν∂µH (6)

A fixed-point is spectrally stable if it resides at a local
minimum or maximum of H(z). Its dynamical stability
is determined by the roots of the characteristic equa-
tion det(λ− JA) = 0. (The zero eigenvalues that are
associated with the cyclic degree of freedom N should
be excluded, so effectively we deal with 2d×2d ma-
trix where d = M−1). At the spectral stability bor-
der, where the fixed-point becomes a saddle, we have
det(A) = det(JA) = 0.

Upon quantization the eigenvalues λ are identified as
the energies of the Bogoliubov excitations. The fixed-
point becomes dynamically unstable if the eigenvalues
acquire a real part, known as the Lyapunov exponent.

Vortex states correspond to the trivial fixed-points
of the Hamiltonian, located along the symmetry axis
n1 = · · · = nM = N/M . The mth vortex state, with
ϕi − ϕi−1 = (2π/M)m, corresponds to condensation in
the mth momentum orbital. The vortex states have a
macroscopically large current:

Im =

〈
−∂H
∂Φ

〉
m

=
N

M
K sin

(
1

M
(2πm−Φ)

)
(7)

The BdG stability analysis of the vortex states is quite
straightforward (see SM) and leads to the solid and
dashed lines of Fig.1 and Fig.2. We note that the BdG
analysis of the vortex states of M > 3 rings leads to sim-
ilar expressions, because at the vicinity of the symmetry
axis the interaction is negligible. As we go away from the
symmetry axis the interaction becomes more important,
and the value of M becomes significant.

Superfluidity.– Once Φ 6= 0 time reversal is broken
and the ground state can carry a “persistent current”.
The current goes to zero in the limit Φ → 0. Super-
fluidity is the possibility to have a macroscopically large
metastable current for Φ → 0. Metastability is achieved
thanks to the interaction U . In our ring model superflu-
idity is feasible if a middle vortex state is stable. Insta-
bility of this state implies it would mix with all the other
eigenstates residing in the same energy shell, resulting in
a micro-canonically small current.

As shown in Fig.1 and Fig.2 the observed superflu-
dity regimes are not in accordance with the traditional
BdG analysis. First of all, irrespective of M , as we go

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

n2 − n1

n
3

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

n2 − n1

n
3

FIG. 3: Wavefunctions of exotic vortex states. Chaotic
vortex state (left); and breathing vortex state (right) of an
N=60 trimer are imaged. The names are related to the un-
derlying classical dynamics (insets) which is chaotic or peri-
odic respectively. The parameters (Φ, u) are (0.36π, 1.3) and
(0.05π, 1.5). Note that a regular vortex (not displayed) would
be represented by a simple hump at the central (n1=n2=n3)
fixed-point. The occupation axis is scaled (n 7→ n/N).
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FIG. 4: Wavefunctions of regular vortex state (left) and
irregular vortex state (right) of M=4 ring with N=20 par-
ticles. The axes are as in Fig.3 with one extra dimension.
The parameters (Φ, u) are (0.2π, 0) and (0.2π, 3) respectively.
Note that a regular vortex is represented by a simple hump
at the central (n1=n2=n3=n4) fixed-point, whereas an irreg-
ular vortex has a richer structure that reflects the fragmented
phase-space structure.

higher in u, superfluidity is diminished even in the spec-
trally stable region. This is conspicuous for low N , as
in Fig.2b, and can be explained as the consequence of
having a finite uncertainty width. Namely, as u is in-
creased the radius of the stability island (if exists) be-
comes smaller, until eventually it cannot support a sta-
ble vortex state. Equivalently, as N becomes smaller
the uncertainty width of a vortex state becomes larger,
until it ’spills’ out of the stability island. This type of
reasoning resembles the semiclassical view of the Mott
transition (see SM). Taking a closer look at the regime
diagrams one observes that the eabove “quantum fluc-
tuations” perspective is not enough in order to explain
the observed differences. We therefore turn to provide a
more detailed phase-space picture.

