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Resonant persistent currents for ultracold bosons on a lattice ring
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We consider a one-dimensional bosonic gas on a ring lattice, in the presence of a localized barrier, and under
the effect of an artificial gauge field. By means of exact diagonalization we study the persistent currents at varying
interactions and barrier strength, for various values of lattice filling. While generically the persistent currents are
strongly suppressed in the Mott insulator phase, they show a resonant behavior when the barrier strength becomes
of the order of the interaction energy. We explain this phenomenon using an effective single-particle model. We
show that this effect is robust at finite temperature, up the temperature scale where persistent currents vanish.
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I. INTRODUCTION

Ultracold atoms on ring traps are the object of an active
experimental investigation and provide a novel generation
of quantum simulators. The ring geometry avoids the in-
homogeneities of the harmonic confinement, as well as the
effects of sharp boundary conditions, typical, e.g., of box
confinements. A very natural observable in the ring geometry is
the circulating current, which is experimentally accessible with
ultracold atoms by time-of-flight [1,2] or spiral interferogram
techniques [3,4].

If the radial confinement along the ring is very tight, i.e.,
when all the energy scales in the problem are smaller than the
radial confinement energy, the ring can be effectively described
as one-dimensional. The exact wave function of N interacting
bosons in a one-dimensional ring of length L with contact
interactions has been found by Lieb and Liniger [5]. The
solution is controlled by the dimensionless parameter

γ = gmL

h̄2N
, (1)

where m is the mass of the particles, and the interaction
is uint(x − x ′) = gδ(x − x ′). For γ � 1 the system can be
described to a good approximation by the Gross-Pitaevskii
equation, which we regard as the classical limit, while for
γ � 1 the bosons reach the impenetrable limit and undergo
fermionization [6], i.e., share the same nodes as the wave
function of a noninteracting Fermi gas in the same external
potential. Irrespective of the interaction strength γ , for ultra-
cold bosons on a ring it has been argued that in the presence
of a gauge field �, the persistent current I (�) exhibits full
Aharonov-Bohm oscillations [7–9]. This is no longer true if a
barrier is introduced.

A device that incorporates a barrier (or a weak link) and a
gauge field �, i.e., the analog of the rf-SQUID (superconduct-
ing quantum interference device), can be realized by rotating a
laser-induced optical potential. Another way to induce a gauge
field is via laser-assisted transitions. Thanks to the barrier,
it is possible to induce persistent currents of controllable
amplitude [10]. Such a setup can be also used to realize a
qubit, based on superposition of current states, analogous to a

*Deceased.

flux qubit in superconductors [11–14]. It has been established
[10] that in such a device the persistent-current amplitude has
a nonmonotonic dependence on γ . In the Gross-Pitaevskii
regime it increases due to a classical screening effect, while in
the large γ regime it decreases due to quantum fluctuations.
Thus, there is an optimal value of γ for which the persistent
current amplitude has a maximum.

There are several motivations to introduce the optical
potential VL(x) = V0 cos2(πx/a) to the ring. Naturally, it
allows further control over the device characteristics. But
furthermore, it has been suggested that such lattice geometry
is essential for the purpose of coherent operations [15]. Below
we assume that the optical lattice can be effectively described
by the Bose-Hubbard Hamiltonian (BHH), which describes the
motion of N bosons along an M-site ring, where M = L/a

(see Ref. [16] and references within). In the absence of
interactions the bosons condense into the lowest-wavelength
orbital, and the qualitative behavior of the lattice ring is
similar to the uniform-ring case, with some effective mass
m∗ that is determined by the intersite hopping frequencies.
Associated with the effective mass one can define an effective
Lieb-Liniger parameter, γ ∗. In the quantum domain (γ ∗ > 1)
the system enters the strongly correlated regime, and the
ratio N/M becomes important. In this regime the ring may
undergo a transition towards a mesoscopic Mott-insulator
state. For commensurate filling one may expect that the
persistent-current amplitude would exhibit a nonmonotonic
dependence on γ ∗, with a drastic drop within the Mott regime.

