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● A stability regime diagram of the flow states in the toroidal ring has been explained by 

following the reasoning of the Landau superfluidity criterion
● We claim [a,b] that a theory for the stability of the flow states in a discrete ring requires 

a quantum chaos perspective
● We demonstrate [b] how the stability is affected by non-linear resonances, in regimes 

where the dynamics is traditionally considered to be stable 

[a] GA, Amichay Vardi, Doron Cohen (Sci. Rep. 2015) 
[b] GA, Doron Cohen,  arXiv:1612.00251 (2016)

[1] Wright, Blakestad, Lobb, Phillips, Campbell (PRL 2013)
[2] Ekel, Lee, Jendrzeejewski, Murray, Clark, Lobb, Phillips, Edwards, Campbell (Nature 2014)
[3] Amico, Aghamalyan, Auksztol, Crepaz, Dumke, Kwek (Sci. Rep. 2014)
[4] Gauthier,Lenton, Parry, Baker, Davis, Rubinsztein-Dunlop, Neely, (Optica 2016)

Toroidal ring  [1,2] Discrete ring (optical lattice)

[3]

[4]



  

Bose Hubbard ring
A system of N Bosons in an M-site ring

Interaction strength
U

K
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A coherent flow-state is formed by condensing 
all bosons into a single momentum orbital:

Given 
Does a prepared flow state is metastable (superfluid)?
Or does it decay? 



  

Linear stability analysis
The BH Hamiltonian in 
momentum space is given by:
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Linear stability analysis

Assuming condensation at   
Expanding around                  and
using Bogoliubov transformation:

Energetic (Landau) stability = all     real & have same sign 
Linear dynamical stability  = all     real
Dynamical instability = some     have imaginary part

The BH Hamiltonian in 
momentum space is given by:

The Bogoliubov frequencies        determine the linear stability of 

where

+ nonlinear terms



  

Non-linear resonances
Approximated Hamiltonian at the vicinity of the condensate:
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Non-linear resonances

Resonance conditions:

For example: “1:2” resonance 
for the m = 1 flow-state:

“B” terms,
 Beliaev and Landau damping

“A” terms,
Usually ignored...

Approximated Hamiltonian at the vicinity of the condensate:

(setting                                    we get from                                 the resonance line)



  

The quench scenario

Survival,

We test numerically whether a prepared flow-state              is metastable or not:

”survival” = normalized occupation of the flow state orbital                   for large t
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The quench scenario

Remarks:
• The “A” terms (red resonances) dominate. The “B” terms (gray resonances) barely affect. 
• How will the results change if we have more (say, N∼104) particles?

We test numerically whether a prepared flow-state              is metastable or not:



  

The secular approximation
Near a “1:2” resonance                            , we keep in the BH only the modes           
coupled by the resonance. In action-angle variables                       we obtain:

conjugate to

= const

For ν=0
we obtain the so called Cherry Hamiltonian (1928)
The action             for ALL initial conditions.

For ν≠0 
a stability island exists.

Note:in contrast, the Beliaev and Landau terms do not generate an escape route

where

and

(I,φ) phase portrait

Zero quasi particle occupations Linearly stable fixed point at



  

Phase Space structure Near a “1:2” resonance 

We define                                as the detuning

The radial coordinate represents the quasiparticle occupation
(In action angle variables                    )

ALL trajectories A stability island exists



  

Semiclassical theory
The flow state is represented in phase-space by a Gaussian-like ”cloud” of uncertainty width
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Semiclassical theory
The flow state is represented in phase-space by a Gaussian-like ”cloud” of uncertainty width

By comparing the size of the stability 
island and the cloud, we get the 
width of the resonance region:

The flow state is stable if N is large enough!



  

The decay of the flow-state

Quantum N=120 
Semiclassical N=120,500,1000,2000,4000 (blue to gray)

Semiclassical simulation: We launch this cloud of trajectories in phase space 
and calculate the cloud-averaged        (in this example m=1 and                )M=4, near 1:2 resonance



  

Hyperbolic escape
Typically we have either exponential, or
parabolic time dependence of the      ,
followed by hyperbolic escape:

After that transition to chaos. 
Complete decay as in the linear 
unstable regime.

     (red) flow-state orbital
      other momentum orbital

         quasi-particle occupations

For small u the decay process
is suppressed:
Re-injection scenario.
Dynamical localization.

For ν=0 and large u



  

Hyperbolic escape - the possible scenarios



  

Concluding Remarks
● We have presented a semiclassical theory for the metastability regime-diagram of 

flow-states in BHH superfluid circuits, taking non-linear resonances into account.

● In a broader perspective we would like to demonstrate that tools of semiclassics are 
extremely advantageous in an arena that is largely dominated by field-theoretical 
many-body methods.

● Contrary to the expectation these resonances do not originate from the familiar 
Beliaev and Landau damping terms.

● G Arwas, D Cohen , arXiv:1612.00251, (2016)
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