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Abstract
The spreading of a particle along a chain, and its re-

laxation, are central themes in statistical and quantum
mechanics. One wonders what are the consequences of
the interplay between coherent and stochastic transitions.
This fundamental puzzle has not been addressed in the
literature, though closely related themes were in the fo-
cus of the Physics literature throughout the last century,
highlighting quantum versions of Brownian motion. Most
recently this question has surfaced again in the context of
photo-synthesis. Here we consider both an infinite tight-
binding chain and a finite ring within the framework of an
Ohmic master equation. With added disorder it becomes
the quantum version of the Sinai-Derrida-Hatano-Nelson
model, which features sliding and delocalization transi-
tions. We highlight non-monotonic dependence of the
current on the bias, and a counter-intuitive enhancement
of the effective disorder due to coherent hopping.

Introduction
A prototype problem in Physics is the dynamics of a

particle along chain that consists of sites. If the dynam-
ics is coherent one expects to observe ballistic motion
and Bloch oscillations [1], while for stochastic dynamics
one expects to see diffusion and drift. In the presence
of disorder, additional fascinating effects emerge: an An-
derson localization transition in the coherent problem,
and a Sinai-Derrida sliding transition in the stochastic
problem. In practical applications the particle can be an
exiton [2–4]. Past literature regarding quantum spread-
ing in chains, [5–14], including publications that address
the photo-synthesis theme [15–24], were focused mainly
on the question how noise and dissipation affect coher-
ent transport. In a sense, our interest is in the reversed
question.

In the present work we assume independent mecha-
nisms for stochastic asymmetric (dissipative) transitions,
and for coherent hamiltonian (conservative) transitions.
Such setup is not common: the standard models do not
allow to tune on and off the two mechanisms indepen-
dently. The question arises how the two mechanisms af-
fect each other. Can we simply “sum up” known results
for stochastic transport with known results for coherent
motion in noisy environment? We shall see that the an-
swer is not trivial. The main surprises come out once
we take into account the presence of disorder (see be-
low). An optional way to phrase the question: what is
the quantum version of the prototype stochastic prob-
lem that is known in the literature as random walk in

random environment. As we know from the above cited
works, due to disorder, the stochastic dissipative dynam-
ics is not merely a simple minded Brownian motion. We
would like to know whether coherence has any implica-
tion on the predicted disorder-related crossovers.

We consider a chain whose sites are labeled by x.
The particle, or the exiton, can move from site to
site (near neighbor transitions only). The transitions
are determined by two major parameters: the hop-
ping frequency (c) that controls the coherent hopping;
and the fluctuations intensity (ν) that controls the
environmentally-induced stochastic transitions. At fi-
nite temperature T there is also a dissipation coefficient
η = ν/(2T ) that is responsible for the asymmetry of the
stochastic transitions. On top we might have bias (E),
on-site noisy fluctuations (γ), and different types of dis-
order. The model is illustrated in Fig.1.

The dynamics is governed by a master equation for the
probability matrix

dρ

dt
= Lρ = −i[H(c), ρ] +

(
L(B) + L(S)

)
ρ (1)

where the dissipators L(B) ∝ ν and L(S) ∝ γ are due

FIG. 1. (1) Illustration of the model system. Each
site of the chain is represented by a line segment positioned
according to its x coordinate and potential U(x). Blue arrow
labeled by c represents the possibility for a coherent hop-
ping between two sites. Red arrows represent bath induced
stochastic transitions between two sites. The local bath that
is responsible for the latter fluctuates with intensity ν, and the
induced transitions are asymmetric if η = ν/(2T ) is non-zero
(finite temperatures). Note that their ratio is exp (−E/T ) in
leading order. The green wiggle lines represent a local bath
that induces fluctuations of intensity γ of the on-site poten-
tial. Without the baths it is the Anderson model for coherent
transport and localization in disordered chain. In the other
extreme, if only the stochastic transitions are present, it is the
Sinai-Derrida model for motion in random environment. The
latter exhibits a sliding transition as the bias is increased, and
an associated Hatano-Nelson delocalization transition once re-
laxation in a closed ring is considered.
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to the interaction with the environment. They are re-
sponsible for the stochastic aspect of the dynamics. The
HamiltonianH(c) contains an on-site potential U(x), and
a sum over hopping terms (c/2)|x ± 1〉〈x|. Accordingly
it takes the form

H(c) ≡ U(x)− c cos(p) (2)

where p is the momentum operator. The unit of length
is the site spacing (x is an integer), and the field is

Ex ≡ − (U(x+1)− U(x)) (3)

In the absence of stochastic terms, coherent transport
in ordered chain leads to ballistic motion (without bias)
and exhibits Bloch-oscillations (with bias). In disor-
dered chain the spreading is suppressed due to Anderson-
localization. The effect of noise and dissipation on coher-
ent transport due to L(S) has been extensively studied.
In the Caldeira-Leggett model [25, 26] the interaction is
with homogeneous fluctuating environment, leading to
Brownian motion with Gaussian spreading. If the inter-
action is with non-homogeneous fluctuating environment
(short spatial correlation scale) the spreading is the sum
of a decaying coherent Gaussian and a scattered Stochas-
tic Gaussian [27]. The tight binding version of this model
has been studied in [28]. It has been found that the de-
coherence and the stochastic-like evolution are dictated
by different bands of the Lindblad L-spectrum that cor-
respond, respectively, to the dephasing and to the relax-
ation rates in NMR studies of two-level dynamics.

In the other extreme of purely stochastic dynamics,
ignoring quantum effects, the disordered model, aka ran-
dom walk in random environment, has been extensively
studied by Sinai, Derrida, and followers [29–35]. With-
out bias the spreading becomes sub-diffusive, while above
some critical bias the drift-velocity becomes finite, aka
sliding transition. Strongly related is the transition from
over-damped to under-damped relaxation that has been
studied for a finite-size ring geometry [36, 37]. The lat-
ter involves delocalization transition that has been high-
lighted for non-hermitian Hamiltonians in the works of
Hatano, Nelson and followers [38–45].

One should realize that the two extreme limits of coher-
ent and stochastic spreading have to be bridged within
the framework of a model that includes an L(B) term,
not just an L(S) term. Furthermore, a proper model-
ing requires the distinction between two types of Master
equations. In one extreme we have the Pauli version.
Traditionally this version is justified by the secular ap-
proximation that assumes weak system-bath interaction.
In the other extreme we have the Ohmic version that
assumes short correlation time. The so called “singu-
lar coupling limit” can be regarded as an optional way
to formalize the short correlation time assumption [46].
Clearly in the mesoscopic context it is more appropriate
to adopt the Ohmic version, and regard the Pauli version
of the dissipator as a formal approximation.