In the present work we show that the transition between
the Gross-Pitaevskii regime and the Mott regime is in fact
mediated by resonances where the persistent-current am-
plitude exhibits pronounced maxima. The model system is
introduced in Sec. II, while the major numerical observations
are displayed in Sec. III and explained in Sec. IV. The
main features are captured by the single-particle picture of
Sec. V. The effect of temperature is examined in Sec. VI. We
also discuss in Sec. VII the related setup which incorporates a
weak link, rather than a barrier.

II. THE MODEL

We consider a system of N bosons confined to an M-site
ring lattice. The system is described by the Bose-Hubbard
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(BH) model:

H = −J

M∑
j=1

(
ei(�/M)a

†
j+1aj + H.c.

)

+Wa
†
1a1 + U

2

M∑
j=1

a
†
j a

†
j ajaj , (2)

where J is the hopping energy, U is the on-site interaction,
and j mod(M) labels the sites of the ring. aj and a

†
j are

the bosonic creation and annihilation operators, obeying the
usual commutation relations [aj ,a

†
�] = δj,�. The phase �

corresponds to the artificial gauge field applied to the system.
In the case of a rotating barrier, it is proportional to the rotation
frequency. In addition, a repulsive barrier of strength W > 0 is
located on the lattice site j = 1. The total number of particles
N = ∑

j 〈a†
j aj 〉 = ∑

j 〈nj 〉 is kept fixed in the calculation. The
persistent current is defined according to the thermodynamic
identity

I = −∂〈H〉
∂�

. (3)

In order to characterize the regimes of interactions and barrier
strength, it is useful to introduce the following dimensionless
parameters:

u = M
NU

2J
, (4)

w = M
W

2J
. (5)

These parameters naturally arise [15] while considering the
classical limit of the Bose-Hubbard model, where the dynam-
ics is given by the discrete nonlinear Schrodinger equation
(DNLS). The DNLS, which provides a classical description of
the system, is in fact the discrete version of the Gross-Pitaevskii
equation. The classical parameters u and w are obtained by
rescaling the DNLS into a dimensionless form. The second
quantization of the DNLS introduces the effective Planck-
constant 1/N that expresses the occupation-phase uncertainty.

To gain further insight into the significance of u and w

it is useful to link them to the dimensionless parameters
of the continuous ring as defined in Ref. [10], where the
two-body interaction potential is uint(x − x ′) = gδ(x − x ′),
and the localized barrier potential is taken as vbarr(x) = vδ(x).
In this limit, the natural dimensionless parameters are the
Lieb-Liniger coupling strength γ ∗, which is calculated using
Eq. (1) with the effective mass m∗, and the dimensionless
barrier strength λ∗ = vm∗L/(πh̄2). One readily deduces that
J = h̄2/(2m∗a2), U = g/a, and W = v/a. Accordingly

γ ∗ =
(

1

N

)2

u, (6)

λ∗ =
(

1

π

)
w. (7)

For γ ∗ > 1 quantum fluctuations become important and the
DNLS description fails to describe the system. At integer
lattice fillings, the Mott transition takes place in the thermo-
dynamic limit. On a finite ring, a crossover towards a gapped,

incompressible state takes place; as the number of lattice sites
M becomes larger, the crossover becomes sharper. In this work
we are not taking the limit M → ∞ since we want to explore
the operation of a finite-size circuit and its persistent currents.

III. THE PERSISTENT-CURRENT-REGIME DIAGRAM

We present now the results obtained from exact diagonal-
ization for the persistent currents as a function of barrier and
interaction strength. For each value of (w,u) we calculate I (�)
for the ground state and define the persistent-current amplitude
α via

max[I (�)] = 2J
N

M
α(w,u), (8)

such that full oscillations correspond to α = 1. The results
for α(w,u) for several choices of M and N are illustrated in
Fig. 1.