The M = 3 ring.– We observe macroscopically large
currents beyond the expected region. This has been
noted in [36] without explanation. In particular we see
that supefluidity survives in the limit Φ → 0, contrary
to the expectation [40] that is based on the traditional
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FIG. 5: Semiclassical reproduction of the regime phase-
diagram. We use a very simple numerical procedure to es-
tablish the semiclassical interpretation of Fig.2, and its N de-
pendence. Given (Φ, u) we launch a Gaussian cloud of trajec-
tories that have an uncertainty width that corresponds to N .
The fraction of trajectories (blue∼ 100% to red∼ 0%) that
escape is used as a measure for stability (see text for details).
Results are displayed for clouds that have uncertainty width
∆ϕ ∼ π/2 (left) and ∆ϕ ∼ π/4 (right). The lines are the sta-
bility borders of Fig.2a.

stability argument.

We can plot the wavefunction |Ψ(r)|2 = |〈r|Eα〉|2 of an
eigenstate that support superfluidity. Here the standard
basis coordinates are r‖ = (n2 − n1)/N and r⊥ = n3/N .
The wavefunction of a standard regular vortex is merely
a hump at the symmetry point n1 = n2 = n3 = N/3. In
Fig.3 we display examples for the wavefunctions of non-
standard vortex states: a chaotic vortex state, and a
breathing vortex state. The terms ”chaotic” and ”breath-
ing” is related to the underlying classical dynamics [op-
tions (ii) and (iii) below].

Launching trajectories at the vicinity of the vor-
tex fixed-point we encounter the following possibilities:
(i) the trajectories are locked in the vicinity of the vor-
tex fixed point; (ii) the trajectories are quasi-periodic
in phase-space; (iii) the trajectories are chaotic but uni-
directional. Poincare sections of the trajectories (see SM)
reveal that a regular vortex state is supported by a reg-
ular island around the fixed point (case i); a breathing
vortex is supported by a secondary island that has been
created via bifurcation (case ii); while a chaotic vortex
state is supported by a ’chaotic pond’ of clockwise motion
that does not mix with the anti-clockwise motion (case
iii). Consequently the motion may become chaotic, but
stay uni-directional, and superfluidity persists contrary
to the common expectation.

The M>3 rings.– Considering a no-rotating device,
the traditional stability argument [40] implies marginally
stable superfluidity for an M = 4 device, and stability if
u is large enough for an M > 4 device. These observa-
tions are implied by the stability borders that are plotted
in Fig.2. Looking on the numerically determined current
one observes that superfluity can persist slightly beyond
the dynamical stability border. But much more conspic-
uous is the diminishing of superfluidity within a large
region where the BdG analysis predicts dynamical sta-

bility. We find (see below) that the latter effect is related
to Arnold diffusion. Namely, if d > 2, the d dimensional
KAM tori in phase space are not effective in blocking the
transport on the 2d−1 energy shell. As u becomes larger
this non-linear leakage effect is enhanced, stability of the
motion is deteriorated, and the current is diminished.

At this point it might be helpful to distinguish between
strict dynamical stability and linear dynamical stability.
For M > 3 the latter does not imply the former. As we
go up in u the chaos becomes predominant, and conse-
quently spectral stability rather than dynamical stability
becomes the relevant criterion. It follows from this dis-
tinction that for M > 3 one has to distinguish between
regular and irregular vortex states. This distinction is
demonstrated in Fig.4. A regular vortex is represented
by a simple hump at the central (ni = N/M) fixed-point,
whereas an irregular vortex has a richer structure that re-
flects the underlying fragmented phase-space structure.

In order to verify the above semiclassical reasoning, we
try in Fig.5 to reconstruct the quantum regime-diagram
via classical simulations. This reconstruction provides
a qualitative proof for the semiclassical reasoning, and
furthermore demonstrates the N dependence of the the
superfluity regime diagram. Namely, we launch a Gaus-
sian cloud of trajectories that have an uncertainty width
that corresponds to N . The fraction of trajectories that
escape is used as a measure for the stability. The practi-
cal criterion for escape is having the average current I(t)
getting below some threshold I∞ within some time t∞.
In principle t∞ should be the Heisenberg time (propor-
tional to Nd), and I∞ can be (say) half Im. In practice
the result is not sensitive to these thresholds.