FIG. 2. The NESS current for a biased chain, with
and without disorder. (a) The NESS current as a function
of E . Black lines are based on equation (17) for clean system
with c = 0, 5, 10 and ν = 1 and η = 0.01. Symbols are based
on numerical determination of the NESS for a ring of L=500
sites. We display 10 independent realizations of the disorder
for each value of disorder strength σE , while c=10 is kept the
same. (b) The average NESS current as a function of σE for
E=2. In the c=10 case also for E=8. Thin-lines are a guide
to the eye.

Outline.– The model is presented in terms of an
Ohmic master equation. The units of time are chosen
such that the basic model parameters are (c, E , ν≡1, η)
and the strength of the disorder σE . The interest is in
the diffusion coefficient D, the E-induced drift velocity v,
the implied non equilibrium steady state (NESS) cur-
rent I ≡ (1/L)v for a ring of length L, and the associ-
ated Lindblad L-spectrum. The latter is determined via
Lρ = −λρ, which provides both the relaxation-modes
and the decoherence-modes. In particular we observe
that the NESS current depends non-monotonically on the
bias (Fig.2a), and that surprisingly it can be enhanced
by disorder (Fig. 2b). In a disordered ring, counter-
intuitively, relaxation modes become over-damped if co-
herent transitions are switched on (Fig.3).

Results
The model.– The isolated chain is defined by

the H(c) Hamiltonian equation (2), that describes a par-
ticle or an exiton that can hop along a one-dimensional
chain whose sites are labeled by x. The field Ex might be
non-uniform. For the average value of the field we main-
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FIG. 3. The Lindblad L-spectrum for both non-
disordered and disordered rings. (a) The spectrum for
a non-disordered ring of L = 21 sites. The eigenvalues that
form an ellipse correspond to the stochastic-like relaxation
modes. The eigenvalues that bunch together at λ ∼ 1, 3 are
the ∓ over-damped decoherence modes. The other eigenval-
ues along Re(λ) = 2 correspond to under-damped decoher-
ence modes (each point is in a fact a band of L overlapping
eigenvalues). The dashed gray-line is based on equation (18).
For presentation purpose the eigenvalues marked with dot
are scaled by a factor of 0.001 along the vertical axis. The
colors indicate the q of each eigenvalue. The parameters are
ν=1, η=0.01, c=0.1, E=0.5. (b) The relaxation spectrum with
disorder (decoherence modes are excluded). The spectrum for
a chain with a given disorder is displayed, once with c=0 and
once with c=2. The gray-circles and the gray-line are the
three-band and one-band approximations for c=2. The other
parameters are L=31, E=3, σE=1.5, ν=1, η=0.03.

tain the notation E , while the random component is dis-
tributed uniformly (box distribution) within [−σE , σE ].
We regard each pair of neighboring sites as a two-level
system [S1]. Accordingly we distinguish between two
types of terms in the master equation: those that origi-
nate from temporal fluctuations of the potential (dephas-
ing due to noisy detuning), and those that are responsi-
ble to stochastic transition between the sites (incoher-
ent hopping). The latter are implied by the replacement
(c/2) 7→ (c/2) + f(t) at the pertinent bonds, where f(t)
is a bath operator that is characterized by fluctuation
intensity ν, and temperature T . Hence the system bath
coupling term is −Wxf(t), where Wx = (Dx +D†x) and
Dx = |x+1〉〈x|. The baths of different bonds are uncor-
related, accordingly the bond-related dissipator takes the

form

L(B)ρ = −
∑
x

(ν
2

[Wx, [Wx, ρ]] +
η

2
i[Wx, {Vx, ρ}]

)
(4)

where η = ν/(2T ) is the friction coefficient, and

Vx ≡ i[H(c),Wx] (5)

The friction terms represent the response of the bath
to the rate of change of the Wx. Note that for get-
ting the conventional Fokker-Planck equation the system-
bath coupling term would be −xf(t), and V would be-
come the velocity operator. Here we assume interaction
with local baths that in general might have different tem-
peratures. See Methods for some extra technical details
regarding the master equation, the nature of the disorder,
and the handling of the periodic boundary conditions for
the ring configuration.

Pauli-type dynamics.– For pedagogical purpose let
us consider first a uniform non-disordered ring without
coherent hopping. Furthermore, let us adopt the sim-
plified Pauli-like version of the dissipator (see Methods).
Consequently the dynamics of the on-site probabilities
px ≡ ρx,x decouples from that of the off-diagonal terms.
Namely, one obtains for the probabilities a simple rate
equation, where the transition rates between sites are

w± = ν ± ηE (6)

in agreement with Fermi-golden-rule (FGR). Note that in
leading order [w−/w+] ≈ exp(−E/T ) as expected from
detailed balance considerations. It follows that the drift
velocity and the diffusion coefficient are:

v = (w+ − w−) = 2ηE (7)

D =
1

2
(w+ + w−) = ν (8)

Consequently one finds two distinct sets of modes: the
stochastic-like relaxation modes that are implied by the
rate equation for the probabilities, and off-diagonal de-
coherence modes. The latter share the same decay rate
γ0 = w+ + w− + γ, where γ stands for optional extra off-
diagonal decoherence due to on-site fluctuations. An
evolving wavepacket [S3] will decompose into coherent
decaying component that is suppressed by factor e−γ0t,
and an emerging stochastic component that drifts with
velocity v and diffuse with coefficient D.

Full Ohmic treatment.– The state of the
particle in the standard representation is given by
ρx(r) ≡ 〈x|ρ|x+ r〉. The master equation, equation (1)
with equation (4), couples the dynamics of the on-site
probabilities px ≡ ρx(0) to that of the off-diagonal ele-
ments ρx(r 6= 0). The generator L can be written as a
sum of several terms [S5]:

L = EL(E) + cL(c) + νL(ν) + ηEL(Ẽ) + ηcL(c̃) (9)

Each term is a super-matrix that operates on the super
vector ρx(r). The first two terms L(c) and L(E) arise
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FIG. 4. Diagrammatic representation of the couplings
in the master equation. A diagonal strip of the probability
matrix ρx(r) is illustrated. The diagonal elements px = ρx(0)
are represented by filled circles, and the off-diagonal terms
by empty circles. The Lindblad generator L induces “tran-
sitions” between the elements. The blue grid lines indicate
c-induced couplings. The other couplings within |r| ≤ 2, in-
dicated by red and purple, are due to a local bath. For pre-
sentation purpose (to avoid a crowded set of lines) the red

couplings that originate from νL(ν) and ηEL(Ẽ) assume that
the local bath is positioned at bond x′, while purple couplings
that originate from ηcL(c̃) assume that the bath is positioned
at bond x′′.

from the Hamiltonian equation (2). The L(ν) term arise
from the first term of equation(4), which represent noise-
induced transitions. The remaining two friction-terms
(proportional to η) arise from equation (5), and corre-
spond to the two terms in the Hamiltonian.

