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Abstract

Quasi-static protocols for systems that feature a mixed
phase-space with both chaos and quasi-regular regions
are beyond the standard paradigm of adiabatic processes.
We focus on a many-body system of atoms that are de-
scribed by the Bose-Hubbard Hamiltonian, specifically a
circuit that consists of bosonic sites. We consider a sweep
process: slow variation of the rotation frequency of the
device (time dependent Sagnac phase). The parametric
variation of phase-space topology implies that the quasi-
static limit is irreversible. Detailed analysis is essential in
order to determine the outcome of such transfer protocol,
and its efficiency.

Introduction

Considering a closed Hamiltonian driven system, such
as a particle in a box with moving wall (aka the piston
paradigm), the common claim in Statistical Mechanics
textbooks is that quasi-static (QS) processes are adi-
abatic, with vanishing dissipation in this limit, which
implies thermodynamic reversibility. Indeed this claim
can be established for an integrable system by recogniz-
ing that the action-variables are adiabatic invariants [1].
Also the other extreme, of a slowly driven completely
chaotic system, has been addressed [2—4], leading to the
mesoscopic version of the Kubo linear-response result and
the associated fluctuation-dissipation phenomenology [5—
8]. But generic systems are neither integrable nor com-
pletely chaotic. Rather they have mized phase space. For
such system the adiabatic picture fails miserly [9-12], be-
cause the variation of the control parameter is associated
with structural changes in phase space topology: tori
merge into chaos, and new sets of tori are formed later
on. This can be regarded as the higher-dimensional ver-
sion of separatrix crossing [13-23], where the so-called
Kruskal-Neishtadt-Henrard theorem is followed.

In the present work we consider the implications of
having mixed phase space with regard to quasi-static
transfer protocols (QSTP). Specifically we focus on Bose-
Hubbard circuits , and ask what is the outcome of a QS
process whose aim is to transfer particles coherently from
one orbital to another orbital. Systems that are described
by the Bose-Hubbard Hamiltonian (BHH) are of major
interest both theoretically and experimentally [24-27].
The simplest configuration is the BHH dimer (two sites),
aka the Bosonic Josephson Junction (BJJ), see [28] and
references therein. More generally there is an interest in
lattice ring circuits that can serve as a SQUID or as a
useful Qubit device [29-32]. The hope is that coherent

operation might be feasible for BHH configuration with
few sites, as already established for protocols that involve
two sites (BJJ). The most promising configuration is nat-
urally the 3-site trimer [33-51]. For the analysis of such
circuit one has to confront the handling of an underlying
mixed phase space [49, 50, 52]. In particular the implica-
tions of mixed phase-space on the stability of superflow
has been explored in Ref.[49-51].

Striking forms of irreversibility can be observed in hys-
teresis experiments with ultracold atoms, both is dou-
ble well geometry [58] and in ring geometry [59, 60].
For related theoretical studies see for example [53-57],
where the emphasis is mainly on the parametric bifurca-
tions of fixed points in phase space (notably the so-called
swallow-tail loops). More recently the effect of chaos has
been taken into account while studying the efficiency of a
nonlinear stimulated Raman adiabatic passage [11]; and
the Hamiltonian hysteresis that follows the reversal of
the driving scheme [12].

Our interest in QSTP is motivated by hysteresis ex-
periments with atomtronic superfluid circuits, as in [60].
Namely, we consider the following protocol for a ring-
shaped circuit: (1) Initially, at the preparation stage, all
the particles are condensed into the lowest momentum
orbital that has a zero winding number; (2) The rota-
tion frequency ® of the ring is gradually changed, aka
sweep process; (3) The final state of the system is probed,
and the momentum distribution is measured. One pos-
sibility would be to find that all the particles are still
condensed in a single orbital, possibly with a different
winding number. This would be the case for a strictly
quantum-adiabatic process, for which the system follows
the ground state (GS), namely E(t) ~ Eqs(®(t)). This
would be also the case in the presence of a bath that in-
duces relaxation towards the instantaneous GS. But such
scenarios are not realistic because they require extremely
slow sweep, and because we would not like to expose the
system to external dissipation. We therefore ask what
would be the result of such protocol for an isolated sys-
tem that undergoes a realistic slow sweep process. This
is precisely the regime where a semiclassical perspective
is most effective [49, 50, 52]. The condensate, which is a
many-body coherent state, is represented by a Gaussian-
like distribution in phase space. At the preparation stage
this cloud of points is located at the minimum of the po-
tential. This minimum is a stationary point (SP) of the
Hamiltonian. We ask what is the fate of the evolving
cloud at the end of the sweep? Is it going to ergodize, or
is it going to maintain some coherence? In a larger con-



text we are looking for a theory for the design of QSTP.

Outline.— We present the model Hamiltonian in
terms of physically motivated coordinates, and display
results of sweep simulations. Then we illuminate our
findings by performing step-by step analysis of the en-
ergy landscape, and of the phase-space dynamics.