Conclusions.– We have highlighted a novel type of
superfluidity that is supported by irregular or chaotic or
breathing vortex states. Such states are supported by
fragmented regions in phase-space (M>3), or by chaotic
ponds (M=3), or by periodic-orbits respectively, hence
they are missed by the traditional BdG analysis. Fur-
thermore we have highlighted the limitations of the linear
stability analysis for high dimensional chaos (M>3).

In a larger perspective we emphasize that the role of
chaos should be recognized in the analysis of superflu-
idity. Furthermore we believe that a global understand-
ing of the mixed phase-space structure is essential in or-
der to analyse dynamical processes such as phase-slips
[6, 22, 23, 41]. Accordingly it is important to identify
what type of meta-stability is responsible for the super-
fluidity.

The specific ring geometry of Eq. (1) has been ex-
perimentally realized [15] by forming an optical lattice
[42, 43]. A phase Φ is implied by introducing a spatially-
adiabatic variation of the atomic magnetic dipole orien-
tation [42]. Optionally one can use rotating laser fields
as demonstrated for a toroidal shaped trap [23], or intro-
duce gauge field as in [44], see [45].
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SUPPLEMENTARY MATERIAL

Stability analysis.– For pedagogical reason we focus on the trimer, but the generalization to M > 3 is straight-
forward. We focus on the central region of energy space, where the middle vortex state (m = 1) is located. The
dynamical stability is determined by the characteristic equation det(λ− JA) = 0. Two trivial eigenvalues λ = 0 reflect
the the constant of motion N , and therefore excluded. The other four eigenvalues are the solution of λ4 + bλ2 + c = 0
with

c = sin2

(
Φ

3
− π

6

)[
u−

3− 12 sin2
(

Φ
3 −

π
6

)
4 sin

(
Φ
3 −

π
6

) ]2

(8)

b =
3

2
+ 3 sin2

(
Φ

3
− π

6

)
+ 2u sin

(
Φ

3
− π

6

)
(9)

Upon quantizations the λs can be identified as the energies of the Bogoliubov excitations. A fixed-point is spectrally
(meta) stable if it seats at a (local) minimum or maximum of H(z). At the spectral stability border, where the
fixed-point becomes a saddle, we have det(A) = det(JA) = 0, hence the border is determined by c = 0, leading to the
spectral stability condition

u >
3− 12 sin2

(
Φ
3 −

π
6

)
4 sin

(
Φ
3 −

π
6

) (10)

The fixed-point becomes dynamically unstable if the eigenvalues acquire a real part, which is the so-called Lyapunov
exponent. This happen when b2 − 4c < 0, leading to dynamical instability in the region

u >
9

4
sin

(
π

6
− Φ

3

)
& Φ <

π

2
(11)

In principle for b2 − 4c > 0 the condition b < 0 would imply an additional dynamical instability regime. But here
b < 0 occurs inside the region of b2 − 4c < 0. The stability borders are demonstrated in Fig.1.

Swap scenario.– Inspecting Fig.1 one observes that superfluidity diminishes in the vicinity of the indicated dotted
line. It turns out that the swap scenario is originated from a global non-linear resonance. This can be established by
inspection of Poincare sections (see below): at the transition two separatrixes swap in phase-space. In order to derive
the resonance condition we rewrite the Hamiltonian Eq.(1) using:

b0 =
1√
3

(a1 + a2 + a3) , b± =
1√
3

(
a1e
±i 2π3 + a2e

±i 4π3 + a3

)
(12)

This leads to:

H = ω0n0 + ω+n+ + ω−n− (13)

+
U

6

[
n2

0 + n2
+ + n2

− + 4(n0n+ + n0n− + n+n−)
]

(14)

+
U

12

[
(b†+b

†
+b−b0 + b†0b

†
−b+b+) + (b†0b

†
0b+b− + b†−b

†
+b0b0) + (b†−b

†
−b0b+ + b†+b

†
0b−b−)

