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The twilight zone in the parametric evolution of eigenstates: beyond perturbation theory and

semiclassics
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Considering a quantized chaotic system, we analyze the evolution of its eigenstates as a result of varying a
control parameter. As the induced perturbation becomes larger, there is a crossover from a perturbative to a
non-perturbative regime, which is reflected in the structural changes of the local density of states. For the first
time thefull scenario is explored for a physical system: an Aharonov-Bohm cylindrical billiard. As we vary
the magnetic flux, we discover an intermediate twilight regime where perturbative and semiclassical features
co-exist. This is in contrast with thesimplecrossover from a Lorentzian to a semicircle line-shape which is
found in random-matrix models.

The analysis of the evolution of eigenvalues and of the
structural changes that the corresponding eigenstates of a
chaotic system exhibit as one varies a parameterφ of the
HamiltonianH(φ) has sparked a great deal of research ac-
tivity for many years. Physically the change ofφ may repre-
sent the effect of some externally controlled field (like electric
field, magnetic flux, gate voltage) or a change of an effective-
interaction (as in molecular dynamics). Thus, these studies
are relevant for diverse areas of physics ranging from nuclear
[1, 2] and atomic physics [3, 4] to quantum chaos [5, 6, 7, 8]
and mesoscopics [9, 10].

Up to now the majority of this research activity was focused
on the study of eigenvalues, where a good understanding has
been achieved, while much less is known about eigenstates.
The pioneering work in this field has been done by Wigner
[2], who studied the parametric evolution of eigenstates ofa
simplified Random Matrix Theory (RMT) model of the type
H = E +φB. The elements of the diagonal matrixE are the
ordered energies{En}, with mean level spacing∆, while B

is a bandedrandommatrix. Wigner found that as the param-
eterφ increases the eigenstates undergoes a transition from a
perturbativeLorentzian-type line shapeto a non-perturbative
semicircle line-shape.

For many years the study of parametric evolution forcanon-
ically quantized systemswas restricted to the exploration of
the crossover from integrability to chaos [7, 8]. Only later
[6] it has been realized that a theory is lacking for systems
that are chaotic to begin with. Inspired by Wigner theory, the
natural prediction was that the local density of states (LDOS)
should exhibit a crossover from a regime where a perturbative
treatment is applicable, to a regime where semiclassical ap-
proximation is valid. However, despite a considerable amount
of numerical efforts [6], there was no clear-cut demonstration
of this crossover. Neither a theory has been developed de-
scribing how the transition from the perturbative to the non-
perturbative regime takes place.

It is the purpose of this Letter to present, for the first time,a
complete scenario of parametric evolution, in case of a phys-
ical system that exhibitshard chaos. We explore the validity
of perturbation theory and semiclassics, and we discover the
appearance of an intermediate regime (“twilight zone”) where

both perturbative and semiclassical features co-exist. With-
out loss of generality we consider as an example a billiard
system whose classical dynamics is characterized by a corre-
lation timeτcl, which is simply the ballistic time. Associated
with τcl is the energy scale~/τcl. Next we look on asimilar
billiard, but with a rough boundary. This roughness is charac-
terized by a length scale which isℓ times smaller, hence we
can associate with it an energy scaleδENU = (~/τcl) × ℓ. The
roughness does not affect the chaoticity: the correlation time
τcl as well as the whole power spectrum are barely affected.
Consequently we explain thatδENU is not reflected in the RMT
modeling of the Hamiltonian. Still in the LDOS analysis we
find that non-universal (system specific) features appear. The
appearance of such features is agenericphenomenon in quan-
tum chaos studies. It introduces a new ingredient into the the-
ory of parametric evolutionwhich goes beyond RMT.