Results

The model.— We consider a system with N bosons
in a 3-site ring. The system is described by the
Bose-Hubbard Hamiltonian [Methods] with hopping fre-
quency K and on-site interaction U. The sweep control-
parameter is the Sagnac phase ®, which is proportional to
the rotation frequency of the device: it can be regarded as
the Aharonov-Bohm flux that is associated with Coriolis
field in the rotating frame [59, 60]. There are 3 momen-
tum orbitals & = 0,427 /3. Initially all the particles are
condensed in k=0. A caricature for the preparation is
provided in Fig.1 (left panel).

Following [51] we define a depletion coordinate n and
an imbalance coordinate M, such that the occupations
of the orbitals are ng = N—2n, and n+ = n£tM. The
model Hamiltonian can be written in terms of (n, M),
and the conjugate phases (¢, ¢). Namely [Methods]:

H(p,n; 0, M) =HO (p,n; M) + [HE + 1| (1)

The first term (9 is an integrable piece of the Hamil-
tonian that has M as a constant of motion:

U
H(O)(Qp’n;M) = Fy +g”n+5J_M— §]\42

+%(N —2n) Bn + \/mcos(so)] (2

while the additional terms induce resonances that spoil
the integrability, and give rise to chaos:

HE = %\/(N—Qn)(niM)(n¥M) cos (3¢j<p> (3)
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FIG. 1. Orbital occupation. For the purpose of illustra-
tion we consider a ring with N=4 particles. The orbitals are
represented by horizontal lines (the horizontal shifts hints the
sign of the momentum). Initially (left panel) the particles are
condensed in the #0 momentum orbital. As & is increased
beyond ®mys this configuration becomes metastable (right).
We ask what is the moment when the #0 orbital is depleted,
and what is the final distribution of the particles. The N=4
system has 15 energy levels that corresponds to the different
possibilities to distribute the particles between the orbitals.
In the presence of non-zero interaction those levels are par-
tially mixed.

The hopping frequency K and the Sagnac phase ® hide
in the expression for the energy of the condensate, and
in the detuning parameters:

Ey = —NKcos (;I:) + éUNQ (4)
d 1
= 3K — -UN
&) 3 cos(3>+6U (5)
A
£ = —V3Ksin <3) (6)

We also note that the energies of the totally depleted
states (n = (N/2)) are
Eu(M) = By +&5 + &M — S (7)

Note that the latter expression has zero contribution from
the #(¥) terms. The chaos affects the pathway between
the initial condensate at n=M =0, and the peripheral de-
pleted states at n = (N/2), but has only little effect on
the gross features of the energy landscape.

Metastability.— The central point in phase space
n=M=0 is a stationary point (SP) of the Hamiltonian
for any ®, meaning that we have there n = 0. But this
does not mean that this SP is stable. As implied by
the caricature of Fig.1, the condensate at n=0 is no
longer situate at the minimum of the energy landscape
once Ey > min{Fo (M)} = E-(N/2). This leads to the
threshold

(bmts = T (8)

Once we cross ®,,¢; the SP becomes a metastable mini-
mum. Illustrations of the energy landscape for represen-
tative values of ® can be found in SM. In the subsequent
paragraphs we shall discuss additional thresholds: Once
we cross Py, the central SP becomes a saddle in the en-
ergy landscape. Once we cross @4y, this saddle becomes
dynamically unstable. When Ey = E,(0) a dynamical
corridor is opened between the central SP and the pe-
ripheral depleted states, leading to the identification of
what we call swap transition at ® = ®gyp.

Semiclassics.— The classical (as opposed to semiclas-
sical) treatment of the Hamiltonian is commonly termed
Mean Field Theory (MFT). The evolving state is repre-
sented by a single point in phase space. We can scale
the time such that t:= Kt, and the occupations such
that n :=n/N. Then one finds that the dynamics is con-
trolled by the dimensionless interaction parameter

NU
v = )

Upon quantization (aka “second quantization”) the
scaled value of the Planck constant is h = 1/N, see e.g.
[49, 50, 52]. Quantum states can be represented in phase
space by their Wigner function. In particular the initial
coherent state at n=0 is represented in phase-space by a
Gaussian-like distribution of radius R ~ 1/N.
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Semiclassical simulation of a sweep process. Here and below we consider a 3-site ring. The initial condensate

is represented by a cloud of radius R=0.0001 at n=0. Left: The (n, M) coordinates of the evolving trajectories are presented
as a function of time. Both coordinates are normalized (n := n/N, M := M/N). The n values are color coded such that blue
corresponds to n=0 and red to total depletion. Right: The energy F of the evolving points as function of time. The dotted line
is the ground state energy Fgs, and the dashed line is the condensate energy Fo. The other lines in the background are subset
of adiabatic F, curves (see text). Inset (second row): The current I that flows in the ring as a function of time. Parameters:
The interaction is u=2.3, and the associated vertical lines are from left to right ®ms=n and Pg1,=1.267 and Payn=(3/2)7 and
@Swp;1.62w. The units of time .have been chosen such that K =1. Each row is for a different sweep rate. From up to down we
have ® = 37 - 10™* (slow) and & = 57 - 10™* (optimal) and ® = 37 - 1072 (faster).