For filling smaller than one (panel a) the persistent current
displays a nonmonotonous behavior as a function of interaction
strength, thereby recovering the results of [10]. The position of
the maximum increases with barrier strength. For very large
w the ring is effectively disconnected by the barrier, and α

vanishes. Otherwise the current is non vanishing, even in the
u → ∞ limit: the ring does not become a Mott insulator.

At commensurate fillings [Figs. 1(b)–1(d)], the behavior
is considerably different. The persistent-current amplitude α

is strongly suppressed for large u even for a small barrier,
indicating the onset of the mesoscopic Mott-insulator state.
But there is a twist on top of this observation: for U ∼ W the
persistent-current amplitude exhibits pronounced maxima. A
zoom on this region shows that it consists of stripes whose
numbers correspond to the integer part of the filling N/M .

IV. THE RESONANT STRUCTURE OF THE
PERSISTENT-CURRENT AMPLITUDE

We now provide an explanation for the resonant behavior
of the persistent-current amplitude. Consider a system with N

bosons. For large interaction strengths, i.e., U/J � 1, it makes
sense to represent the total number of particles as follows:

N = Mqc + p = k + (M−1)qk + pk. (9)

The occupation floor in the absence of a barrier is defined as the
integer part of N/M , namely qc = �N/M�. The reminder p

denotes that number of excess particles in the conduction band
above the floor. The second equality defines the occupation
floor qk and the excess particles pk , given that k particles
reside at the barrier. Namely,

qk =
⌊

N − k

M − 1

⌋
= qc +

⌊
p + (qc − k)

M − 1

⌋
. (10)

Note that k = 0,1,2, . . . is a non-negative integer, whose
maximal value is N . As the barrier is lowered to zero, k

increases from 0 to qc, while qk decreases from q0 to qc.
The chemical potential of the barrier, if it were disconnected

from the chain (the remaining M − 1 sites of the ring), is the
energy cost Ebarrier(k + 1) − Ebarrier(k) for adding a particle,
given that the occupation is k. Similarly we define the chemical
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FIG. 1. The persistent-current amplitude α as a function of (w,u). Panels (a)–(d) are for rings with (M,N ) as follows: (10,4); (5,10);
(3,12); (6,6). Panels (e) and (f) are zoomed versions of panels (b) and (c), respectively. The value plotted is calculated using Eq. (8) where the
maximal current I (�) is picked from all � ∈ [0,π ] with a step size of 0.05π . The dashed red lines are given by Eq. (14). The markers in panel
(d) correspond to the spectra in Fig. 2.

potential of the chain, given that its occupation floor is q. The
explicit expressions are

μbarrier(k) = Uk + W, (11)

μchain(q) = Uq − 2Jq. (12)

The first expression takes into account the on-site energy W of
the barrier site, while the second expression takes into account
the offset −2Jq due to the formation of a conducting band. The
occupation floor q leads to a renormalized hopping amplitude
Jq (see Sec. V) and therefore to a wider band. It follows that
the resonance condition for the transfer of the k + 1 particle
from the chain to the barrier is

Uk + W − 
 = Uqk+1 − 2Jq. (13)

The additional detuning parameter 
 is required because the
on-site energy of the barrier is affected by the coupling to the
quasicontinuum states of the chain. This shift could be ignored
if the barrier site were weakly coupled. From the resonance
condition we deduce the equation for the kth line in the regime
diagram, namely,

U = W + (2Jq − 
)

qk+1 − k
, (14)

with k = 0,1, . . . ,qc. In Fig. 1 these lines are indicated. In fact
we neglect there the 2Jq − 
 shift, and still the agreement
is very good. In Sec. V we further discuss the determination
of 
.

An analogous effect is also present in simply connected
geometries, where persistent currents are not possible. The

combination of strong interactions and on-site potentials then
leads to resonant tunneling. This has been studied in a linear
BH chain with a barrier [17], as well in two-site [18–20],
three-site [21], and superlattice models [22–24].