The model that we will use in our analysis is a particle
confined to an Aharonov-Bohm (AB) cylindrical billiard (see
Fig.1) where one can control the magnetic fluxΦ. The cylin-
drical billiard is constructed by wrapping a 2D billiard with
hard wall boundaries. The lower boundary aty = 0 is flat,
while the upper boundaryy = Ly + Wξ(x) is deformed. The
deformation is described byξ(x) =

∑ℓ
n=1 An cos(nx) where

An are random numbers in the range [-1,1]. The illustration in
Fig.1 assumes a smooth boundary (ℓ = 1). The Hamiltonian
of a particle in the cylindrical AB billiard is

H(φ) =
1

2m

[

(

px − e

Lx
Φ

)2

+ p2
y
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FIG. 1: Left: 2D billiard with ℓ = 1. Right: Corresponding
Aharonov-Bohm cylinder.
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supplemented byLx periodic boundary conditions in the hor-
izontal direction, and hard wall boundary conditions alongthe
lower and upper boundaries.px and py are the momenta.
Later we shall use the notationφ = eΦ/~. We consider the
chaoticH(φ = 0) as the unperturbed Hamiltonian.

After conformal transformation [7] the billiard is mapped
into a rectangular, with a mass tensor which is space depen-
dent. Then it is possible to compute the matrix representation
of the Hamiltonian in the plane wave basis|νµ〉 of the rectan-
gular. The result is:

Hνµ,ν′µ′(φ) =
~

2

2πm

{

π

(

ν − φ

2π

)2

δν,ν′δµ,µ′

+

[

µ2

8α2
J

(0,2)
ν′ν + ǫ2J

(2,2)
ν′ν (

1

8
+

π2µ2

6
)

]

δµ,µ′ + (−1)µ+µ′

µµ′

×
[

ǫ2
2(µ2 + µ′2)

(µ2 − µ′2)2
J

(2,2)
ν′ν − iǫ

ν + ν′ − φ/π

µ2 − µ′2
J

(1,1)
ν′ν

]}

(2)

where

J
(l,k)
ν′ν =

∫ Lx

0

dx ei(ν′
−ν)2πx/Lx

(

dξ

dx

)l
1

(1 + ǫξ(x))k

The classical dimensionless parameters of the model are the
aspect ratioα = Ly/Lx, the tilt relative amplitudeǫ =
W/Ly, and the roughness parameterℓ. Upon quantization
we have~ that together withm and E determines the De-
Broglie wavelength of the particle, and hence leads to an ad-
ditional dimensionless parameternE = [LxLy/(2π~

2)]mE.
For 2D billiards the mean level spacing∆ is constant, and
hencenE = E/∆ ∝ 1/~

2 can be interpreted as either the
scaled energy or as the level index. Optionally we define a
semiclassical parameter~scaled = 1/

√
nE .

In the numerical study we have takenǫ=0.06 and α=1,
for which the classical dynamics is completely chaotic (for
any φ). We consider eitherℓ=1 for smooth boundary, or
ℓ=100 for rough boundary. The eigenstates|n(φ)〉 of the
HamiltonianH(φ) were found numerically for various val-
ues of the flux (0.0006 < φ < 60). We were interested in
the states within an energy windowδE≈45 that contains
δnE∼200 levels around the energyE≈400. Note that the
size of the energy window is classically small (δE ≪ E), but
quantum mechanically large (δE ≫ ∆).

The object of our interest are the overlaps of the eigen-
states|n(φ)〉 with a given eigenstate|m(0)〉 of the unper-
turbed Hamiltonian:

P (n|m) = |〈n(φ)|m(0)〉|2 =

∫

dxdydpxdpy

(2π~)2
ρ(n)ρ(m) (3)

The overlapsP (n|m) can be regarded as a distribution with
respect ton. Up to some trivial scaling it is essentially the
local density of states (LDOS). The associated dispersion is
defined asδE = [

∑

P (n|m)(En − Em)2]1/2 In practice we
plot P (n|m) as a function ofr = n − m or as a function
of (En−Em), and average over the reference statem. The

second equality in (3) is useful for the semiclassical analy-
sis. It involves the Wigner functionsρ(n)(x, y, px, py) which
are associated with the eigenstates|n(φ)〉. The semiclassical
approximation is based on the microcanonical approximation
ρ(n) ∝ δ(En−H(x, y, px, py)). With this approximation the
integral can be calculated analytically leading to