A schematic representation of ρx(r) and the couplings
is given in Fig.4. The coherent hopping that is generated
by L(c) couples ρx(r) to ρx(r±1) and to ρx+1(r±1), while
L(E) contribute “on-site” potential. The noise operator
νL(ν) include the Pauli-terms that were discussed previ-
ously, and an additional term that couples the r = ±1

elements. Together with the friction operator ηEL(Ẽ), the
Pauli terms induce the asymmetric x±1 stochastic tran-
sitions of equation (6) along r=0. The second friction
term L(c̄) consists of non-Pauli terms that allow extra
L(c)-type couplings, and in particular extra x±2 transi-
tions within the strip |r| = 0, 1, 2.

The spectrum for a non-disordered ring.– For a
non-disordered ring the super-matrix L is invariant under
x-translations, and therefore we can switch to a Fourier
basis where the representation is ρ(r; q). Due to Bloch
theorem, the matrix decompose into q-blocks in this ba-
sis. Thus in order to find the eigenvalues λq,s and the
corresponding eigenmodes we merely have to handle a
one dimensional tight binding |r〉 lattice. See Methods.
A representative spectrum is provided in Fig.3a. Con-
sider first the q=0 eigenstates. For q=0 the c-dependent
couplings are zero. For infinite temperature (η=0) the
only non-zero coupling is between |r=± 1〉 due to a non-
Pauli term in equation(32). Consequently the q=0 block

contains the NESS |r=0〉 (which is merely the identity
matrix in the standard basis), along with a pair of non-
trivial decoherence modes |±〉, and a set of uncoupled
decoherence modes |r = ±2,±3, ...〉. The corresponding
λq,s eigenvalues (for η=0) are:

λ0,0 = 0 (NESS) (10)

λ0,± = 2ν ±
√
ν2 − E2 (11)

λ0,s = 2ν + iEs, (s = ±2,±3, ...) (12)

The |±〉 modes become over-damped for small bias, while
the |s| > 1 decoherence modes are always under-damped.
Considering the q dependence of the eigenvalues λq,s we
get several bands, as illustrated in Fig.3a. Our interest
below is in the relaxation modes that are associated with
λq,0, and determine the long time spreading.

The NESS.– At finite temperature (η > 0) there are
extra couplings that lead to a modified NESS. In leading
order the NESS eigenstate is |0〉+ α0 |1〉+ α∗0 |−1〉 with

α0 =
3ν − iE
3ν2 + E2

ηc (13)

Reverting back to the standard representation we get

ρ(NESS) =
1

L

(
11 + α0e

+ip + α∗0e
−ip) (14)

From this we can deduce the steady state momentum dis-
tribution [S5], namely, p(k) ≡

〈
k
∣∣ρ(NESS)

∣∣k〉. The result
in leading order is

p(k) ∝ exp

[
2ηc

3ν2 + E2
(3ν cos (k) + E sin (k))

]
(15)

For E = 0 this expression is consistent with the canonical
expectation exp(−βH(c)).

The current.– For non-zero field (E 6= 0) the NESS
momentum distribution is shifted. The expression for the
current operator is complicated [S2], but the net NESS
current comes out a simple sum of stochastic and coher-
ent terms:

Ix =
1

L

(
(w+

x − w−x )− c Im(α0)
)

(16)

=
1

L

[
1 +

c2

6ν2 + 2E2

]
2ηE ≡ 1

L
v (17)

We shall further illuminate the physical significance of
the second term below. In contrast with the stochastic
case, the drift current might be non-monotonic in E , see
Fig.2a. Furthermore, there is a convex range where the
second derivative of I(E) is positive.

The convexity of the current in some E range, implies
a counter intuitive effect: current may become larger due
to disorder. The argument goes as follows: Assume that
the sample is divided into two regions, such that Ex is
constant in each region, but slightly smaller (larger) than
E in the first (second) region. Due to the convex property
it is implied that the current will be larger. Extending
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this argument for a general non-homogeneous (i.e. disor-
dered) field, with the same average bias E , we expect to
observe a larger NESS current. This is indeed confirmed
in Fig.2a, while additional examples are given and dis-
cussed quantitatively in [S6].

The Diffusion.– An optional way to derive equa-
tion (17) is to expand λq,0 in q, to obtain v. The second
order term gives the diffusion coefficient. Namely,

λq,0 = ivq +Dq2 +O(q3) (18)

It is therefore enough to determine λq,0 via second order
perturbation theory with respect to the q=0 eigenstates.
To leading order in η, a lengthy calculation leads to a re-
sult that is consistent with the Einstein relation, namely

v

D
=
E
T
, [valid in leading order] (19)

Thus, to leading order, D is given by equation (8), mul-
tiplied by the expression in the square brackets in equa-
tion (17). We see that with coherent transitions, for
zero bias, this expression takes the form D = ν +D`,
where D` = c2/(6ν). The latter can be interpreted as
a Drude-type result D` = `2/τ , with relaxation time
τ ∼ 1/ν and mean free path ` ∼ cτ . A similar expres-
sion has been obtained in [5, 28] for a chain with noisy
sites. In the other extreme of large bias equation (8) im-
plies that D` = (1/2)|c/E|2ν. This result, like the Drude
result, can be regarded as coming from FGR transitions.
But now the transitions are between Bloch site-localized
states. Namely, we have hopping between neighbor-
ing sites (` ∼ 1), with rate of the transitions (1/τ) that
is suppressed by a factor |c/E|2. The suppression fac-
tor reflects the first-order-perturbation-theory overlap of
Bloch-localized wavefunctions. To summarize: we can
say that D` exhibits a crossover from Drude-type trans-
port to hopping-type transport as the field E is increased.