It is illuminating to inspect the energy spectrum at the
vicinity of the resonances. In Fig. 2 we show the low-energy
spectrum for a system of M = N = 6 particles. This is
complementary to Fig. 1(d). For w < u/N , corresponding to
the weak-barrier condition W < U [Fig. 2(a)] we observe
a gap in the spectrum as in the standard Mott-insulating
state, yielding an exponentially suppressed persistent current.
For w = u/N [Fig. 2(b)] the gap closes, and instead we
have an energy band of 6 states, leading to a large current
[note the different axis limits in Fig. 2(b)]. For w > u/N

[Fig. 2(c)] there is no gap. However, the current is again
strongly suppressed—in this case the large barrier effectively
disconnects the ring and reduces its size to an effective lattice
of M − 1 sites. The particle removed from the barrier is
delocalized all through the lattice, forming a five-state band.

In the upper panels of Fig. 3 we plot the persistent current
I as a function of u at fixed w; correspondingly in the lower
panels we plot the current I as a function of w at fixed u.
In contrast to Fig. 1, we do not plot the maximal persistent
amplitude, rather we plot its value for a fixed value of the flux
� = 0.9π . The reason is that in the same figure we also display
the average barrier occupation 〈n1〉, which is well defined only
once the flux value is fixed. The figure shows a clear correlation
between the barrier occupancy, which displays a staircase
behavior, and the value of the current: the latter displays a
sharp increase when the occupancy of the barrier changes by
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FIG. 2. Low-energy spectrum for an M = 6 ring with N = 6 particles and � = 0.9π . Each point represents an eigenstate, positioned
according to its energy E (vertical axis) and its current I (horizontal axis). The current is in units of 2NJ/M; note the different axis limits in
panel (b). In all panels u = 3000, while w = 300, 500, and 700 from left to right. This corresponds to the large-u regime, with w values that
are on the left, at the center, and to the right of the resonance. The w values are marked in Fig. 1(d). Note that we only show here states with
E < 200 and not the entire spectrum.

one unit. The expected locations of the peaks, predicted in
Eq. (14), are also plotted as red vertical dashed lines. The
agreement is satisfactory; still, the peak is slightly shifted. A
qualitative explanation for the shift is provided in the next
section.

V. AN EFFECTIVE SINGLE-PARTICLE PICTURE

Having shown that the change by one unit of the barrier
occupation is the origin of the resonant behavior of the current,
we further proceed by providing an effective single-particle
model near a transition line. In this case we effectively have k

and (M − 1)q “frozen” bosons at the barrier and at the chain,
respectively, and pk bosons “free” to move along the ring. The
ring feels now an effective barrier of W̃ = W − U (q − k).
Note that W̃ can take both positive and negative values, and
in the latter case the barrier acts effectively as a potential
well. In addition, the matrix elements of the kinetic part of the
Hamiltonian, i.e., a

†
j+1aj , lead to a factor of

√
nj (nj+1 + 1)

when operating on a Fock state |{nj }〉. This results in an

effective hopping amplitude of Jq = (q + 1)J between the
sites of the ring, except those connecting the barrier, where we
have a smaller hopping amplitude of Jw = √

(q + 1)(k + 1)J .
Considering for example the case of a single “free” particle
(pk = 1), the problem can be described by the single-particle
Hamiltonian:

Hsp = W̃ |1〉〈1| −
M∑

j=1

J̃j e
i(�/M)|j + 1〉〈j | + H.c., (15)

where J̃j = Jq for j �= 1 and J̃1 = J̃M = Jw. Using this model
we calculate the single-particle current. The result is shown
in the right-hand panels of Fig. 3 as dashed green lines. We
see a perfect agreement between the current calculated using
Eq. (15) and the one obtained by exact diagonalization of the
full Hamiltonian.