Pcl(n|m) =
∆

π

√

2(δEcl)2 − [(En−Em) − δE2
cl /(2Em)]2

(4)

whereδEcl = (~vE/Lx)φ with vE = (2E/m)1/2. It is im-
plicit in (4) that Pcl(n|m)=0 outside of the allowed range,
which is where the expression under the square root is neg-
ative: For large|En−Em| there is no intersection of the cor-
responding energy surfaces, and hence no classical overlap.

A few words are in order regarding quantum to classical
correspondence (QCC). WheneverP (n|m) ≈ Pcl(n|m) we
call it “detailed QCC”, whileδE ≈ δEcl is referred to as “re-
stricted QCC” [6]. It is remarkable that (the robust) restricted
QCC holds even if (the fragile) detailed QCC fails completely.
We have verified [13] that also in the present systemδE is nu-
merically indistinguishable fromδEcl.

A fixed assumption of this work is thatφ is classically
small. But quantum mechanically it can be either ‘small’ or
‘large’. Quantum mechanicallysmall φ means that pertur-
bation theory do provide a valid approximation forP (n|m).
What is theborder between the perturbative regime and the
non-perturbative regime, we discuss later. First we would
like to show that the prediction which is based on perturba-
tion theory, to be denoted asPprt(n|m), is very different from
the semiclassical approximation.

In order to write the expression forPprt(n|m) we have first
to clarify how to apply perturbation theory in the context of
the present model. To this end, we write the perturbed Hamil-
tonianH(φ) in the basis ofH(φ = 0). Since we assume that
the perturbation is classically small, it follows that we can lin-
earize the Hamiltonian with respect toφ. Consequently the
perturbed Hamiltonian is written asH = E+φB, whereE =
diag{En} is a diagonal matrix, whileB = {−(~/e)Inm}.
The current operator is conventionally defined as

I ≡ −∂H/∂Φ = (e/(mLx))px

Its matrix elements can be found using a semiclassical recipe
[11], namely|Inm|2 ≈ (∆/(2π~))C̃((En−Em)/~), where
C̃(ω) is the Fourier transform of the current-current corre-
lation functionC(τ). Conventional condensed matter cal-
culations are done fordisorderedrings where one assumes
C(τ) to be exponential, with time constantτcl which is essen-
tially the ballistic time. HencẽC(ω) ∝ 1/(ω2 + (1/τcl)

2)
is a Lorentzian. This Lorentzian approximation works well
also for the chaotic ring that we consider. In fact we can
do better by exploiting a relation betweenI(t) and the force
F(t) = −ṗx, leading toC̃(ω) = (e/(mLx))2C̃F (ω)/ω2.
The forceF(t) is a train of spikes corresponding to collisions
with the boundaries. Assuming that the collisions are uncor-
related on short times we havẽCF (ω) ≈ (8/3π)m2v3

E/Ly,
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FIG. 2: (a) The classical power spectrumC(ω) plotted
(in grey) together with the quantum mechanical band-profile
(2πe2/∆~)|Bnm|2 for ℓ = 1, and~scaled ≈ 0.018. (b) The LDOS
kernelP (n|m) in the perturbative regime for a billiard withℓ = 100
and perturbationφ = 2.7. (c) Same as (b) but zoomed normal scale.
The width of the non-perturbative component isΓ/∆ = 36. Note
that in this regime the variance∆E/∆ ≈ 58 is still dominated by
the (perturbative) tails. For comparison we display the calculated
Pprt, Pcl, andPRMT.

for ω ≫ (1/τcl). This is known as the “white noise” approx-
imation [12]. We have checked the validity of this approxi-
mation in the present context by a direct numerical evaluation
of C̃(ω), and also verified the validity of the above recipe by
direct evaluation of the matrix elements ofB via Eq.(2), see
Fig. 2(a). The classical̃C(ω) was numerically evaluated by
Fourier analysis of the fluctuating currentI(t) for a very long
ergodic trajectory that covers densely the whole energy sur-
faceH(0) = E.