What we call “semiclassical treatment” is far better
and reliable compared to MFT, and is commonly called
Truncated Wigner Approximation (TWA). Within the
framework of TWA the Moyal brackets are approximated
by Poisson brackets, which means that the Wigner func-
tion is propagated by the classical equations of motion.

The TWA is very accurate as long as quantum tun-
neling is neglected. The tunneling amplitude scales as
exp[—Action/h], where i = 1/N. Therefore it is much
slower compared with any classical process. Discussion
of tunneling in the BHH context can be found in [62], and
later we demonstrate numerically that it can be neglected
for a simulation with N = 30 particles.

Simulations.— We describe the results of semiclassi-
cal simulations. Detailed analysis will follow after that.
The condensate preparation at ®=0 is represented by a
Gaussian cloud of points in phase space, at the central
SP (n=0). The evolution of the cloud in a dynamical
sweep simulation is demonstrated in Fig.2. The color-
code shows the evolution of the depletion coordinate (n),
and the vertical position of the cloud points indicate
the population imbalance M (left panels), or the energy
E=H (right panels), or the current I = —9H /0P as a
function of time (inset). For the latter we use the follow-



FIG. 3. Efficiency of the sweep process. The expecta-
tion values (n) and (M) at the end of the sweep process are
plotted against ® for misc values of u. Note again that the
coordinates are normalized (n :=n/N,M := M/N). The op-
timal sweep rate is determined by inspection of the maximum
of (M), which becomes prominent for large u.

ing expression in terms of (n, M),

N ) M d
I = (n—3> Ksing + %K cos = (10)
Note that the cloud is a semiclassical representation of
the evolving state. Accordingly, to get the expectation
value of the energy or of the current, an average has to be
taken over the ensemble of evolving trajectories. In Fig.2
the average is not taken in order to provide an insight for
the dispersion as well.

The cloud follows the ground state energy Fgs only
up to ®.s. Then it continues to follow the conden-
sate energy Ey during an additional time interval. The
cloud starts spreading not before ®gp,, and not later than
®gyn. The spreading is indicated by the departure of en-
ergy from Ey. The depletion of the condensate is indi-
cated by the color that changes abruptly from blue (n=0)
to red (n~N/2). Tt takes place during a distinct short
time interval when ®(¢) ~ ®gyp. The depletion stage is
also clearly reflected as a jump in the current-versus-time
plot. Finally, the subsequent evolution after the deple-
tion does not follow any of the adiabatic E,, curves, as
discussed further below.

We display in Fig.2 three representative simulations:
very slow sweep (top row), optimal sweep rate (middle
row), and faster sweep (lower row). The results for many
such simulations are gathered in Fig.3, where the de-
pendence of (n) and (M) on the sweep rate is demon-
strated for different values of the interaction u. What we
call optimal sweep rate provides the most coherent out-
come (minimum dispersion). Contrary to the traditional
dogma, it is not true that “slower is better”.

Adiabatic evolution.— It is illuminating to discuss
the ® dependence of the energy landscape using a quan-

tum “energy level” language. The parametric evolution
of the many body eigen-energies is presented in Fig4a. If
the system were completely chaotic, then we could asso-
ciate each F,, with a micro-canonical energy surface that
encloses a phase space volume

N(E) [Planck cells|. (11)

n =

Here, for a given number of particles, we have a sys-
tem with d=2 degrees of freedom, and N(E) is the 2d
hyper-volume of H < E divided by (27h)?. Irrespec-
tive of chaos, a practical numerical procedure to find the
phase-space volume is to invert the dependence E = FE,,
where n = 1,2, 3.... The validity of this statement is im-
plied by the Wigner-Wyle formalism. The representative
FE,, curves in the background of Fig.2 have been calcu-
lated using this procedure with N=30.

For an adiabatic sweep, the phase-space volume equa-
tion (11) is the so-called adiabatic invariant [2-4]. This
statement assumes a globally chaotic energy surface. In
the classical context we say that during an adiabatic
sweep the system stays in the same adiabatic energy sur-
face. In the quantum context we say that the system
stays in the same adiabatic energy level.

In a strictly quantum-adiabatic scenario, the system
stays in its ground state with energy Fgg(®), and there-
fore the population is fully depleted from k=0 to the
other orbitals. Such quantum adiabaticity cannot be ob-
served for a realistic sweep rate, because it requires many-
body tunneling from a metastable minimum of the energy
landscape [62]. Consequently, for large N, the semiclas-
sical picture provides a sound approximation. In Fig.4b
we demonstrate that even a circuit with small number of
particles (N=30) follows a semiclassical-like scenario.

