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Quasistatic transfer protocols 
for atomtronic superfluid circuits
Yehoshua Winsten & Doron Cohen*

Quasi-static protocols for systems that feature a mixed phase-space with both chaos and quasi-regular 
regions are beyond the standard paradigm of adiabatic processes. We focus on many-body system 
of atoms that are described by the Bose–Hubbard Hamiltonian, specifically a circuit that consists of 
bosonic sites. We consider a sweep process: slow variation of the rotation frequency of the device 
(time dependent Sagnac phase). The parametric variation of phase-space topology implies that the 
quasi-static limit is not compatible with linear response theory. Detailed analysis is essential in order 
to determine the outcome of such transfer protocol, and its efficiency.

Considering a closed Hamiltonian driven system, such as a particle in a box with moving wall (aka the piston 
paradigm), the common claim in Statistical Mechanics textbooks is that quasi-static (QS) processes are adiabatic, 
with vanishing dissipation in this limit, which implies thermodynamic reversibility. Indeed this claim can be 
established for an integrable system by recognizing that the action-variables are adiabatic  invariants1. Also the 
other extreme, of a slowly driven completely chaotic system, has been  addressed2–4, leading to the mesoscopic 
version of the Kubo linear-response result and the associated fluctuation-dissipation  phenomenology5–8. But 
generic systems are neither integrable nor completely chaotic. Rather they have mixed phase space. For such 
system the adiabatic picture fails  miserly9–12, because the variation of the control parameter is associated with 
structural changes in phase space topology: tori merge into chaos, and new sets of tori are formed later on. This 
can be regarded as the higher-dimensional version of separatrix  crossing13–23, where the so-called Kruskal–Neis-
htadt–Henrard theorem is followed.

In the present work we consider the implications of having mixed phase space with regard to quasi-static trans-
fer protocols (QSTP). Specifically we focus on Bose–Hubbard circuits , and ask what is the outcome of a QS pro-
cess whose aim is to transfer particles coherently from one orbital to another orbital. Systems that are described 
by the Bose–Hubbard Hamiltonian (BHH) are of major interest both theoretically and  experimentally24–27. The 
simplest configuration is the BHH dimer (two sites), aka the Bosonic Josephson Junction (BJJ),  see28 and refer-
ences therein. More generally there is an interest in lattice ring circuits that can serve as a SQUID or as a useful 
Qubit  device29–32. The hope is that coherent operation might be feasible for BHH configuration with few sites, 
as already established for protocols that involve two sites (BJJ). The most promising configuration is naturally 
the 3-site  trimer33–51. For the analysis of such circuit one has to confront the handling of an underlying mixed 
phase  space49,50,52. In particular the implications of mixed phase-space on the stability of superflow has been 
explored in Ref.49–51.

Striking forms of irreversibility can be observed in hysteresis experiments with ultracold atoms, both is double 
well  geometry58 and in ring  geometry59,60. For related theoretical studies see for  example53–57, where the emphasis 
is mainly on the parametric bifurcations of fixed points in phase space (notably the so-called swallow-tail loops). 
More recently the effect of chaos has been taken into account while studying the efficiency of a nonlinear stimu-
lated Raman adiabatic  passage11; and the Hamiltonian hysteresis that follows the reversal of the driving  scheme12.