]
(15)

where ω0 = −K cos(Φ/3), and ω± = −K cos(±2π/3 − Φ/3). We consider the subspace of states with n0 − n− = 0,

and keep only the resonant coupling (b†+)2b−b0 and its conjugate. Then we define the reaction coordinate is Jz =
(1/4)(2n+−N), associated ladder operators J±, and hooping generator Jx = (J+ +J−)/2, such that the Hamiltonian
takes the form:

H ≈
(

2ω+ − ω− − ω0 −
UN

6

)
Jz − UJ2

z +
U

3

[
(N/4)2 − J2

z

]1/2
Jx + const (16)

The non-linear resonance happens if the first term vanishes, leading to

u = 18 sin

(
π

6
− Φ

3

)
(17)
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In general superfluidity diminishes whenever regions in phase-space are scrumbled. The swap scenario is possibly the
simplest scenario. Such type of separatrix overlap bifurcation has been once encountered in molecular physics studies
[J.F. Svitak , V. Tyng , and M.E. Kellman, J. Phys. Chem. A, 2002, 106 (45)] (but not in chaotic context).

Solitons.– While our main focus is on the stability of vortex states we briefly discuss other fixed points that
were of interest in past work. The trimer model without rotation (Φ = 0) has been the subject of intense study
[24–35]. In particular it has been noted that the Hamiltonian H(z) has additional non trivial fixed-points away from
the symmetry axis. The simplest of which are self-trapped “bright solitons” obtained via bifurcation of a vortex
state, in which the particles are localized in a single site. This self-trapping transition happens outside of the interval
−2.25 < u < 0. Other notable fixed-points correspond to single-depleted-well states in which one site is empty, while
the remaining two sites are equally occupied by the particles. For M > 3 rings there are off-axis fixed points that
support spatially modulated vortex states [39].

The ground state.– The lowest energy fixed-point (m = 0 vortex state) is stable for any positive u. However
it is located in an island which is surrounded by a chaotic sea. As u is increased the island’s size decreases until
at u > N2/M , it becomes smaller than a single Planck cell. At this point it can no longer accommodate a vortex
state and one observes a quantum Mott transition. Other studies of rotating ring lattices [15–20] have addressed
additional quantum issues, such as the appearance of “cat states”: In the trimer with Φ = π the ground state might
be a macroscopic superposition of the degenerate vortex states m=0 and m=1.

Purity.– Any many-body state can be characterized by its one-body-coherence. The precise definition of the
associated “purity” measure S can be found in [36]. Here it is enough to say that S = 1 means that all the particle
are condensed in a single orbital, while S < 1 means that the state is fragmented into 1/S orbitals. For ergodic
state 1/S ∼M . It turns out that the non-standard vortex states have high but not perfect purity. See spectra in Fig.7.

Poincare sections.– Starting with the Hamiltonian Eq.(1) written in terms of action-angle variables, the classical
dynamics is generated by the equation

i
∂ai
∂t

=
∂H
∂a∗i

= u|ai|2ai −
1

2

[
eiΦ/3ai−1 + e−iΦ/3ai+1

]
(18)

with scaled units such that K = N = 1. We solve this equation numerically. For plotting of trajectories it is convenient
to use the coordinates (n1 − n3, ϕ1 − ϕ3) and (n3 − n2, ϕ3 − ϕ2). The section chosen is n3 − n2 = 0, at the energy of
the m = 1 vortex, namely,

E =
u

6
− cos

(
2π

3
− Φ

3

)
(19)

Given a phase space section point (n1 − n3, ϕ1 − ϕ3), the equation H(z) = E has either zero or two solutions for the
remaining coordinate ϕ3 − ϕ2. This implies that the Poincare section has two sheets. For presentation purpose we
pick the sheet where velocity ∂t(n3 − n2) has a larger value. On this sheet the boundary of the allowed region, is
marked by a black line. The current of a generated trajectory is calculated by taking a time average over I.