The semiclassical adiabatic scenario excludes the pos-
sibility of tunneling, and therefore can start only when
D(t) > D1, namely, once the central SP becomes a sad-
dle in the energy landscape. In order to determined
Py, we use the Bogolyubov procedure, which brings the
Hamiltonian in the vicinity of the SP to a diagonalized
form:

H = Eo+2wchcq (12)

q

Explicit results for the Bogolyubov frequencies are pro-
vided in the Methods section. The SP becomes a saddle
once the w, do not have the same sign. This happens for
® larger than

1
®yp, = 3Jarccos (6 ( uz +9— u)) (13)

The topography at the vicinity of the central SP, once it
becomes a saddle is as follows: it is still a minimum in the
M=0 subspace, while away from M =0 the energy floor is
lower (see SM for plots of the (M, F) energy landscape).
Nevertheless, we see from the simulation of Fig.2 that
spreading away from the central SP starts only at a later
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FIG. 4. Quantum spreading in few particle system.
Even for small number of particles the semiclassical perspec-
tive is useful. Upper panel: The many body energy levels
E,, for N=4 particles in a 3-site ring as a function of ® for
u=2.3. The points are color-coded by the expectation value
of M. Lower panel: The quantum evolution of N=30 par-
ticle ring is imaged. Each row is the color-coded probabil-
ity pn = | (En|t(t))|* as a function of time. For larger N
we expect a very good quantitative correspondence with the
semiclassical simulations of Fig.2.

stage, whereafter the cloud departs the Fy curve, neither
follows any of the F,, curves.

Quench-related spreading.— Let us consider first
the simpler scenario of preparing a cloud at n = 0, which
is the ®=0 ground state, and then evolving it with
H(P # 0), aka a quench process. The SP for t > 0 (after
the quench) is dynamically unstable if the Bogolyubov
frequencies become complex. This happens (see Meth-
ods) for ® larger than

(Ddyn = gﬂ' (14)
After the quench the cloud spreads away from n=0 in
the landscape that is described by Fig.5a, as illustrated
in Fig.5bb. The Poincare section there shows that the sta-
bility island is taken-over by a chaotic strip. The points
of the spreading cloud are colored. The other trajec-
tories, that do not belong to the cloud, are not color-

coded. If they were color-coded, one would see that for
quasi-regular trajectories M is approximately a constant
of motion.

Sweep-related spreading.— We now consider again
a quasi-static sweep process. Naively, we might expect
that spreading will start once ®qy, is crossed. But a
more careful inspections reveals that the QS limit is sub-
tle. We see from the upper left panel of Fig.2, and from
Fig.5c that for a slow sweep the cloud splits into two
pieces. The dynamics is caricatured in Fig.6. The reason
for the splitting is related to the co-existence of two dif-
ferent mechanisms. One resembles the quench scenario.
Namely, somewhere in the range [®gp, Payn] spreading is
initiated along the chaotic strip. But a different spread-
ing mechanisms comes into play after ®g4y, is crossed.
This second mechanism dominates the “optimal sweep”
of Fig.2. For an optimal sweep the chaos-related spread-
ing mechanism has no time to develop.

The additional sweep-related mechanism is not related
to chaos, but to the bifurcation of the stability island.
It obeys the Kruskal-Neishtadt-Henrard theorem [13-23],
namely, the cloud is drained into the emerging stability
island. The full optimal sweep scenario is displayed in
the left panels of Fig.7.

Depletion process.— As we already observed in
Fig.2, the spreading of the cloud starts before or latest at
®gyn. But looking at the color-code we see that the de-
pletion happens at a distinct moment when ®(t) ~ ®gyp.
This is the moment when a corridor connects the cen-
tral SP n=0 with the peripheral region n=N/2. In
the absence of chaos n=N/2 is formally an SP of the
HO) (¢, n; M=0) Hamiltonian. Each SP has its own sep-
aratrix. For ® = @, the two SPs have the same en-
ergy, and therefore the two separatrices coalesce. From
the equation Ey = FE,(0) we get

®swp = 3arccos <118u> (15)
Once we add the H* terms, this joint separatrix becomes
a chaotic strip, what we call “corridor”. The corridor
is available for a small range of ® around ® ~ ®gyp.
During the time interval that the corridor is opened, the
central SP is depleted. Both the energy landscape and
the evolution are demonstrated in Fig.7.