We can finally comment on the 2Jq − 
 shift of the
resonances in Eq. (14). In the absence of this correction, the
expected location of the resonance, using Eq. (14), is shown
by red vertical lines in Fig. 3. In the effective single-particle
model this condition is simply given by W̃ = 0, which means

FIG. 3. The ground-state current (blue spiky lines), in units of 2NJ/M , and the barrier occupation (red staircase lines), as a function of
dimensionless barrier strength w (upper panels) and dimensionless interaction strength u (lower panels). The vertical red lines indicate the
expected location of the resonances, using Eq. (14) (neglecting the 2Jq − 
 shift). In the rightmost panels we also plot the current using the
effective single-particle Hamiltonian, Eq. (15) (green dashed), and the expected location of the resonances, including the 2Jq − 
 correction
(vertical cyan lines). In all panels the flux is � = 0.9π .
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that the ring in Eq. (15) has no barrier or well. In Fig. 3 we
clearly see that the peak current is slightly shifted from the
red lines. This result is surprising, since one might expect that
any potential barrier or well (deviation from W̃ = 0) will only
reduce the current. This claim would obviously be true for a
translationally invariant ring. But the ring in Hsp is not trans-
lationally invariant due to the two weak links Jw. In this case
a small potential well (W̃ < 0) actually increases the current.

The correction 2Jq − 
 can be calculated as follows. The
first part, 2Jq , is an offset due to the formation of a conductance
band in the chain. In the absence of the barrier site, the
Hamiltonian of the remaining M − 1 sites (j = 2, . . . ,M) is
diagonalized by

|n〉 =
√

2

M

M∑
j=2

sin

(
πn(j − 1)

M

)
|j 〉, (16)

with the energies εn = −2Jq cos(πn/M). The second part, 
,
is a self-energy correction. The barrier site is connected to sites
j = 2 and j = M , so that the coupling Vn ≡ 〈j = 1|Hsp|n〉 to
the nth mode of the chain is given by

Vn = −Jw

√
2

M

[
sin

(πn

M

)
+ ei� sin

(
πn(M − 1)

M

)]

= −Jw

√
2

M
sin

(πn

M

)
[1 − (−1)nei�], (17)

where for simplicity we have gauged the flux to the bond
connecting the barrier and the Mth site. We can now use
second-order perturbation theory to calculate 
:


 =
M−1∑
n=1

|Vn|2
εn − W̃

. (18)

When the energy of the effective barrier is approximately at
the bottom of the band, namely W̃ ≈ −2Jq , we have


 = J 2
w

JqM

M−1∑
n=1

sin2
(

πn
M

)|1 − (−1)nei�|2
1 − cos

(
nπ
M

)

= 2J 2
w

JqM

M−1∑
n=1

[
1 + cos

(nπ

M

)]
[1 − (−1)n cos �]

= 2J 2
w(M − 1 + cos �)

JqM
. (19)

The expected location of the resonance, including the 2Jq − 


correction, is plotted in Fig. 3 by vertical cyan lines. In the
above treatment we have ignored the correction to the energy
levels of the chain due to the barrier. This is justified for a large
chain; therefore we expect this approximation to improve for
larger M values. In the large-M limit, from Eq. (19) we can
see that the shift becomes independent of �. In addition, in the
absence of a weak link, i.e., Jw = Jq , and large M , we have

 → 2Jq so that the shift vanishes as expected.

VI. THE EFFECT OF TEMPERATURE

After having studied in detail the zero-temperature regime-
diagrams, we proceed to analyze the effects of thermal
fluctuations on the system. At finite temperature, the average

FIG. 4. Finite-temperature persistent currents (in units of 2J ) for
a ring of M = 6 and N = 6 as a function of the dimensionless flux
�. The dimensionless interaction and barrier strength are u = 3000
and w = 495. This corresponds to the center of the resonance that
has been displayed in the upper right panel of Fig. 3. The black
line is the ground-state current, while the colored lines correspond to
different temperature values of kBT /2J = 0.04 (dashed blue line),
kBT /2J = 0.1 (dotted red line), kBT /2J = 0.2 (dashed-dot yellow
line), and kBT /2J = 0.5 (thin solid green line).

current in the canonical ensemble is given by

Ī =
∑

i Iie
−βEi∑

i e
−βEi

, (20)

where β is the inverse temperature.
In Fig. 4 we display the finite-temperature persistent

currents as a function of flux �. We see that the zero-
temperature current is the largest for any value of �, while