Our interest in QSTP is motivated by hysteresis experiments with atomtronic superfluid circuits, as  in60. 
Namely, we consider the following protocol for a ring-shaped circuit: (1) Initially, at the preparation stage, all 
the particles are condensed into the lowest momentum orbital that has a zero winding number; (2) The rotation 
frequency � of the ring is gradually changed, aka sweep process; (3) The final state of the system is probed, and 
the momentum distribution is measured. One possibility would be to find that all the particles are still condensed 
in a single orbital, possibly with a different winding number. This would be the case for a strictly quantum-
adiabatic process, for which the system follows the ground state (GS), namely E(t) ∼ EGS(�(t)) . This would be 
also the case in the presence of a bath that induces relaxation towards the instantaneous GS. But such scenarios 
are not realistic because they require extremely slow sweep, and because we would not like to expose the system 
to external dissipation. We therefore ask what would be the result of such protocol for an isolated system that 
undergoes a realistic slow sweep process. This is precisely the regime where a semiclassical perspective is most 
 effective49,50,52. The condensate, which is a many-body coherent state, is represented by a Gaussian-like distribu-
tion in phase space. At the preparation stage this cloud of points is located at the minimum of the potential. This 
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minimum is a stationary point (SP) of the Hamiltonian. We ask what is the fate of the evolving cloud at the end 
of the sweep? Is it going to ergodize, or is it going to maintain some coherence? In a larger context we are looking 
for a theory for the design of QSTP. 

Outline. We present the model Hamiltonian in terms of physically motivated coordinates, and display results 
of sweep simulations. Then we illuminate our findings by performing step-by step analysis of the energy land-
scape, and of the phase-space dynamics.

Results
The model. We consider a system with N bosons in a 3-site ring. The system is described by the Bose–Hub-
bard Hamiltonian [Methods] with hopping frequency K and on-site interaction U. The sweep control-parameter 
is the Sagnac phase � , which is proportional to the rotation frequency of the device: it can be regarded as the 
Aharonov-Bohm flux that is associated with Coriolis field in the rotating  frame59,60. There are 3 momentum 
orbitals k = 0,±2π/3 . Initially all the particles are condensed in k = 0 . A caricature for the preparation is pro-
vided in Fig. 1 (left panel).

Following51 we define a depletion coordinate n and an imbalance coordinate M, such that the occupations 
of the orbitals are n0 = N−2n , and n± = n±M . The model Hamiltonian can be written in terms of (n, M), and 
the conjugate phases (ϕ,φ) . Namely [Methods]:

The first term H(0) is an integrable piece of the Hamiltonian that has M as a constant of motion:

while the additional terms induce resonances that spoil the integrability, and give rise to chaos:

The hopping frequency K and the Sagnac phase � hide in the expression for the energy of the condensate, and 
in the detuning parameters:

We also note that the energies of the totally depleted states ( n = (N/2) ) are
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Figure 1.  Orbital occupation. For the purpose of illustration we consider a ring with N = 4 particles. The 
orbitals are represented by horizontal lines (the horizontal shifts hints the sign of the momentum). Initially 
(left panel) the particles are condensed in the #0 momentum orbital. As � is increased beyond �mts this 
configuration becomes metastable (right). We ask what is the moment when the #0 orbital is depleted, and what 
is the final distribution of the particles. The N = 4 system has 15 energy levels that corresponds to the different 
possibilities to distribute the particles between the orbitals. In the presence of non-zero interaction those levels 
are partially mixed.
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Note that the latter expression has zero contribution from the H(±) terms. The chaos affects the pathway between 
the initial condensate at n = M = 0 , and the peripheral depleted states at n = (N/2) , but has only little effect on 
the gross features of the energy landscape.

Metastability. The central point in phase space n = M = 0 is a stationary point (SP) of the Hamiltonian 
for any � , meaning that we have there ṅ = 0 . But this does not mean that this SP is stable. As implied by the 
caricature of Fig. 1, the condensate at n = 0 is no longer situate at the minimum of the energy landscape once 
E0 > min{E∞(M)} = E∞(N/2) . This leads to the threshold

Once we cross �mts the SP becomes a metastable minimum. Illustrations of the energy landscape for representa-
tive values of � can be found in the Supplementary. In the subsequent paragraphs we shall discuss additional 
thresholds: Once we cross �stb the central SP becomes a saddle in the energy landscape. Once we cross �dyn this 
saddle becomes dynamically unstable. When E0 = E∞(0) a dynamical corridor is opened between the central 
SP and the peripheral depleted states, leading to the identification of what we call swap transition at � = �swp.