Subsequent evolution.— We already pointed out
that strict classical adiabaticity in the QS sense of Kubo
does not hold for our scenario: for ®(t) > Pgy,p, the sys-
tem does not follow any of the E,, curves. The reason for
that is figured out by further inspection of the dynamics.
For ®(t) > Pgwp the chaotic strip decomposes into quasi
regular tori. Consequently a different adiabatic scenario
takes over, that of Einstein and Landau, where adiabatic
invariants are the “actions” of the tori. Each piece of the
cloud is locked in a different torus, and therefore we do
not observe in Fig.7 further ergodization in the M direc-
tion.
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FIG.5. Spreading and depletion. (a) Image of M for the
phase space points of the energy surface H<0)(g0, n; M) = Ejp.
The interaction is u=2.3 and ®=1.617 ~ ®ywp. (b) Poincare
section for the same ® at the same energy (gray trajectories),
and a spreading cloud (colored trajectories) following a quench
to this ® value. The initial cloud is the preparation at n=0.
It spreads away from the central SP, and stretches along the
chaotic corridor. Its points are color-coded by M. (c) The
spreading cloud in the sweep simulation. Upper inset (red
points): The sweep rate is ®=37 - 10~* (slow). The snapshot
is taken at ® ~ ®gp. An inner piece of the cloud is still locked
in the tiny n=0 stability island, and therefore has energy close
to Eo. An outer piece of the cloud was formed due to very
slow spreading in the chaotic corridor, and therefore has lower
energy. The Poincare section at the background is adjusted
to this lower energy. Lower inset (blue points): The further
evolution of the same cloud after we stop the sweep at =gy,
and wait to see further ergodization in the chaotic strip. The
upper inset would look like that if the sweep were much slower.
Main panel: Zoom that displays the red and the blue clouds
of the insets.
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FIG. 6. The spreading mechanism. The dynamics of
Fig.5 is caricatured for an optimal sweep (left panels) and
for a slow sweep (right panels). The panels are ordered by
time (from top to bottom). For an optimal sweep, chaos has
no time to induce spreading, therefore, even if the cloud is
larger (not displayed) the spreading process looks the same.
For a slow sweep the outer part of the cloud has the time
to spread way from the center along the chaotic strip. This
chaotic spreading is initiated in the range [®sth, Payn], while
the former takes place after ®4yn, as clearly observed in the
upper left panel of Fig.2.

Quasi static average.— Without any approxima-
tion we always have £ = — (I, ®. In the Ott-Wilkinson-
Kubo formulation of linear response theory [2-8], it is
assumed that for a QS process the instantaneous average
can be replaced by an evolving microcanonical average
(I) due to quasi-ergodicity. But we are not dealing
with a globally chaotic energy surface. Rather, the cloud
occupies at any moment only a fraction of the energy
shall, or a set tori that depart from the microcanonical
shell. We use the notation (I),q for the corresponding
average. Accordingly

dE = —(I)og dP (16)

For a system with 2 freedoms the QS average is well de-
fined: at any moment the ergodic region that is accessible
for the evolving cloud is bounded by KAM surfaces. This
is not true if we had more than 2 freedoms: then the ac-
cessible region would likely exhibit a more complicated
dependence on the rate of the sweep. Anyway, in the
present context the current of equation (10) reflects the
occupation of the orbitals, and therefore can be expressed
in terms of (M, n). The expectation value of the current
can be calculated for the evolving cloud of the simula-
tion, see inset of Fig.2, and we have verified numerically
(not shown) that it agrees with equation (16).
Post-sweep ergodization.— For a QS process it
is expected to witness quasi-ergodic distribution at any
moment. For faster sweep the cloud fails to follow the
evolving energy landscape, and therefore a post-sweep er-
godization stage is expected, as indeed observed in Fig.2
for the “faster” sweep. But surprisingly post-sweep er-
godization stage is also observed if the sweep rate is ex-
tremely slow, as observed in Fig.2 for the “slow” sweep.
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FIG. 7. Phase space perspective for the simulations of a sweep process. The rates are d =5r-107* (left set of
panels) and d =37-107* (right set of panels). The interaction is u=2.3. The initial preparation is a condensate at n=0
(represented by a red star). Initially it is the minimum of the energy landscape (see insets). Snapshots are taken after ®ayn
is crossed, at ® = 1.51m, 1.6, 2.57, 37, where the central SP in no longer a local minimum, and furthermore it is dynamically
unstable. Consequently the cloud is free to spread away from n=M=0. First column of each set: snapshots of the evolving
cloud in (E, M) space, where the points are color-coded by n. Second column of each set: The cloud points, color-coded by M,
are overlayed on the (¢, n) Poincare section. Two panels use non-polar (¢, M) coordinates for enhanced resolution. Bottom of
each set: the evolving cloud in (¢, n) Poincare coordinates. Snapshots of the cloud are taken at different moments, and are
color-coded by ®. Blue is the initial cloud, and red is its final distribution.

The reason for that is explained by Fig.7. Namely, in
the case of a very slow dynamics, the cloud is split into
several branches as explained previously. Most of it is
re-trapped by quasi-integrable tori. But at the very last

moment most of the tori are destroyed, and chaos takes-
over again. Consequently a fraction of the cloud, that is
no longer locked by tori, undergoes post-sweep ergodiza-
tion.