Phase-space tomography.– In Fig.7 we plot the spectrum of the trimer Hamiltonian for representative values
of (Φ, u) that are indicted in Fig.6. We also plot in each case a Poincare section at the energy of the m = 1 vortex
fixed-point, for n3 − n2 = 0. For convenience we use the canonical coordinates (n1 − n3, ϕ1 − ϕ3) and a scaled
particle number n 7→ n/N . Each point in the Poincare section is colored according to the current, averaged over
the classical trajectory. Note that the m = 1 vortex fixed-point is always located at (0, 2π/3). From the quantum
spectrum we can easily deduce the phase-space structure at any other energy. One can call it “quantum phase-space
tomography”. Consider for example Fig.7c. We can easily correlate the largest current states with the red (upper)
island; the secondary group of large current states with the yellow (left) island; and the small current states with the
green chaotic sea. Additional information can be extracted from the purity of the states. Points in the spectrum are
colorcoded from black (S ∼ 1) to purple (S ∼ 1/M).

By inspection of Fig.7 we observe the following regimes in the diagram of Fig.1: Regime (S) stands for simple
phase-space structure with spectrally stable clockwise (“red”) and anti-clockwise (“blue”) islands that are separated
by a forbidden region. In regime (B) we have two regular regions of clockwise motion, and “blue separatrix” that
supports anti-clockwise motion. As we go up in u the blue separatrix becomes a chaotic sea. In regime (D) the middle
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FIG. 6: Same as Fig.1 with extra indications (see text). The dots labeled (a-f) mark (Φ, u) coordinates that are used in Fig.7
to demonstrate the different regimes.

vortex bifurcates, while the other clockwise island remains regular. In regime (D’) the “vortex separatrix” swaps with
the “blue separatrix”. This swap is clearly demonstrated as we go from Fig.7d to Fig.7e. The border between regimes
(D) and (D’) is shown as a dotted line in Fig.1, see Eq.(17). Along this line the two separatrices coalesce. Crossing
to regime (B’) the bifurcation that is responsible to the “blue separatrix” is undone, and eventually we can go back
to the (S) regime via a simply-connected (A) regime that has a simple structure with no separatrix.

In region (B) the vortex is not spectrally stable: it is located on a saddle point in phase-space. Nevertheless
dynamical stability is maintained. In region (D) the vortex is no longer dynamically stable, and the trajectories at
the vicinity of the vortex are chaotic. Still the motion is confined by KAM tori within a “chaotic pond”, and therefore
remains uni-directional. In the vicinity of the swap, as we go up in u, the chaotic pond becomes a chaotic sea, and
the superfluid current is diminished.

Upon quantization the chaotic pond can support a “chaotic vortex state”, which has been illustrated in Fig.3a.
A second class of large current states are supported by stable periodic-orbits (POs) that has been bifurcated from
the stationary vortex fixed-point, once the latter lost stability. These POs are elliptic fixed-points of the Poincare
section, see Fig.7d. Upon quantization the associated islands can support a “breathing vortex state”, see Fig.3b.

Secondary message.– As a secondary message, we would like to emphasize that the gross features of the classical
phase-space can be easily extracted from the spectrum of the quantized Hamiltonian. To get the same information via
classical analysis would be an extremely heavy task that would require generation of many trajectories in numerous
phase space regions, on each possible energy shell, as opposed to our “quantum phase space tomography” which
requires a single diagonalization of a finite matrix. If Nature were classical, Quantum Mechanics still would be
invented as a valuable tool, just for the purpose of analysing mixed complex dynamics.
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FIG. 7: Quantum spectrum and phase-space landscape. Representative quantum spectra of for an N = 42 trimer for
representative (Φ, u) values. Panels (a-f) are for (0.95π, 2.5); (0.6π, 2.5); (0.44π, 2.5); (0.45π, 1.3); (0.4π, 1.3); (0.35π, 1). Each
point represents an eigenstate color-coded by its purity (black (1/S) ∼ 1 to purple (1/S) ∼ 3), and positioned according to its
energy Eα and its scaled current Iα/(NK/M). In each case an n3−n2=0 Poincare section at the energy of the m = 1 vortex is
displayed (with the exception of (a) where it is for a slightly shifted energy, else the red island would shrink into a point). The
solid black line marks the borders of the allowed phase-space regions. The color code represents the averaged current for each
classical trajectory.
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