Semiclassics. The classical (as opposed to semiclassical) treatment of the Hamiltonian is commonly termed 
Mean Field Theory (MFT). The evolving state is represented by a single point in phase space. We can scale the 
time such that t := Kt , and the occupations such that n := n/N . Then one finds that the dynamics is controlled 
by the dimensionless interaction parameter

Upon quantization (aka “second quantization”) the scaled value of the Planck constant is � = 1/N , see e.g.49,50,52. 
Quantum states can be represented in phase space by their Wigner function. In particular the initial coherent 
state at n = 0 is represented in phase-space by a Gaussian-like distribution of radius R ∼ 1/N.

What we call “semiclassical treatment” is far better and reliable compared to MFT, and is commonly called 
Truncated Wigner Approximation (TWA). Within the framework of TWA the Moyal brackets are approximated 
by Poisson brackets, which means that the Wigner function is propagated by the classical equations of motion.

The TWA is very accurate as long as quantum tunneling is neglected. The tunneling amplitude scales as 
exp[−Action/�] , where � = 1/N . Therefore it is much slower compared with any classical process. Discussion 
of tunneling in the BHH context can be found  in62, and later we demonstrate numerically that it can be neglected 
for a simulation with N = 30 particles.

Simulations. We describe the results of semiclassical simulations. Detailed analysis will follow after that. 
The condensate preparation at � = 0 is represented by a Gaussian cloud of points in phase space, at the central 
SP ( n = 0 ). The evolution of the cloud in a dynamical sweep simulation is demonstrated in Fig. 2. The color-
code shows the evolution of the depletion coordinate (n), and the vertical position of the cloud points indicate 
the population imbalance M (left panels), or the energy E = H (right panels), or the current I = −∂H/∂� as a 
function of time (inset). For the latter we use the following expression in terms of (n, M),

Note that the cloud is a semiclassical representation of the evolving state. Accordingly, to get the expectation 
value of the energy or of the current, an average has to be taken over the ensemble of evolving trajectories. In 
Fig. 2 the average is not taken in order to provide an insight for the dispersion as well.

The cloud follows the ground state energy EGS only up to �mts . Then it continues to follow the condensate 
energy E0 during an additional time interval. The cloud starts spreading not before �stb , and not later than �dyn . 
The spreading is indicated by the departure of energy from E0 . The depletion of the condensate is indicated by 
the color that changes abruptly from blue ( n = 0 ) to red ( n∼N/2 ). It takes place during a distinct short time 
interval when �(t) ∼ �swp . The depletion stage is also clearly reflected as a jump in the current-versus-time 
plot. Finally, the subsequent evolution after the depletion does not follow any of the adiabatic En curves, as 
discussed further below.

We display in Fig. 2 three representative simulations: very slow sweep (top row), optimal sweep rate (mid-
dle row), and faster sweep (lower row). The results for many such simulations are gathered in Fig. 3, where the 
dependence of 〈n〉 and 〈M〉 on the sweep rate is demonstrated for different values of the interaction u. What we 
call optimal sweep rate provides the most coherent outcome (minimum dispersion). Contrary to the traditional 
dogma, it is not true that “slower is better”.