Discussion

Disregarding the very well studied 2-site Bosonic
Josephosn junction, the trimer is possibly the simplest
building block for an atomtronic circuit. It is the small-
est ring that possibly can be exploited as a SQUID-type
Qubit device [29-32]. The first requirement is to have
the possibility to witness a stable superflow [49-51]. The
second requirement is to have the possibility to witness
coherent operation. The latter is indicated by, say, co-
herent oscillations between clockwise and anti-clockwise
superflow currents [32]. The third requirement is to have
the possibility to execute protocols that do not spoil the
coherence, meaning that the particles remain condensed
in some evolving orbital [61]. In semiclassical perspective
it means that an initial Gaussian cloud does not ergodize.
One may say that ergodicity due to chaos, as opposed to
stability, is the threat that looms over the condensation
of bosons in optical lattices.

Inspired by experiments with toroidal rings [60], here
we considered a lattice ring that undergoes a prototype
sweep protocol: increasing ® from 0 to 37 such that the
k=0 orbital goes from the floor to the ceiling. During
this process this orbital is depleted. The details of the
process are as follows: As @ is increased beyond a value
D15, the followed SP becomes a metastable minimum;
For ® larger that ®g, it becomes a saddle in the energy
landscape of the circuit; Depending on the sweep rate
it can maintain dynamical stability up to some larger
value ®4yn; Beyond this value the SP becomes unstable,
but this does not automatically implies that the coher-
ent state is depleted; A fully developed depletion process
requires a corridor that leads to ergodization within a
chaotic sea; Such corridor is opened during a small in-
terval around ® ~ ®,,; During the chaotic stage of the
sweep we witness partial ergodization, and the final state
of the system is in general not fully-coherent. An optimal
sweep rate can be determined.

In a larger perspective we emphasize that the tradi-
tional view of adiabaticity is not enough in order to a ad-
dress a QSTP for a system that has mized integrable and
chaotic dynamics. Some historical background is essen-
tial in order to appreciate this statement. On the one ex-
treme we have the Einstein-Landau theory for adiabatic-
ity for integrable systems [1]. On the other extreme we
have the Kubo-Ott-Wilkinson picture of adiabaticity in
chaotic systems [2-8], which is associated with energy ab-
sorption in accordance with linear-response theory. But
realistic systems are neither integrable nor chaotic, but
rather have mixed phase space whose topological struc-
ture changes during the sweep process. The simplest sce-
nario is separatrix crossing, that can be addressed using
the Kruskal-Neishtadt-Henrard theorem [13-23]. More
generally tori can merge into chaos, and new sets of tori
can be formed later on. This leads to anomalous dissi-
pation [9, 10] and irreversibility in the QS limit [11, 12].

With the same spirit we have explored in this work the
mechanisms that are involved in QS transfer protocols,
and also the non-trivial dependence of the outcome on
the sweep rate.

Methods

The Hamiltonian.— The BHH for an L-site rotating
ring is

U K,
H= Z [2a;a}ajaj -5 (e (q’/L)a}Haj + h.c.)} (17)

Jj=1

where j mod(L) labels the sites of the ring, the a-s are
the bosonic field operators, and ® is the Sagnac phase.
It is convenient to switch to momentum representa-
tion. For a clean ring the momentum orbitals have
wavenumbers k = (27/L) x integer. One defines an-
nihilation and creation operators by and b;i, such that
bz = \% Zj e’k a;f creates bosons in the k-th momen-
tum orbitals. Consequently the BHH takes the form

U I
N i 7ot
Ho= Sotlh+ gp b, 09

where the constraint ki +ke+ks+ks = 0 mod(27) is indi-
cate by the prime, and the single particle energies are

e = —Kcos (k—i) (19)

Later we assume, without loss of generality, that the par-
ticles are initially condensed in the k = 0 orbital. This is
not necessarily the ground-state orbital, because we keep
® as a free parameter. Note that we optionally use k as
a dummy index to label the momentum orbitals.
Trimer Hamiltonian.— For the purpose of semiclas-
sical treatment we express the Hamiltonian in terms of
occupations and conjugate phases. For the 3-site ring

(L=3) we get:
H= S am+ 2w+ S e (20)
6 3
k=0,1,2 k k' £k
U
T3 > [mmin 2 i cos (o + o — 2
k' £k £k

We define q1 = ¢1 — o and g2 = @2 — o where the sub-
scripts refers to ky o = £(27/3). Using the notation