FIG. 5. Thermal-averaged persistent-current amplitude as a func-
tion of u and kbT . Panels (a)–(d) are for rings with (M,N ) as follows:
(10,4); (5,10); (3,12); (6,6). In panel (a) the barrier strength is
w = 10 and in panels (b)–(d) w = 100. The value plotted is the
maximal canonical average current, in units of 2NJ/M , picked from
all � ∈ [0,π ] with a step size of 0.05π . The red dotted lines are given
by Eq. (14).
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thermal fluctuations reduce the persistent-current amplitude,
till it vanishes for kBT � J .

In Fig. 5 we plot the maximum value of the current Ī(�)
as a function of the temperature and the reduced interaction u

for a fixed barrier height w and different values of lattice size
and filling. We see that, although the temperature decreases the
amplitude of persistent currents, the resonant effect remains
visible at finite temperature as long as persistent currents are
nonvanishing.

VII. WEAK-LINK SETUP

We consider separately a related setup that incorporates a
“weak link” instead of a barrier. In the lattice tight-binding
model a localized barrier is described by a local shift of the
one-body potential W on one site, while a weak link is obtained
by taking a smaller value for the tunnel amplitude J among
two neighboring sites. The latter choice corresponds to a larger
mass in the continuum limit, and not to a different potential.
We also note that [25] disorder in J leads to a “Mott glass”
phase, while disorder in W leads to a “Bose glass” phase. The
Hamiltonian for the weak-link case is given by

H =
M∑

j=1

[
U

2
a
†
j a

†
j ajaj − Jj

(
ei(�/M)a

†
j+1aj + H.c.

)]
. (21)

In our case there is no disorder but rather a single weak link,
meaning that J1 = Jw while Ji = J otherwise.

The naive thinking is to assume an analogy between the
small Jw in this setup and the large barrier w in the setup of
Fig. 1. For this reason we use a reversed sign in the horizontal
axis of Fig. 6(a), where we plot the persistent-current ampli-
tude as a function of u and Jw. We see that qualitatively the
results for N = M = 6 look like those of Fig. 1(a), rather than
like those of Fig. 1(d). This is because the weaker link does not
lead to an expulsion of particles; hence no resonances arise.

We treat on equal footing the strong-link regime where
Jw/J > 1. When we look on the left side of Fig. 6(a) we
observe a resonance structure similar to the case of having
a barrier. The explanation of the latter effect is as follows:
we can regard the strong bond as a two-level system with
energies ±Jw. Ignoring the antibonding orbital, it is formally
like having a ring with M̃ = M−1 sites and negative barrier
W = −Jw. Thus we encounter resonances as discussed in
previous sections. The number of particles occupying the
two strongly connected sites n1 + n2 has a minimal value of
2qc + min{p,2}, obtained for large U [qc and p are defined as
in Eq. (9)]. The term min{p,2} is due to the bonding energy,

FIG. 6. Weak-link setup for a ring of M = 6 and N = 6. Note
that we treat the strong link regime (Jw/J > 1) on equal footing. (a)
The persistent-current amplitude α as a function of u and Jw/J (note
the reversed x axis). The maximal current I (�) is picked from all � ∈
[0,π ] with a step size of 0.05π . (b) The ground-state current (in units
of 2J ) and the combined occupation of the two strongly connected
sites, as a function of u, with fixed Jw/J = 80 and � = 0.9π .

which makes it energetically favorable to occupy also up to
two of the excess particles. The maximal value of n1 + n2 is
N , obtained for small U . Hence we have N − 2qc − min{p,2}
resonances. An example is given in Fig. 6(b).