Adiabatic evolution. It is illuminating to discuss the � dependence of the energy landscape using a quan-
tum “energy level” language. The parametric evolution of the many body eigen-energies is presented in Fig. 4a. If 
the system were completely chaotic, then we could associate each En with a micro-canonical energy surface that 
encloses a phase space volume
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Figure 2.  Semiclassical simulation of a sweep process. Here and below we consider a 3-site ring. The initial 
condensate is represented by a cloud of radius R = 0.0001 at n = 0 . Left: The (n, M) coordinates of the evolving 
trajectories are presented as a function of time. Both coordinates are normalized ( n := n/N ,M := M/N ). The 
n values are color coded such that blue corresponds to n = 0 and red to total depletion. Right: The energy E of 
the evolving points as function of time. The dotted line is the ground state energy EGS , and the dashed line is 
the condensate energy E0 . The other lines in the background are subset of adiabatic En curves (see text). Inset 
(second row): The current I that flows in the ring as a function of time. Parameters: The interaction is u = 2.3 , 
and the associated vertical lines are from left to right �mts = π and �stb = 1.26π and �dyn = (3/2)π and 
�swp = 1.62π . The units of time have been chosen such that K = 1 . Each row is for a different sweep rate. From 
up to down we have �̇ = 3π · 10−4 (slow) and �̇ = 5π · 10−4 (optimal) and �̇ = 3π · 10−3 (faster).
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Here, for a given number of particles, we have a system with d = 2 degrees of freedom, and N (E) is the 2d 
hyper-volume of H < E divided by (2π�)d . Irrespective of chaos, a practical numerical procedure to find the 
phase-space volume is to invert the dependence E = En where n = 1, 2, 3 . . . . The validity of this statement is 
implied by the Wigner-Wyle formalism. The representative En curves in the background of Fig. 2 have been 
calculated using this procedure with N = 30.

For an adiabatic sweep, the phase-space volume Eq. (11) is the so-called adiabatic  invariant2–4. This state-
ment assumes a globally chaotic energy surface. In the classical context we say that during an adiabatic sweep 
the system stays in the same adiabatic energy surface. In the quantum context we say that the system stays in 
the same adiabatic energy level.

In a strictly quantum-adiabatic scenario, the system stays in its ground state with energy EGS(�) , and therefore 
the population is fully depleted from k = 0 to the other orbitals. Such quantum adiabaticity cannot be observed 
for a realistic sweep rate, because it requires many-body tunneling from a metastable minimum of the energy 
 landscape62. Consequently, for large N, the semiclassical picture provides a sound approximation. In Fig. 4b we 
demonstrate that even a circuit with small number of particles ( N = 30 ) follows a semiclassical-like scenario.

The semiclassical adiabatic scenario excludes the possibility of tunneling, and therefore can start only when 
�(t) > �stb , namely, once the central SP becomes a saddle in the energy landscape. In order to determined �stb 
we use the Bogolyubov procedure, which brings the Hamiltonian in the vicinity of the SP to a diagonalized form:

Explicit results for the Bogolyubov frequencies are provided in the Methods section. The SP becomes a saddle 
once the ωq do not have the same sign. This happens for � larger than

The topography at the vicinity of the central SP, once it becomes a saddle is as follows: it is still a minimum in 
the M = 0 subspace, while away from M = 0 the energy floor is lower (see the Supplementary for plots of the 
(M, E) energy landscape). Nevertheless, we see from the simulation of Fig. 2 that spreading away from the central 
SP starts only at a later stage, whereafter the cloud departs the E0 curve, neither follows any of the En curves.

Quench-related spreading. Let us consider first the simpler scenario of preparing a cloud at n = 0 , which 
is the � = 0 ground state, and then evolving it with H(�  = 0) , aka a quench process. The SP for t > 0 (after the 
quench) is dynamically unstable if the Bogolyubov frequencies become complex. This happens (see Methods) 
for � larger than

After the quench the cloud spreads away from n = 0 in the landscape that is described by Fig. 5a, as illustrated 
in Fig. 5b. The Poincare section there shows that the stability island is taken-over by a chaotic strip. The points 
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Figure 3.  Efficiency of the sweep process. The expectation values 〈n〉 and 〈M〉 at the end of the sweep process are 
plotted against �̇ for misc values of u. Note again that the coordinates are normalized ( n := n/N ,M := M/N ). 
The optimal sweep rate is determined by inspection of the maximum of 〈M〉 , which becomes prominent for 
large u.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3136  | https://doi.org/10.1038/s41598-021-82386-y

www.nature.com/scientificreports/

of the spreading cloud are colored. The other trajectories, that do not belong to the cloud, are not color-coded. If 
they were color-coded, one would see that for quasi-regular trajectories M is approximately a constant of motion.