In fact we can proceed beyond leading order, and cal-
culate D up to second order in η, see [S5]. Here we cite
only the zero bias result:

D =

[
1 +

c2

6ν2
− c2

4T 2

]
ν (20)

In view of the Drude picture this result is surprising.
Namely, one would expect D` ∼ c2τ to be replaced by
D` ∼

〈
v2
〉
τ , and hence one would expect the replace-

ment c2 7→ (1− [1/8](c/T )2)c2 due to the narrowing of
the momentum distribution, see Methods. However the
current result indicates that the leading correction is re-
lated to a different mechanism. Indeed, using a semi-
classical perspective, the coupling to the bath involves a
cos (p) factor, see Methods. The zero order diffusion with
rate ν arises due to stochastic term in the equation of
motion for ẋ that involves a sin (p) factor, Consequently,
due to thermal averaging, ν 7→ (1− [1/8](c/T )2)ν, which
explains, up to a factor of 2, the third term in equa-
tion (20). We have repeated this calculation also for a

Caldeira-Leggett dissipator, and also for an L(S) dissipa-
tor. For the former the expected (c/T ) correction to D`

appears, but has a different numerical factor, while for
the latter the correction comes out with an opposite sign.
We can show analytically that the discrepancies are due
to the modification of the correlation time [47].

Disordered ring.– The so called stochastic field
Ex/T is responsible for the asymmetry of the incoher-
ent transitions. Following Sinai we assume that it has a
random component that is (say) box-distributed. From
the works of Sinai and Derrida [30–32] we expect a slid-
ing transition as E/T exceeds a critical value of order
(σE/T )2. Strongly related is the delocalization transition
[36, 38–40, 43, 44] for which the critical value is smaller
by a numerical factor. Disregarding this factor we expect

Ec ≈
1

T
σ2
E (21)

In the purely stochastic model, for E > Ec the relaxation
is expected to be under-damped due to a delocalization
transition that leads to the appearance of complex eigen-
values at the vicinity of λ = 0.

The question arises how this transition is affected
by quantum coherent hopping. The naive expectation
would be to witness a smaller tendency for localization
in the relaxation-spectrum because we add coherent by-
pass that enhances the transport. But surprisingly the
numerical results of Fig.3b show that the effect goes in
the opposite direction: for non-zero c, some eigenvalues
become real, indicating stronger effective disorder.

Enhanced effective disorder.– We turn to pro-
vide an explanation for observing enhanced effective dis-
order due to coherent hopping. On the basis of the
non-disordered ring analysis, the relaxation modes oc-
cupy mostly the |r| = 0, 1 diagonals of ρ, and therefore it
makes sense to exclude couplings to the higher diagonals.
We verify that this does not change the qualitative pic-
ture in Fig.3b (gray vs green symbols). The effect of the
|r| = 1 band is to introduce virtual coherent transitions
between diagonal elements [S7]. Hence we end up with an
effective single-band stochastic equation with transition
rates

w±x = ν + νx ± ηEx ≡ wx exp(±Ẽx) (22)

νx =
c2

2

ν − λ
(2ν − λ)2 + E2

x − ν2
(23)

The disorder that is associated with νx is hermitian,
namely, it does not spoil the symmetry of the transi-
tions, it merely implies that the we have a tight binding
model with random couplings that have some dispersion
σ2
⊥ ≡ Var(wx) ∝ c4. This is known as resistor network

(RN) disorder. In contrast, the ±ηEx term induces asym-
metric transitions. This type of non-hermitian Sinai-type
disorder is characterized by the dispersion σ2

‖ ≡ Var(Ẽx).
The latter translates after non-hermitian gauge transfor-
mation to (hermitian) diagonal disorder, with ill-defined
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FIG. 5. Blurring of the Wannier-Stark Ladder. Here
the parameters are ν = 1, η = 0.03, E = 0.5 and L = 21. The
parameter c/E determines the localization range of the Bloch
eigenstates. The small q modes are weakly coupled by ν and
therefore maintain the E spacing as implied by equation (12).

boundary conditions. The procedure to handle both
types of disorder has been discussed in [36] following [39].
One defines an hermitian RN matrix by setting Ẽx=0 in
equation (22). The RN matrix has a real spectrum with
eigenstates that are characterized by inverse localization
length that is dominated by the RN-disorder, namely,
κ(λ) ∝ σ2

⊥λ. Adding back the field Ex, the eigenstates
remain localized (with real eigenvalues) only in regions
where localization is strong enough, that is, κ(λ) > E/T .
Estimating σ⊥, see [S7] for an explicit expression, we de-
duce that the additional RN disorder is responsible for
the observed numerical result.

The Wannier-Stark Ladder.– We shift our atten-
tion to the full Lindblad spectrum. In the absence of
coupling to the bath, the eigenstates of the Hamiltonian
equation (2) are Bloch localized. Each eigenstate occu-
pies a spatial region ∼c/E , and the corresponding eigen-
energies form a ladder with spacing E , that reflects the
frequency of the Bloch oscillations. Weak coupling to the
bath leads to damping of the Bloch oscillations. This is
reflected by the Lindblad spectrum. For the q = 0 modes
we have obtained equation (12), where we see that the
eigenvalues acquire a real part, but maintain the ladder
structure. But for non-zero q the L(c) term couples the
modes to the perturbation that is created at the |r| < 2
region by L(ν), see equation(31) and equation(32) of the
Methods. This results in a deformation of the ladder.
Namely, the ladder consists of bands, and the number
of bands that are deformed equals the Bloch localization
length. See Fig.5.

Regime diagram.– We would like to place our re-
sults in the context of the vast quantum dissipation liter-
ature. The prototype model of Quantum Brownian Mo-
tion (QBM), aka the Caldeira-Leggett model, involves
coupling to a single bath that exerts a fluctuating homo-
geneous field of force. In the classical framework it leads

θ

η

Low T
QBM

High T
QBM

CBM

10.01 0.05

FIG. 6. The Brownian Motion regime diagram.
(a) The various regions in the (η, θ) diagram are indicated.
We distinguish between the Classical-like Brownian Motion
(CBM) region; the low-temperature QBM region where mem-
ory effects dominates; and the high-temperature QBM region
that has been discussed in this article. The Lindblad cor-
rection to the Ohmic master equation is negligible above the
solid θ ∼ 1 line. (b) The effective friction coefficient ηeff of
equation(27) is determined numerically along the two dashed
lines of panel (a), and compared with the analytical predic-
tion of equation (17). The parameters are ν = 1, E = 0.5
and L = 500. For lower θ, the Lindblad correction becomes
important (not shown).

to the standard Langevin equation

mẍ = E − ηẋ+ f(t) (24)

and equation (1) becomes the standard Fokker Planck
equation. In the tight-binding framework we have the
identification m 7→ 1/(ca2), where a is the lattice con-
stant. The standard QBM model features a single di-
mensionless parameter, the scaled inverse temperature
β, which is the ratio between the thermal time 1/T and
damping time m/η. In the lattice problem we can define
two dimensionless parameters

α =
1

2π
ηa2 scaled friction (25)

θ =
T

c
=

ν

2ηc
scaled temperature (26)

Accordingly β = α/θ. Note that in our model we set the
units such that a = 1, hence, disregarding 2π factor, our
scaled friction parameter η is the same as α.