VIII. CONCLUSIONS

In conclusion, we have studied the persistent currents of
a one-dimensional lattice ring, a theme which is related to
the design of quantum simulators. Various strongly correlated
phases can be addressed by tuning the barrier strength. The
results of exact diagonalization have been provided for the
persistent currents at various values of filling, as a function of
the interaction and of the barrier strength. At integer filling, the
strong suppression of the persistent-current amplitude generi-
cally signals the onset of the Mott-insulator phase. We observe
that when the barrier energy is of the order of interaction
strength, a resonant behavior occurs for the persistent currents,
associated with the change of occupation of the site hosting
the barrier. An effective single-particle model well accounts for
the main observed features. Some subtle differences between
having a barrier, as opposed to a weak link or a strong link, have
been highlighted. The effect of finite temperature is to decrease
the persistent-current amplitude, but the observed resonances
remain robust as long as the persistent current does not vanish.
In outlook, it would be interesting to address larger system
sizes, in order to study the interplay of thermal and quantum
phases and density fluctuations on the system.

ACKNOWLEDGMENTS

We acknowledge financial support from the ANR Super-
Ring (Grant No. ANR-15-CE30-0012-02).

[1] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D.
Phillips, and G. K. Campbell, Phys. Rev. Lett. 110, 025302
(2013).

[2] S. Moulder, S. Beattie, R. P. Smith, N. Tammuz, and Z.
Hadzibabic, Phys. Rev. A 86, 013629 (2012).

[3] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C.
Weitenberg, S. Nascimbène, J. Dalibard, and J. Beugnon, Phys.
Rev. Lett. 113, 135302 (2014).

[4] S. Eckel, F. Jendrzejewski, A. Kumar, C. J. Lobb, and G. K.
Campbell, Phys. Rev. X 4, 031052 (2014).

063616-6

https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevX.4.031052
https://doi.org/10.1103/PhysRevX.4.031052
https://doi.org/10.1103/PhysRevX.4.031052
https://doi.org/10.1103/PhysRevX.4.031052


RESONANT PERSISTENT CURRENTS FOR ULTRACOLD . . . PHYSICAL REVIEW A 96, 063616 (2017)

[5] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[6] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[7] A. J. Leggett, in Granular Nanoelectronics, edited by D. K.

Ferry, J. R. Barker, and C. Jacoboni, Nato ASI Series B, Vol.
251 (Plenum, New York, 1991), p. 297.

[8] A. Müller-Groeling, H. A. Weidenmüller, and C. H. Lewenkopf,
Europhys. Lett. 22, 193 (1993).

[9] D. Loss, Phys. Rev. Lett. 69, 343 (1992).
[10] M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, and A.

Minguzzi, Phys. Rev. Lett. 113, 025301 (2014).
[11] J. E. Mooij, T. Orlando, L. Levitov, L. Tian, C. H. van der Wal,

and S. Lloyd, Science 285, 1036 (1999).
[12] D. Aghamalyan, M. Cominotti, M. Rizzi, D. Rossini, F. Hekking,

A. Minguzzi, L.-C. Kwek, and L. Amico, New J. Phys. 17,
045023 (2015).

[13] A. Gallemí, M. Guilleumas, J. Martorell, R. Mayol, A. Polls,
and B. Juliá-Díaz, New J. Phys. 18, 075005 (2016).

[14] A. Gallemí, M. Guilleumas, J. Martorell, R. Mayol, A. Polls,
and B. Juliá-Díaz, New J. Phys. 17, 073014 (2015).

[15] G. Arwas and D. Cohen, New J. Phys. 18, 015007 (2016).

[16] G. Arwas and D. Cohen, Phys. Rev. B 95, 054505 (2017).
[17] X. Deng, C. Jia, and C.-C. Chien, Phys. Rev. B 91, 054515

(2015).
[18] C. Lee, L.-B. Fu, and Y. S. Kivshar, Europhys. Lett. 81, 60006

(2008).
[19] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera,

T. Müller, and I. Bloch, Nature (London) 448, 1029 (2007).
[20] D. V. Averin, T. Bergeman, P. R. Hosur, and C. Bruder, Phys.