Sweep-related spreading. We now consider again a quasi-static sweep process. Naively, we might expect 
that spreading will start once �dyn is crossed. But a more careful inspections reveals that the QS limit is subtle. 
We see from the upper left panel of Fig. 2, and from Fig. 5c that for a slow sweep the cloud splits into two pieces. 
The dynamics is caricatured in Fig. 6. The reason for the splitting is related to the co-existence of two different 
mechanisms. One resembles the quench scenario. Namely, somewhere in the range [�stb,�dyn] spreading is 
initiated along the chaotic strip. But a different spreading mechanisms comes into play after �dyn is crossed. This 
second mechanism dominates the “optimal sweep” of Fig. 2. For an optimal sweep the chaos-related spreading 
mechanism has no time to develop.

The additional sweep-related mechanism is not related to chaos, but to the bifurcation of the stability island. 
It obeys the Kruskal–Neishtadt–Henrard  theorem13–23, namely, the cloud is drained into the emerging stability 
island. The full optimal sweep scenario is displayed in the left panels of Fig. 7.

Figure 4.  Quantum spreading in few particle system. Even for small number of particles the semiclassical 
perspective is useful. Upper panel: The many body energy levels En for N = 4 particles in a 3-site ring as a 
function of � for u = 2.3 . The points are color-coded by the expectation value of M. Lower panel: The quantum 
evolution of N = 30 particle ring is imaged. Each row is the color-coded probability pn = |

〈

En
∣

∣ψ(t)
〉

|2 as 
a function of time. For larger N we expect a very good quantitative correspondence with the semiclassical 
simulations of Fig. 2.
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Figure 5.  Spreading and depletion. (a) Image of M for the phase space points of the energy surface 
H(0)(ϕ, n;M) = E0 . The interaction is u = 2.3 and � = 1.61π ∼ �swp . (b) Poincare section for the same � 
at the same energy (gray trajectories), and a spreading cloud (colored trajectories) following a quench to this 
� value. The initial cloud is the preparation at n = 0 . It spreads away from the central SP, and stretches along 
the chaotic corridor. Its points are color-coded by M. (c) The spreading cloud in the sweep simulation. Upper 
inset (red points): The sweep rate is �̇ = 3π · 10−4 (slow). The snapshot is taken at � ∼ �stb . An inner piece 
of the cloud is still locked in the tiny n = 0 stability island, and therefore has energy close to E0 . An outer piece 
of the cloud was formed due to very slow spreading in the chaotic corridor, and therefore has lower energy. 
The Poincare section at the background is adjusted to this lower energy. Lower inset (blue points): The further 
evolution of the same cloud after we stop the sweep at � = �stb and wait to see further ergodization in the 
chaotic strip. The upper inset would look like that if the sweep were much slower. Main panel: Zoom that 
displays the red and the blue clouds of the insets.
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Depletion process. As we already observed in Fig. 2, the spreading of the cloud starts before or latest at 
�dyn . But looking at the color-code we see that the depletion happens at a distinct moment when �(t) ∼ �swp . 
This is the moment when a corridor connects the central SP n = 0 with the peripheral region n = N/2 . In the 
absence of chaos n = N/2 is formally an SP of the H(0)(ϕ, n;M = 0) Hamiltonian. Each SP has its own sepa-
ratrix. For � = �swp the two SPs have the same energy, and therefore the two separatrices coalesce. From the 
equation E0 = E∞(0) we get

Once we add the H± terms, this joint separatrix becomes a chaotic strip, what we call “corridor”. The corridor 
is available for a small range of � around � ∼ �swp . During the time interval that the corridor is opened, the 
central SP is depleted. Both the energy landscape and the evolution are demonstrated in Fig. 7.