The standard analysis of QBM [48] reveals that
quantum-implied memory effects are expressed in the
regime β � 1, where a transient log(t) spreading is ob-
served in the absence of bias, followed by diffusion. Most
of the quantum dissipation literature, regarding the two-
site spin-boson model [49] and regarding multi-site chains
[50, 51], is focused in this low temperature regime, where
significant deviations from the classical predictions are
observed for large α of order unity. In contrast, our in-
terest is in the α, β � 1 regime.
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Our (η, θ) regime diagram Fig.6 is roughly divided into
two regions by the line θ ∼ 1. Along this line the thermal
de-Broglie wavelength of the particle is of order of the
lattice constant, hence it bears formal analogy to the
analysis of QBM in cosine potential [52], where it marks
the border to the regime where activation mechanism
comes into action. In our tight binding model we have
a single band, hence transport via thermal activation is
not possible. Rather, in the θ > 1 regime, where T � c,
the momentum distribution within the band is roughly
flat, and the drift is dictated by equation (17), that is,

v = 2ηE +
1

ηeff
E (27)

where ηeff ≈ 12θ2η for weak field. The low tempera-
ture regime θ � 1 has not been addressed in this work,
because the Ohmic master equation fails to reproduce
canonical equilibration in this regime (see Methods). Still
we would like to illuminate what we get (not presented)
if this aspect is corrected. In the regime θ � 1 the mo-
mentum distribution becomes much narrower (only low
energy momenta are populated) and therefore ηeff ∼ η
as implied by equation (24). This we call Classical-like
Brownian motion (CBM) regime. Once the coupling to
the bath is not the simple x-coupling of the Caldeira-
Leggett model, a numerical prefactor is expected (see
Methods for detailed argument).

Discussion
There is a rich literature regarding Quantum Brown-

ian motion (see [48, 53–55] and references within). In the
condensed matter literature it is common to refer to the
Caldeira-Leggett model [25, 26], where the particle is lin-
early coupled to a bath of harmonic oscillators that mimic
an Ohmic environment. Some works study the motion of
a particle in a periodic potential, possibly with bias, aka
washboard potential [51, 52, 56], while other refer to tight
binding models [6, 50, 57] as in this work. The focus in
those papers is mostly on non-Markovian effects: at low
temperatures the fluctuations are not like “white noise”,
and are dominated by a high frequency cutoff ωc. Con-
sequently the handling of long-time correlations becomes
tricky. In this context the low temperature dependence
of the diffusion and the mobility is modified for α > 1/2
and α > 1.

The line of study in the above models has assumed that
the fluctuations that are induced by the bath are uniform
in space. In some other works the dynamics of a parti-
cle that interacts with local baths has been considered.
In such models the fluctuations acquire finite correlation
length in space [5, 7–14, 27, 28]. The extreme case, as in
this work, are tight binding models where the coupling
is to uncorrelated baths that seat on different sites or
bonds. Studies in this context assume bath that are con-
nected at the end points [58], or baths that act as noise

source [5]. Ref. [28] has analyzed the spectral properties
for a chain with noisy sites, Ref. [9] has considered col-
ored noise sources strongly coupled to each site, Ref. [59]
has considered noisy transitions on top of coherent tran-
sitions, Ref. [60] has considered transport in the pres-
ence of dephasing and disorder, Ref. [11] has considered
numerically transport properties of a noisy system with
static disorder, and [61] has addressed some bounds in
the absence of disorder. The basic question of transport
in a tight-binding models has resurfaced in the context
of excitation transport in photosynthetic light-harvesting
complexes [15–24].

It is quite surprising that all of the above cited works
have somehow avoided the confrontation with themes
that are familiar from the study of stochastic motion in
random environment. Specifically we refer here to the
extensive work by Sinai, Derrida, and followers [29–35],
and the studies of stochastic relaxation [36, 37] which is
related to the works of Hatano, Nelson and followers [36–
45]. Clearly we have here a gap that should be bridged.

In this article we have studied transport properties
along a chain taking into account several themes that
have not been combined in past studies: (a) The baths
on different bonds are not correlated in space; (b) The
baths are not just noise - the temperature is high but
finite; (c) Without coherent hopping it is the Sinai-
Derrida-Hatano-Nelson model which exhibits sliding and
delocalization transitions; (d) Without baths it is a dis-
ordered chain with Anderson localization; (e) The bias
might be large such that Bloch dynamics is reflected.

The “small” parameter in our analysis is the inverse
temperature. The following observations have been high-
lighted: (1) The NESS current is the sum of stochastic
and quasi-coherent terms; (2) It displays non-monotonic
dependence on the bias, as shown in Fig. 2, due to
crossover from Drude-type to hopping-type transport;
(3) Disorder may increase the current due to convex
property; (4) The interplay of stochastic and coherent
transition is reflected in the Lindblad spectrum; (5) In
the presence of disorder the quasi-coherent transitions
enhance the localization of the relaxation modes. Thus,
with regard to the Sinai-Derrida sliding transition, and
the strongly related Hatano-Nelson delocalization tran-
sition, we find that adding coherent transitions “in par-
allel” have in some sense opposite effects: on the one
hand they add bypass for the current (point (1) above),
but on the other hand they enhance the tendency to-
wards localization (point (5) above). Some of our results
might be relevant to studies of optimal transport effi-
ciency [R1, R2] and the quantum Goldilocks effect [R3].

Methods
Master equation for disordered chain.– A peda-

gogical presentation of the procedure for the construction
of an Ohmic master equation for a two site system, and
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then for a chain, is presented in [S1]. Each bond has
a different bath, and therefore can experience different
temperature and friction. Accordingly we can have
disorder that originates either from the Hamiltonian
(say random Ex as assumed in the main text), or from
having different baths (random νx or random ηx). This
extra disorder can be incorporated in a straightforward
manner, and does not affect the big picture.

Thermalization.– The Ohmic master equation for
a Brownian particle, if the coupling to the bath were
−xf(t), is the standard Fokker-Plank equation. It leads
to canonical thermal state for any friction and for any
temperature. This is not the case for a discrete two
level system. The agreement with the canonical result
is guaranteed only to first order in η. This is reflected in
equation (6). The same applies for a chain. Note that in
this sense the Ohmic approximation is very different from
the secular or Pauli approximation [62], or specially con-
structed Davies Liovillian [63], that guarantee canonical
thermalization.