& = (ex —€o)+ (1/3)NU (21)
we get H = H® 4+ [HH) + 1] with

U
1) — eON+€N2 + &Eing + Eamy

— % [n% + n% + nlng]
2U

+ ?(N—m—nz)\/mcos (1 +q2) (22)



and

20
HO = T (N=m—na)ni nacos (g1 — 22) (23)

while #(~) is obtained by swapping the indices (1 < 2).
Compact form.— It is more convenient to use the

coordinates
¢[mod(4)] g1 — G2 = ¥1— P2
elmod(27m)] = @ +q = p1+p2—2p0 (24)

and the conjugate coordinates

M =

|2

(ny —ny) € [—];7, } (25)

N = N =

(n1+n2) € {|M,]§} (26)

Then the Hamiltonian takes the form of equation (1)
with equation (2) and equation (3). The energy FEy of
the n=0 central SP is implied by the first two terms of
equation (22), leading to equation (4). The detuning pa-
rameters are

5” = &+ & —(1/2)NU (27)
£l = & —& (28)

leading to equation (5) and equation (6). Note: if we
linearized H with respect to the (nq,ns) occupations,
we would get the Bogolyubov approximation, which is
equation (2) without the third term (M?), and with
(N—2n) ~ N.

Bogolyubov frequencies.— The non-trivial Bo-
golyubov frequencies in units of K = 1, see SM, are

3. @ 3 @\’ )
wi:i\gsin3+\/(2cos3) +ucos§ (29)

For positive u and & < Py, the SP is the minimum
of the energy landscape, and the Bogolyubov frequen-
cies are positive, see Fig.8. The SP becomes a saddle
once w_ changes sign and becomes negative. The SP
becomes dynamically unstable once the wy become com-
plex. Note that the energy of the SP, once it becomes
unstable, gets above the M=0 floor, see Fig.S1 of SM.
By inspection of equation (29) we can identify a critical
value of the interaction u. = 9/4. For large interaction
(u > u.) the Bogolyubov frequencies remain complex up
to the end of the sweep at ® = 3w. This indicates that
the SP in not at the maximum of the energy landscape,
see Fig.S1. The upper most SPs in this region support
self-trapped states. For weak interaction (u < u.) the
Bogolyubov frequencies become real and negative once
we cross ® = 3arccos (—(9/4)u), indicating that the SP
becomes a stable maximum.

o/

FIG. 8. The Bogolyubov frequencies. They are calcu-
lated for a k=0 condensate. The vertical lines from left to
right are for ®gp, and Payn, and Pswp. The latter cannot be
deduced form the Bogolyubov analysis, but requires global
understanding of phase space structure.
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[1] Energy landscape

The SPs of the unperturbed Hamiltonian H(®) (¢, n; M) for a given M have to satisfy

OH (O OH (O
H _ oH =0 (S-1)
on Op
They are located, for any M, along ¢ = 0,7, while n should be determined from the equation
28, g 14\ g 1\* 28 /M\* 4\ ,
—— —4— + — — 4 = — =] —= S-2
9n+<NU+9n+ nota) To\w) 9" (5-2)

45H2M2 5H1216M2M2_0

N ( NU+9) (N) " (NU+2> "9 (N) (N) -

In the equation above n is the normalized occupation, namely n := n/N. This equation has 4 roots, and at most two
of them are within the physical range n € [0, 1]. The central SP is n = 0 for M = 0.

The left column of Fig.S1 illustrates the energy landscape of H(?) for representative values of ®. For each M we
find the floor (minimum) and the maximum of the energy, and get the Black solid lines that bound the spectrum from
below and from above. In particular we indicated by a red point the energy Ej of the central SP (n=M=0). Note
that each point on the upper solid line is formally a peripheral SP (n = N/2) of the unperturbed Hamiltonian for a
given M, which represents a totally depleted state. Explicit expressions for Ey and for E., (M) are provide in Eq.(4)
and Eq.(7). When the dashed line comes between the solid lines, it means that the peripheral SPs become saddles.
This happens in the range

1 1
3 arccos <3u> < & < 3arccos (—9u> (S-3)

The central SP is the global minimum of the energy landscape up to @5 of Eq.(8). It is deduced from the equation
Eo > Ex(N/2). For larger ® the central SP it is still a local minimum, up to ®@g1, of Eq.(13). This value can be
extracted from the Bogolyubov analysis: the SP becomes a saddle once w_ of Eq.(29) changes sign and becomes
negative. When the red dot comes above the floor, see Fig.Slc, it becomes dynamically unstable, and the Bogolyubov
frequencies becomes complex. This happens once we cross @4y, of Eq.(14). When the red dot crosses the dashed line
(Fig.S1 panels c-d-e), it means that swap of separatrices takes place. The transition happens when Fy = E.(M=0),
leading to ®gwp of Eq.(15). At the swap, the two SPs are connected by a single level curve. If the non-integrable
terms H* are included, this level curve becomes a chaotic strip. Thus a corridor is formed, that connects the central
SP with the peripheral SPs. This corridor remains open for a small range of ® values around Pgyyp.