Subsequent evolution. We already pointed out that strict classical adiabaticity in the QS sense of Kubo 
does not hold for our scenario: for �(t) > �swp the system does not follow any of the En curves. The reason for 
that is figured out by further inspection of the dynamics. For �(t) > �swp the chaotic strip decomposes into 
quasi regular tori. Consequently a different adiabatic scenario takes over, that of Einstein and Landau, where adi-
abatic invariants are the “actions” of the tori. Each piece of the cloud is locked in a different torus, and therefore 
we do not observe in Fig. 7 further ergodization in the M direction.

Quasi static average. Without any approximation we always have Ė = −�I�t�̇ . In the Ott-Wilkinson-
Kubo formulation of linear response  theory2–8, it is assumed that for a QS process the instantaneous average can 
be replaced by an evolving microcanonical average 〈I〉E due to quasi-ergodicity. But we are not dealing with a 
globally chaotic energy surface. Rather, the cloud occupies at any moment only a fraction of the energy shall, 
or a set tori that depart from the microcanonical shell. We use the notation 〈I〉QS for the corresponding average. 
Accordingly

For a system with 2 freedoms the QS average is well defined: at any moment the ergodic region that is accessible 
for the evolving cloud is bounded by KAM surfaces. This is not true if we had more than 2 freedoms: then the 
accessible region would likely exhibit a more complicated dependence on the rate of the sweep. Anyway, in the 
present context the current of Eq. (10) reflects the occupation of the orbitals, and therefore can be expressed in 
terms of (M, n). The expectation value of the current can be calculated for the evolving cloud of the simulation, 
see inset of Fig. 2, and we have verified numerically (not shown) that it agrees with Eq. (16).

Post-sweep ergodization. For a QS process it is expected to witness quasi-ergodic distribution at any 
moment. For faster sweep the cloud fails to follow the evolving energy landscape, and therefore a post-sweep 
ergodization stage is expected, as indeed observed in Fig. 2 for the “faster” sweep. But surprisingly post-sweep 
ergodization stage is also observed if the sweep rate is extremely slow, as observed in Fig. 2 for the “slow” sweep. 
The reason for that is explained by Fig. 7. Namely, in the case of a very slow dynamics, the cloud is split into 
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Figure 6.  The spreading mechanism. The dynamics of Fig. 5 is caricatured for an optimal sweep (left panels) 
and for a slow sweep (right panels). The panels are ordered by time (from top to bottom). For an optimal sweep, 
chaos has no time to induce spreading, therefore, even if the cloud is larger (not displayed) the spreading process 
looks the same. For a slow sweep the outer part of the cloud has the time to spread way from the center along 
the chaotic strip. This chaotic spreading is initiated in the range [�stb,�dyn] , while the former takes place after 
�dyn , as clearly observed in the upper left panel of Fig. 2.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3136  | https://doi.org/10.1038/s41598-021-82386-y

www.nature.com/scientificreports/

several branches as explained previously. Most of it is re-trapped by quasi-integrable tori. But at the very last 
moment most of the tori are destroyed, and chaos takes-over again. Consequently a fraction of the cloud, that is 
no longer locked by tori, undergoes post-sweep ergodization.