It is important to identify the “small parameter”
that controls the deviation from canonical thermaliza-
tion. The standard coupling via x induce transitions
between neighboring momenta, and therefore the small
parameter is ∆/T , where the level spacing ∆ goes
to zero in the L → ∞ limit. But for local baths,
the coupling is to δ(x − xα) scatterers, that create
transitions to all the levels within the band. Therefore
the small parameter in the absence of bias is c/T .
This assertion is confirmed numerically by inspection
of the equilibrium momentum distribution p(k), see
[S5]. We conclude that in the regime of interest (θ>1)
the Ohmic master equation can be trusted, while for
lower temperatures we have to “correct” it. For the
two site system the “corrected” equation is the Bloch
equation, where the ratio of the rates is in agreement
with detailed balance (not just in leading order in η).
For a chain, we cannot justify the secular approxima-
tion, and therefore the correction procedure is ill defined.

The friction coefficient.– In the Caldeira-Leggett
model for Brownian particle, with interaction term
−xf(t), the bath induced fluctuations f(t) are de-
termined by a coupling constant η, and by the bath
temperature T , such that at high temperatures the inten-
sity of the fluctuations is ν = 2ηT . The η parameter is
defined such that the friction coefficient in equation (24)
equals η. A straightforward generalizations [27] shows
that for interaction with local baths

∑
α uα(x)fα(t),

with uα(x) = u(x−xα), the effective friction coefficient is
ηeff(x) = η

∑
α[u′α(x)]2. For homogeneous distribution of

local baths that have the same η, the friction coefficient
becomes x-independent. In the model under consider-
ation the coupling to the baths is

∑
αWαfα(t), where

α labels the sites. Disregarding commutation, it can be

written as 2 cos(p)
∑
α uα(x)fα(t), where the u-s are site

localized. It follow that the effective friction coefficient is
momentum dependent, namely ηeff ∼ | cos(p)|2η. But for
equilibration in the θ < 1 regime only low momenta are
important hence we expect, up to numerical prefactor to
observe ηeff ≈ η. The failure to observe this result is due
to improper thermalization, as discussed in a previous
paragraph.

Positivity.– Irrespective of η, there is another com-
plication with the Ohmic master equation. If the temper-
ature is low (small ν) the relaxation may lead to a sub-
minimal wavepacket that violates the uncertainty princi-
ple. This reflects the observation that the Ohmic master
equation is not of Lindblad form, and violates the pos-
itivity requirement. The minimal correction required to
restore positivity is to couple V to an extra noise source
of intensity

νη =
ν

(4T )2
=

η2

4ν
(28)

This term is essential in the low temperature regime.
We have verified numerically that the extra noise term
can be neglected in the high temperature regime where
our interest is focused.

On-site dissipators.– The model of [28] combines
Hamiltonian term with dissipator of the L(S) type
that originates from couplings via Wx := Qx, where
Qx = |x〉 〈x|. Such dissipator leads to off-diagonal
dephasing that is generated by QxρQx terms, and
therefore excludes the possibility for inter-site stochastic
transitions. Similar remark applies to the familiar
Caldeira-Leggett model of Quantum Brownian motion
[25], where the coupling is via W := x. Namely, it is a
single bath that exerts a fluctuating homogeneous force
that affects equally all the sites, as in [50]. In our model
the dissipation effect is local: many uncorrelated local
baths.

Pauli dissipator.– A conventional Pauli-type dissi-
pator is obtained if we drop some of the terms in the
Ohmic dissipator of equation (4). Namely,

L(Pauli)ρ = −(w+ + w−)ρ

+
∑
x

(
w+D†xρDx + w−DxρD

†
x

)
−γ

(
ρ−

∑
x

QxρQx

)
(29)

The transition rates between sites, w± = [ν ± ηE ], are in
agreement with FGR. For completeness, we added here a
γ term that represents optional off-diagonal decoherence
due to on-site noise.
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Ring configuration.– For numerical treatment,
and for the purpose of studying relaxation dynamics,
we close the chain into a ring. This means to impose
periodic boundary conditions. With uniform field E , one
encounter a huge potential drop at the boundary. To
avoid this complication we assume that the boundary
bond has an infinite temperature, hence the formation of
a stochastic barrier is avoided, and the circulation of the
stochastic field (aka affinity) becomes E/T as desired. In
the analytical treatment of a clean ring we assume that
ν, and η and E in the master equation are all uniform,
such that invariance under translation is regained. This
cheat is valid for large ring if ρ is banded, reflecting a
finite spatial correlation scale. See numerical verification
in [S2].

The Bloch eigenstates of a clean ring.– The L
super-operator in the Bloch (r; q) basis, decomposes into
q Blocks. Each block can be written as a sum of terms, as
in equation(9), that operate over a one dimensional tight
binding |r〉 lattice. In this representation the coherent
dynamics is generated by

L(E) = −i
∑
r

|r〉 r 〈r| (30)

L(c) = sin(q/2)[D†⊥ −D⊥] (31)

where D⊥ =
∑
r |r+1〉 〈r|. For the ν induced stochastic

transitions we have

L(ν) = −2 + 2 cos(q)|0〉〈0| (32)

+ (|1〉〈−1|+ |−1〉〈1|) (33)

where the last term is non-Pauli. The Pauli-type friction
term takes the form:

L(Ẽ) = −2i sin (q)|0〉〈0| (34)

And the additional friction terms are:

L(c̃) =
1

2
cos (q/2)[D⊥ +D†⊥] (35)

+
1

2
cos(3q/2) [| ± 1〉〈0| − |0〉〈±1|] (36)

+
1

2
cos(q/2) [|∓2〉〈±1| − | ± 1〉〈∓2|] (37)

Note that the zero eigenvalue belongs to the q = 0 block.
Some more details are provided in [S5].

Diffusion at finite temperature.– The Drude type
term in the expression for the diffusion equation (20) is
up to numerical prefactor

〈
v2
k

〉
τ , where

〈
v2
k

〉
= c2/2 for

uniform momentum distribution. At finite temperature
this distribution equation (15) is not uniform. Here we
consider zero bias and get〈
v2
k

〉
=

∫ π

−π
[c sin (k)]2p(k)dk ≈

[
1− 1

8
(βc)2

]
c2

2
(38)

where β = 1/T , and recall that η = ν/(2T ). The ana-
lytical calculation in [S5] leads to a different result which
implies that the expression in the square brackets should
be replaced by [1 − 6η2], which means that the relevant
dimensionless parameter is ν/T and not c/T . Fig.S4 of
[S5]b confirms this statement.
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[R1] Optimal transport in one-dimensional infinite chains has been studied in [5–7, 9, 18, 19].
[R2] Optimal transport in one-dimensional chains with “exit site” has been studied in [12–14]
[R3] The term quantum Goldilocks effect has been suggested in [10], for the idea that natural selection tends to drive quantum

systems to the degree of optimal quantum coherence for transport.
[S1] See SM sections 1 and 2 for pedagogical presentation of the procedure for the construction of an Ohmic master equation

for 2 a site system and for a chain.
[S2] See SM section 3 for an explicit expression for the current operator.
[S3] See SM section 4 for pedagogical summary regarding spreading, following [27].
[S4] See SM section 4 for technical summary of the procedure for finding the eigenvalues of a master equation with a Pauli-type

dissipator. It follows [28], but here we include additional stochastic transitions in “parallel” to the coherent hopping, and
incorporate also the bias within a first order treatment.