Perturbation theory to infinite order with the Hamiltonian
H = E + φB leads to a Lorentzian-type approximation
for the LDOS [2] (see also Section 18 of [6]c). It is an ap-
proximation because all the higher orders are treated within
a Markovian-like approach (by iterating the first order result)
and convergence of the expansion is pre-assumed, leading to
Pprt(n|m) = φ2|Bnm|2/[Γ2+(En−Em)2]. In practice the pa-
rameterΓ(φ) can be determined (for a givenφ) by imposing
the requirement of havingPprt(r) normalized to unity. Substi-
tuting the expression for the matrix elements we get

Pprt(n|m) =
8~

2(~vE)3/(3πmL2
yL

3
x)

(En−Em)2 + (~/τcl)2
φ2

(En−Em)2 + Γ2
(5)

By comparing the exactP (r) to the approximation Eq.(5) we
can determine the regimeφ < φprt for which the approxima-
tion P (r) ≈ Pprt(r) makes sense. The practical procedure to
determineφprt is to plotδEprt and to see where it departs from
δEcl. The latter is a linear function ofφ while the former be-
comes sublinear for large enoughφ, (and even would exhibit
saturation if we had a finite bandwidth). In case of Eq.(5) this
reasoning leads to a crossover whenδEcl(φ) ∼ ~/τcl. Hence
we get that the border of the perturbative regime (see footnote
[15] ) is φprt = Lx/(vEτcl) ∼ 1.

What happens toP (r) in practice? If we take the Wigner
RMT model as an inspiration, we expect to have atφ ∼ φprt

a simple crossover from aPprt line-shape to aPcl line-shape.
The latter is regarded as the semiclassical analogue of the (ar-
tificial) semicircle line shape. Indeed for the smooth billiard
(ℓ = 1) we have verified that this naive expectation is realized
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FIG. 3: (a) The LDOS kernelP (n|m) for φ = 31.4, whereℓ = 100.
(b) The same parameters butℓ = 1. In panel (a) we observe co-
existence of perturbative and SC structures while in panel (b) we
witness detailed QCC.

[13]. But for the rough billiard (ℓ = 100) we witness a more
complicated scenario. In Fig. 2(b,c) we show the LDOS for
φ < φprt, where it (still) agrees quite well withPprt. In Fig. 3 we
show the LDOS forφ > φprt, where we would naively expect
agreement withPcl. Rather we witness a three peak structure,
where ther ∼ 0 peak is of perturbative nature, while the other
are the fingerprint of semiclassics. For sake of comparison we
show the corresponding results for a smooth billiard (ℓ = 1)
and otherwise the same parameters. There we have detailed
QCC as is naively expected. The co-existence of perturba-
tive and semiclassical features persists within an intermediate
regime ofφ values, to which we refer as the “twilight zone”.

Before we adopt a phase space picture in order to explain
the above observations, we would like to verify that indeed
random matrix modeling does not lead to a similar effect: Af-
ter all the standard Wigner model, that gives rise to a simple
crossover from a Lorentzian to a semicircle line shape, as-
sumes a simple banded matrix, which isnot the case in our
model. As argued above the matrix elements ofB decay as
1/|n − m|2 from the diagonal. This implies thatPprt(r) is in
fact not a Lorentzian, and also may imply that the crossover
to the non-perturbative regime is more complicated. In order
to resolve this subtlety we have taken a randomized version of
the HamiltonianH = E + φB. Namely, we have random-
ized the signs of the off-diagonal elements of theB matrix.
Thus we get an RMT model with the same band profile as
in the physical model. This means thatPprt is the same for
both models (the physical and the randomized), but still they
can differ in the non-perturbative regime. Indeed, lookingat
the LDOS of the randomized model we observe that the semi-
classical features are absent:PRMT(r) unlike P (r) exhibits a
simple crossover from perturbative to non-perturbative line-
shape.