Figure 7.  Phase space perspective for the simulations of a sweep process. The rates are �̇ = 5π · 10−4 (left 
set of panels) and �̇ = 3π · 10−4 (right set of panels). The interaction is u = 2.3 . The initial preparation is a 
condensate at n = 0 (represented by a red star). Initially it is the minimum of the energy landscape (see insets). 
Snapshots are taken after �dyn is crossed, at � = 1.51π , 1.6π , 2.5π , 3π , where the central SP in no longer a 
local minimum, and furthermore it is dynamically unstable. Consequently the cloud is free to spread away from 
n = M = 0 . First column of each set: snapshots of the evolving cloud in (E, M) space, where the points are color-
coded by n. Second column of each set: The cloud points, color-coded by M, are overlayed on the (ϕ, n) Poincare 
section. Two panels use non-polar (ϕ,M) coordinates for enhanced resolution. Bottom of each set: the evolving 
cloud in (ϕ, n) Poincare coordinates. Snapshots of the cloud are taken at different moments, and are color-coded 
by � . Blue is the initial cloud, and red is its final distribution.
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Discussion
Disregarding the very well studied 2-site Bosonic Josephosn junction, the trimer is possibly the simplest build-
ing block for an atomtronic circuit. It is the smallest ring that possibly can be exploited as a SQUID-type Qubit 
 device29–32. The first requirement is to have the possibility to witness a stable  superflow49–51. The second require-
ment is to have the possibility to witness coherent operation. The latter is indicated by, say, coherent oscillations 
between clockwise and anti-clockwise superflow  currents32. The third requirement is to have the possibility to 
execute protocols that do not spoil the coherence, meaning that the particles remain condensed in some evolv-
ing  orbital61. In semiclassical perspective it means that an initial Gaussian cloud does not ergodize. One may 
say that ergodicity due to chaos, as opposed to stability, is the threat that looms over the condensation of bosons 
in optical lattices.

Inspired by experiments with toroidal  rings60, here we considered a lattice ring that undergoes a prototype 
sweep protocol: increasing � from 0 to 3π such that the k = 0 orbital goes from the floor to the ceiling. During 
this process this orbital is depleted. The details of the process are as follows: As � is increased beyond a value 
�mts , the followed SP becomes a metastable minimum; For � larger that �stb it becomes a saddle in the energy 
landscape of the circuit; Depending on the sweep rate it can maintain dynamical stability up to some larger value 
�dyn ; Beyond this value the SP becomes unstable, but this does not automatically implies that the coherent state 
is depleted; A fully developed depletion process requires a corridor that leads to ergodization within a chaotic 
sea; Such corridor is opened during a small interval around � ∼ �swp ; During the chaotic stage of the sweep 
we witness partial ergodization, and the final state of the system is in general not fully-coherent. An optimal 
sweep rate can be determined.

In a larger perspective we emphasize that the traditional view of adiabaticity is not enough in order to a 
address a QSTP for a system that has mixed integrable and chaotic dynamics. Some historical background is 
essential in order to appreciate this statement. On the one extreme we have the Einstein-Landau theory for adi-
abaticity for integrable  systems1. On the other extreme we have the Kubo-Ott-Wilkinson picture of adiabaticity 
in chaotic  systems2–8, which is associated with energy absorption in accordance with linear-response theory. 
But realistic systems are neither integrable nor chaotic, but rather have mixed phase space whose topological 
structure changes during the sweep process. The simplest scenario is separatrix crossing, that can be addressed 
using the Kruskal–Neishtadt–Henrard  theorem13–23. More generally tori can merge into chaos, and new sets of 
tori can be formed later on. This leads to anomalous  dissipation9,10 and irreversibility in the QS  limit11,12. With 
the same spirit we have explored in this work the mechanisms that are involved in QS transfer protocols, and 
also the non-trivial dependence of the outcome on the sweep rate.

Methods
The Hamiltonian. The BHH for an L-site rotating ring is

where j mod(L) labels the sites of the ring, the a-s are the bosonic field operators, and � is the Sagnac phase.
It is convenient to switch to momentum representation. For a clean ring the momentum orbitals have wave-

numbers k = (2π/L)× integer . One defines annihilation and creation operators bk and b†k , such that 
b†k =

1√
L

∑

j e
ikja†j  creates bosons in the k-th momentum orbitals. Consequently the BHH takes the form

where the constraint k1+k2+k3+k4 = 0 mod(2π ) is indicate by the prime, and the single particle energies are

Later we assume, without loss of generality, that the particles are initially condensed in the k = 0 orbital. This is 
not necessarily the ground-state orbital, because we keep � as a free parameter. Note that we optionally use k as 
a dummy index to label the momentum orbitals.