[S5] See SM sections 5-7 for technical details regarding the procedure for finding the eigenmodes of the Ohmic master equation,
including explicit expressions for the η related terms in the Fourier representation, numerical verification for momentum
thermalization, and derivation of the associated η-related correction for the diffusion coefficient.

[S6] See SM section 3 for extra numerics that concerns the calculation of the current for a disordered chain, and the manifestation
of the convex property.

[S7] See SM section 8 for technical details regarding the derivation of the effective disorder that emerges in the reduced rate
equation due to virtual coherent transitions.
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====== [1] Ohmic dissipator for a two site system

Consider a two site system with Hamiltonian H0 and an Ohmic bath of temperature T that induces a fluctuating
force f(t) of intensity ν, and system-bath interaction term −W f(t). The master equation acquire a dissipation term

L(ohmic)ρ = −ν
2

[W , [W , ρ]]− iη
2

[W , {V , ρ}] (S-1)

where V = i[H0,W ], and η = ν/(2T ). An extra noise source f̃(t)V can be added in order to make the right hand
side “positive” in the Lindblad sense:

L(ν̃)ρ = −νη
2

[V , [V , ρ]] (S-2)

The “minimal correction” that is needed is to set νη = ν/(4T )2, and then the expression can be written in the
Lindblad form

L(ohmic)ρ = ν

(
F ρF † − 1

2

{
F †F , ρ

})
− i[HLS , ρ] (S-3)

F = W + i
η

2ν
V (S-4)

HLS =
η

4
[WV + VW ] (S-5)

where the Lamb-shift term HLS can be absorbed into the system Hamiltonian. For two site system with

H0 = −(E/2)σz − (c/2)σx (S-6)

and coupling W = σx/2, one has V = Eσy, and the Lamb-shift is zero. The Lindblad generator is

F =

(
1 +
E
T

)
σ+ +

(
1− E

T

)
σ− (S-7)

The transition rates between the sites are:

w± =

(
1± ηE

2ν

)2

ν ≈ (ν ± ηE) (S-8)

w−

w+
≈ e−E/T (S-9)

A secular-like (Pauli) version of the dissipator is obtained by expanding F ρF † and keeping only the Lindblad terms
with F+ = σ+ and F− = σ−. Namely,

L(Pauli)ρ = w+

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)
+ w−

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
− γ

4
[σz, [σz, ρ]] (S-10)

where the last term represents excess noise due to noisy detuning (see below). The mixed terms that have been omitted
affect only the decoherence of the off-diagonal terms, and not the rate of transitions between sites. In the Bloch-
vector representation the precessing component of the “spin” decays only in the y direction in the Ohmic version, and
isotropically in the Pauli version. In some sense the dissipation in the Pauli version assumes two independent baths at
each bond. If we assume that the detuning E is fluctuating with intensity νγ = (γ/2), so that (E/2)→ (E/2) + f(t),
then an additional L term appears, that has the form of Eq.(S-1) with the substitution W := σz, and V := −cσy.



====== [2] Ohmic dissipator for a chain

The Hamiltonian of the chain is

H(c) = U(x)− c

2
(D +D†) = −Ex− c cos(p) (S-11)

where D =
∑
xDx is the displacement operator, and Dx = |x+ 1〉〈x|. In general the field Ex = − (U(x+1)− U(x)),

as well as the hopping frequencies (c), and temperatures might be non-uniform. The interaction with a bath-source
that induces non-coherent transitions at a given bond is obtained by the replacement (c/2) 7→ (c/2) + f(t). The baths
of different bonds are uncorrelated. Accordingly the dissipation term in the Master equation takes the form

L(ohmic)ρ = −
∑
x

(ν
2

[Wx, [Wx, ρ]] +
η

2
i[Wx, {Vx, ρ}]

)
(S-12)

where the coupling to the baths is via the operators

Wx =
(
Dx +D†x

)
(S-13)

Vx = i[H(c),Wx] = iEx
(
D†x −Dx

)
− i c

2
[(Dx+1Dx −DxDx−1)− h.c] (S-14)

And the Lindblad correction term:

L(ν̃)ρ = −νη
2

∑
x

[Vx, [Vx, ρ]] (S-15)

with intensity νη = ν/(4T )2. Such term has negligible effect in the high temperature regime (η < 1). Optionally we can

add terms that reflect fluctuations of the field. At a given bond it is obtained by the replacement U(x) 7→ U(x) + f̃(t),
where f̃(t) represents fluctuations of intensity γ. The implied coupling operators are

W (S)
x = Qx (S-16)

V (S)
x = i[H(c),W (D)

x ] = i(c/2)
[
D†x−1 −Dx−1 −

(
D†x −Dx

)]
(S-17)

====== [3] Expression for the current

For generality of the treatment we allow the temperature to be bond dependent, then η → ηx so that the Lindblad
generators are Fx = Wx + i(ηx/2ν)Vx, and

H = H(c) +
∑
x

ηx
4
{Wx,Vx} (S-18)

The time dependence of an expectation value is given by the adjoint equation:

d

dt
〈Q〉 = trace

[
Q
d

dt
ρ

]
= trace [QLρ] = trace

[
(L†Q)ρ

]
=
〈
L†Q

〉
(S-19)

where

L†Q = i[H,Q] + ν
∑
x

(
F †xQFx −

1

2
{F †xFx,Q}

)
(S-20)

Partitioning the system at the n-th bond, the current flowing from left to right is defined by I = ˙〈Q〉, with

Q =
∑
x>n

|x〉〈x| (S-21)

We note that although the original Hamiltonian allows only near-neighbor hopping, the master equation allows also
“double hopping” due to the V terms. Accordingly the expression for the current operator has several non-trivial



terms. Applying Eq.(S-19) the current is:

I = ~I − ~I − c Im[ρn(1)] + I
(0)
η2 + I

(1)
η2 (S-22)

~I = w+
n pn −

cηn
2

Re[ρn−1(1)] (S-23)

~I = w−n pn+1 −
cηn
2

Re[ρn+1(1)] (S-24)

I
(0)
η2 =

E2η2
n

4ν
[pn − pn+1] +

∑
i=0,1

c2

16ν

(
η2
n−i + η2

n+1−i
)

(pn−i − pn+2−i) (S-25)

I
(1)
η2 = −cE

8ν
Re
[
2η2
n (ρn−1(1) + ρn+1(1))−

(
η2
n−1 + η2

n+1

)
ρn(1)

]
(S-26)

where the extra Iη2 terms are of order η2, and are negligible for the NESS current. If the field E is non-uniform, then
one needs to make the replacement ηnE → ηnEn. Disregarding Iη2 the distinct elements of the current are coherent
hopping, stochastic hopping and stochastic-assisted coherent hopping. These are pictured in Fig.S1.