In what follows we would like to argue that the structure
of P (r), both perturbative and non-perturbative components,
can be explained using aphase space picture. [For phrasing
purpose we find the “Wigner function language” most conve-
nient, still the reader should notice that we do not need or use
this representation in practice]. We recall theP (n|m) is deter-
mined by the overlap of two Wigner functions. In the present
context the Wigner functionsρ(n) are supported by shifted cir-
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FIG. 4: The probability distribution|〈ν, µ|n〉|2 for (a) Then =
2423 eigenstate of the smooth (ℓ = 1) billiard; (b) Then = 1000
eigenstate of the rough (ℓ = 100) billiard. Note that this is essentially
the (px, py) momentum distribution. The state in panel (a), unlike
the state in panel (b), is a typical semiclassical state. Namely it is
well concentrated on the energy shell.

cles(px − (φ/(2π))2 + p2
y = 2mEn. We are looking for their

overlap with a reference Wigner function which is supported
by the circlep2

x + p2
y = 2mEm. The question is whether

the overlaps of the Wigner functionsρ(n) and ρ(m) can be
approximated by a classical calculation, and under what cir-
cumstances we need perturbation theory.

Generically the Wigner function has a transverse Airy-type
structure. If the “thickness” of the Wigner function is much
smaller compared with the separation|En−Em| of the en-
ergy surfaces then we can trust the semiclassical approxima-
tion. This will always be the case if~ is small enough, or
equivalently if we can makeφ large enough. In such case the
dominant contribution comes from the intersection of the en-
ergy surfaces, which is the phase space analogue of stationary
phase approximation. The other extreme is the case where the
“thickness” of Wigner function is larger compared with the
separation of the energy surfaces (namelyδEcl(φ) < ~/τcl).
Then the contribution to the overlap comes “collectively”
from all the regions of the Wigner (quasi) distribution, not
just from the intersections. In such case we expect perturba-
tion theory to work.

The above reasoning assumes that the wavefunction is con-
centrated in an ergodic-like fashion in the vicinity of the en-
ergy surface. This is known as “Berry conjecture” [14]. In
case of billiards it implies that the wavefunction looks like a
random superposition of plane waves with|p| = (2mE)1/2.
We find (see Fig. 4) that this does not hold in case of a rough
billiard (unless~ were extremely small, so as to make the
De-Broglie wavelength very short). Namely, in the case of
a rough billiard there are eigenstates that have a lot of weight
in the region|p| < (2mE)1/2. Consequently there are both
semiclassical and non-semiclassical overlaps. Specifically, if
we have non-semiclassical wavefunctions, and|En − Em| ∼
0, then thecollectivecontribution dominates, which give rise
to the perturbative-like peak in the LDOS.

Our findings apply to systems, such as the rough billiard,
where there is an additional (large)non-universalenergy scale
δENU. This is defined as an energy scale which isnot re-

lated to the bandprofile, and hence does not emerge in the
RMT modeling. Hence in general there is a distinct twilight
regime~/τcl < δEcl(φ) < δENU, which is neither “perturba-
tive” nor “semiclassical”. [In our numericsℓ=100 is so large
thatδENU∼E.]

Summary: We have analyzed the parametric evolution of
the eigenstates of an Aharonov-Bohm cylindrical billiard,as
the flux is changed. For the first time the full crossover
from the perturbative to the non-perturbative regime is demon-
strated. Random matrix theory suggests asimplecrossover.
Instead, we discover an intermediate twilight regime where
perturbative and semiclassical features co-exist. This can be
understood by adopting a phase space picture, and taking into
account the inapplicability of the Berry conjecture regarding
the semiclassical structure of the wavefunctions.

This research was supported by a grant from the GIF,
the German-Israeli Foundation for Scientific Research and
Development, and by the Israel Science Foundation (grant
No.11/02).
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