Rev. A 78, 031601 (2008).
[21] P. Schlagheck, F. Malet, J. C. Cremon, and S. M. Reimann, New

J. Phys. 12, 065020 (2010).
[22] P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-

Cardoner, S. Fölling, and I. Bloch, Phys. Rev. Lett. 101, 090404
(2008).

[23] V. G. Rousseau, D. P. Arovas, M. Rigol, F. Hébert, G. G.
Batrouni, and R. T. Scalettar, Phys. Rev. B 73, 174516 (2006).

[24] R. Roth and K. Burnett, J. Opt. B: Quantum Semiclassical Opt.
5, S50 (2003).

[25] E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Phys. Rev.
Lett. 100, 170402 (2008).

063616-7

https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1209/0295-5075/22/3/006
https://doi.org/10.1209/0295-5075/22/3/006
https://doi.org/10.1209/0295-5075/22/3/006
https://doi.org/10.1209/0295-5075/22/3/006
https://doi.org/10.1103/PhysRevLett.69.343
https://doi.org/10.1103/PhysRevLett.69.343
https://doi.org/10.1103/PhysRevLett.69.343
https://doi.org/10.1103/PhysRevLett.69.343
https://doi.org/10.1103/PhysRevLett.113.025301
https://doi.org/10.1103/PhysRevLett.113.025301
https://doi.org/10.1103/PhysRevLett.113.025301
https://doi.org/10.1103/PhysRevLett.113.025301
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1088/1367-2630/17/4/045023
https://doi.org/10.1088/1367-2630/18/7/075005
https://doi.org/10.1088/1367-2630/18/7/075005
https://doi.org/10.1088/1367-2630/18/7/075005
https://doi.org/10.1088/1367-2630/18/7/075005
https://doi.org/10.1088/1367-2630/17/7/073014
https://doi.org/10.1088/1367-2630/17/7/073014
https://doi.org/10.1088/1367-2630/17/7/073014
https://doi.org/10.1088/1367-2630/17/7/073014
https://doi.org/10.1088/1367-2630/18/1/015007
https://doi.org/10.1088/1367-2630/18/1/015007
https://doi.org/10.1088/1367-2630/18/1/015007
https://doi.org/10.1088/1367-2630/18/1/015007
https://doi.org/10.1103/PhysRevB.95.054505
https://doi.org/10.1103/PhysRevB.95.054505
https://doi.org/10.1103/PhysRevB.95.054505
https://doi.org/10.1103/PhysRevB.95.054505
https://doi.org/10.1103/PhysRevB.91.054515
https://doi.org/10.1103/PhysRevB.91.054515
https://doi.org/10.1103/PhysRevB.91.054515
https://doi.org/10.1103/PhysRevB.91.054515
https://doi.org/10.1209/0295-5075/81/60006
https://doi.org/10.1209/0295-5075/81/60006
https://doi.org/10.1209/0295-5075/81/60006
https://doi.org/10.1209/0295-5075/81/60006
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1103/PhysRevA.78.031601
https://doi.org/10.1103/PhysRevA.78.031601
https://doi.org/10.1103/PhysRevA.78.031601
https://doi.org/10.1103/PhysRevA.78.031601
https://doi.org/10.1088/1367-2630/12/6/065020
https://doi.org/10.1088/1367-2630/12/6/065020
https://doi.org/10.1088/1367-2630/12/6/065020
https://doi.org/10.1088/1367-2630/12/6/065020
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevB.73.174516
https://doi.org/10.1103/PhysRevB.73.174516
https://doi.org/10.1103/PhysRevB.73.174516
https://doi.org/10.1103/PhysRevB.73.174516
https://doi.org/10.1088/1464-4266/5/2/358
https://doi.org/10.1088/1464-4266/5/2/358
https://doi.org/10.1088/1464-4266/5/2/358
https://doi.org/10.1088/1464-4266/5/2/358
https://doi.org/10.1103/PhysRevLett.100.170402
https://doi.org/10.1103/PhysRevLett.100.170402
https://doi.org/10.1103/PhysRevLett.100.170402
https://doi.org/10.1103/PhysRevLett.100.170402