Trimer hamiltonian. For the purpose of semiclassical treatment we express the Hamiltonian in terms of 
occupations and conjugate phases. For the 3-site ring ( L = 3 ) we get:

We define q1 = ϕ1 − ϕ0 and q2 = ϕ2 − ϕ0 where the subscripts refers to k1,2 = ±(2π/3) . Using the notation

(17)H =
L

∑

j=1

[

U

2
a†j a

†
j ajaj −

K

2

(

ei(�/L)a†j+1aj + h.c.
)

]

(18)H =
∑

k

ǫkb
†
kbk +

U

2L

′
∑

b†k4b
†
k3
bk2bk1

(19)ǫk = −K cos

(

k −
�

L

)

(20)

H =
∑

k=0,1,2

ǫknk +
U

6

∑

k

n2k +
U

3

∑

k′ �=k

nk′nk

+
U

3

∑

k′′ �=k′ �=k

[nk′nk′′ ]
1/2 nk cos (ϕk′′ + ϕk′ − 2ϕk)

(21)Ek = (ǫk − ǫ0)+ (1/3)NU
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we get H = H(0) +
[

H(+) +H(−)
]

 with

and

while H(−) is obtained by swapping the indices (1 ↔ 2).

Compact form. It is more convenient to use the coordinates

and the conjugate coordinates

Then the Hamiltonian takes the form of Eq. (1) with Eq. (2) and Eq. (3). The energy E0 of the n = 0 central SP is 
implied by the first two terms of Eq. (22), leading to Eq. (4). The detuning parameters are

leading to Eqs. (5) and (6). Note: if we linearized H with respect to the (n1, n2) occupations, we would get the 
Bogolyubov approximation, which is Eq. (2) without the third term ( M2 ), and with (N−2n) ≈ N.

Bogolyubov frequencies. The non-trivial Bogolyubov frequencies in units of K = 1 , see Supplementary, 
are

(22)

H
(0) = ǫ0N +

U

6
N2 + E1n1 + E2n2

−
U

3

[

n21 + n22 + n1n2
]

+
2U

3
(N−n1−n2)

√
n1n2 cos

(

q1 + q2
)

(23)H
(+) =

2U

3

√

(N−n1−n2)n1 n2 cos
(

q1 − 2q2
)

(24)
φ[mod(4π)] = q1 − q2 = ϕ1 − ϕ2

ϕ[mod(2π)] = q1 + q2 = ϕ1 + ϕ2 − 2ϕ0

(25)M =
1

2
(n1 − n2) ∈

[

−
N

2
,
N

2

]

(26)n =
1

2
(n1 + n2) ∈

[

|M|,
N

2

]

(27)E� = E1 + E2 − (1/2)NU

(28)E⊥ = E1 − E2

Figure 8.  The Bogolyubov frequencies. They are calculated for a k = 0 condensate. The vertical lines from 
left to right are for �stb , and �dyn , and �swp . The latter cannot be deduced form the Bogolyubov analysis, but 
requires global understanding of phase space structure.
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For positive u and � < �stb the SP is the minimum of the energy landscape, and the Bogolyubov frequencies 
are positive, see Fig. 8. The SP becomes a saddle once ω− changes sign and becomes negative. The SP becomes 
dynamically unstable once the ω± become complex. Note that the energy of the SP, once it becomes unstable, 
gets above the M = 0 floor, see Fig. S1 of the Supplementary. By inspection of Eq. (29) we can identify a critical 
value of the interaction uc = 9/4 . For large interaction ( u > uc ) the Bogolyubov frequencies remain complex 
up to the end of the sweep at � = 3π . This indicates that the SP in not at the maximum of the energy landscape, 
see Fig. S1. The upper most SPs in this region support self-trapped states. For weak interaction ( u < uc ) the 
Bogolyubov frequencies become real and negative once we cross � = 3 arccos (−(9/4)u) , indicating that the SP 
becomes a stable maximum.
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