For ®=37 the n=0 central SP gets its highest value, which is not necessarily the maximum of the energy landscape.
By the Bogolyubov analysis we can identify a critical value u. = 9/4. For large interaction (u > u.), as in Fig.S1),
the central SP is not the maximum of the landscape. Rather, the new maxima support a self-trapped condensates.
On the other hand, for weak interaction (u < u.), once we cross

Pdyn-end = 3arccos (—Zu) (S-4)

the central SP is stable again, and at ®=37 it becomes a stable maximum.

The middle column of Fig.S1 provides vertical section of the energy landscape, namely E = () (p, n; M=0). The
right column of Fig.S1 displays Poincare sections at the central SP energy. The trajectories are generated by H and
their section-points are color-coded by M. Note that M is not a constant of motion. Quasi-regular trajectories tend
to be mono-chromatic, while chaotic trajectories span a relatively wide range of M values.



FIG. S1. Left column: the energy landscape of H® for v = 2.3. Panels (a)-(f) are for 1.17, 1.47, 1.67, Pswp, 1.657, 2. For each
M we find the floor (minimum) and the maximum of the energy, and get the Black solid lines that bounds the spectrum from
below and from above. We also find for each M the energy of the n = N/2 peripheral SP, and get the red dashed line. When
the dashed line comes between the solid lines, it means that the peripheral SPs become saddles. The energy of the n = M =0
central SP is indicted by a red dot. When the red dot comes above the floor, it means that the central SP becomes an unstable
saddle. When the red dot crosses the dashed line, there is a swap of separatrices. At ®qwp the two SPs are connected by a
single level curve. The middle column provides vertical section of the energy landscape, namely E = H© (¢, n; M=0). The
right column displays Poincare sections at the central SP energy. The trajectories are generated by H and their section-points
are color-coded by M. Note that M is not a constant of motion.



[2] Bogolyubov frequencies

The Bogolyubov procedure brings the Hamiltonian in the vicinity of the SP to a diagonalized form.

" ~ E[SP]+ qucgcq (S-5)
q
The equations of motion are: 2 = JOH
For one degree-of-freedom the canonical coordinates are z = (a,a)
The symplectic matrix J is the second Pauli matrix.
Hence an equivalent compact equation is: & = —ih[a, ala
The SP satisfies @ = 0, provided H :=H — uN.
The Hessian (calculated at an SP): H = 00H
Linearized Hamiltonian: H =~ % ZH_V H, , 2.2,
Linearized equations: % = [JH|z
Characteristic equation: det(A —JH) =0
Eigenvalues are: A\ + = *iw, (one should be careful about the sign)
One pair of frequencies is zero because the total occupation (V) is conserved.

One site.— Consider one-site Hamiltonian H = epaa + %d(iaa
Here hla,a] = ¢y + Uaa.

The SP for N particles is at « = VN with p = ¢g + NU.
Accordingly the hessian at the SP is

H=( Y fo—m) y(aa 2aa (S-6)
g—p O 2aa aa wm VN

The characteristic equation gives the trivial frequency wy = 0.

Ring.— For M sites, the zero-momentum SP is associated with p =g + (NU/M), and we get

_ 0 ho—p NU (1 2
H_<h0—ﬁb 0 >+M 21 (5-7)

where hy is the kinetic part of h[a,a] (only hopping terms, no interaction), and 1 (identity) and 2 (twice the identity)
are M x M diagonal matrices (reflect the interactions). Note that the 2 can be absorbed into the kinetic matrix hy,
while the 1 elements are related to terms of the type aja;. Switching to the momentum basis the kinetic matrix
becomes diagonal, while

100
1— {001 (S-8)
010
The above matrix includes the & = 0 block plus one representative (k, —k) block. If we look on JH, we see that it
decouples into blocks. All the block has the structure Q.o + i€2y0,, up to a constant. Note that Q, = Q, is an

exceptional point with zero eigenvalues. Indeed the k = 0 block provides the zero frequencies, and the other blocks
(without the —i prefactor) are

(5 27 (5o (5-9)

where & =er —eg + (NU/M). Note that the block with k& — —k provides frequencies with opposite signs. We
conclude that

o =+ (555 (555 - ()

The correctness of the sign convention can be tested by setting U = 0.
The Bogolyubov frequencies are calculated as a function of ® in Fig.S2. The implications of the various crossovers
are reflected in the parametric diabatic evolution of the Fy level in the quantum spectrum (right panels).
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FIG. S2. Parametric variation of the energy landscape. Left: The Bogolyubov frequencies for a k = 0 condensate. The
vertical lines from left to right are for ®gp, Payn and Pswp. Right: The many body energy levels E, for N = 3 particles as
a function of ®. The points are color-coded by the expectation value of M. The calculations are done from up to down for
u=1.0,2.3,4.5. In the first row (weak interaction) also ®Pqyn-end is indicated.
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