Current in disordered system.– In Fig.S2 we display results for the NESS current, calculated for a disordered
sample. If the spatial correlation scale of the disorder is large, the ring can be regarded as composed of several
segments connected in series. Then the analytical estimate for the current would be

I =

[∑
x

1

v(Ex)

]−1

(S-27)

which reduce to I = (1/L)v(E) for a uniform field. The function v(E) is provided by Eq.(17), and the above analytical
estimate implies what we call convex property. Using this formula we can explain why disorder can lead to increase of
the current as in Fig.2. The accuracy of this formula, that assumes a large spatial correlation scale, is tested against
the correlation scale in Fig.S2.

FIG. S1. Diagrammatic representation of the terms that contributes to the total current that flows via a section that is
indicated by a vertical dashed line, here via the bond that connects sites x=1 and x=2. Straight lines denotes the role played
by the stochastic transitions, while semi-circle segments are related to coherent hopping. The latter are of the form cηxρx(1).
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FIG. S2. The NESS current as a function of the correlation length of the disorder. The parameters are E=8, σE=6, η=0.01
and c=10. The correlated disorder is obtained by a convolution of the uncorrelated disorder (correlation length equals unity)
with a box-shaped kernel. For each sample the numerical result for an L=500 ring is compared with the theoretical estimate
Eq.(S-27). The two are expected to coincide for large correlation length. The small difference that remains is a finite size effect
due to our treatment of the boundary conditions (see main text). On the right panel we demonstrate the L-dependence of this
difference for a clean system (E and η are the same). The gray dashed lines are the theoretical values provided by Eq.(17).



====== [4] Spreading

Without coherent hopping (c=0) the Ohmic/Pauli dynamics of the on-site probabilities px decouple from the decay
of the off-diagonal terms. We get two distinct sets of modes: the stochastic-like relaxation modes and the off-diagonal
decoherence modes. In the Pauli approximation the latter decay with the same rate γ0 = γ + w+ + w−. The stochastic
transitions affect only the stochastic-like relaxation modes. Starting with a wavepacket of variance Var(R) = σ2

0 , and
momentum centered around k0, we get in the Wigner representation

ρw(R,P ) = e−γ0t
[
Gc(R,P )−G0(R,P )

]
+ Gt(R,P ) (S-28)

where

Gc(R,P ) =
2

L
exp

(
−1

2

R2

σ2
0

− (P − k0(t))2σ2

)
, k0(t) = k0 + Et (S-29)

Gt(R,P ) =
1√
2π

1√
σ2

0 + 2Dt
exp

(
−1

2

(R− vt)2

σ2
0 + 2Dt

)
(S-30)

with drift velocity v = (w+ − w−) and diffusion coefficient D = (w+ + w−)/2.
Let us add coherent hopping in a very naive way: we use the Pauli dissipator, and merely set c 6= 0 in the Hamil-

tonian. It is a naive procedure because the use of the Pauli dissipator cannot be justified anymore (we have to use
the Ohmic dissipator). With this simplification the explicit form of the Lindblad operator of the q block is:

L(q) = −γ0 + γq|0〉〈0| − iE
∑
r

|r〉 r 〈r| − c sin(q/2)
[
eiq/2D⊥ − e−iq/2D†⊥

]
(S-31)

with γq = γ + w+e−iq + w−eiq. This can be regarded as simplified version of Eq.(S-33) below. The diagonalization
of L is straightforward for zero bias. The phases exp(±iq/2) can be gauged to some distant r, and L becomes like
the Hamiltonian of a tight-binding model with a barrier at the origin. The lowest eigenmodes are decaying exponents
ψ(r) ∼ exp(−α|r|), with Re(α) > 0. These modes correspond to the stochastic-like relaxation modes. Matching the
boundary conditions at r = 0, one finds the eigenvalues

λq,0 = γ0 −
√
γ2
q − 4c2 sin2 (q/2) ≡ ivq +Dq2 +O(q3) (S-32)

From which expressions for v and D can be derived. The result for D is similar (but not identical) to the correct
result in the main text. Namely, up to a prefactor it reproduces the E=0 Drude term.

====== [5] Bloch representation of the Ohmic master equation

For a clean system, and neglecting the η2 contribution, the generator of the master equation is written as a sum of
several terms. Here we shall provide explicit expressions of the q block of the super-matrix in the Bloch representation:

L(q) = cL(c) + EL(E) + νL(ν) + ηcL(c̃) + ηEL(Ẽ) + νηL(ν̃) (S-33)

We define operators

R =
∑
r

|r〉 r 〈r| (S-34)

D⊥ =
∑
r

|r + 1〉 〈r| (S-35)

After gauge transformation |r〉 → e−iqr/2 |r〉 we obtain

L(c) = sin(q/2)[D†⊥ −D⊥] (S-36)

L(E) = −iR (S-37)

L(ν) = −2 + 2 cos(q)|0〉〈0|+ (|1〉〈−1|+ |−1〉〈1|) (S-38)

L(c̃) =
1

2
cos (q/2)[D⊥ +D†⊥] +

1

2
cos(3q/2) [| ± 1〉〈0| − |0〉〈±1|] +

1

2
cos(q/2) [|∓2〉〈±1| − | ± 1〉〈∓2|] (S-39)

L(Ẽ) = −2i sin (q)|0〉〈0| (S-40)

Note that this expression is not 2π periodic, since we ignore the accumulated phase which arise in the gauge procedure.
The gauge in the above procedure is equivalent to redefinition of the r coordinate such that x and r become orthogonal
(skewing the r axis in Fig.4 by 45 degrees).



====== [6] Eigenmodes of the Ohmic master equation

Infinite temperature eigen-modes.– For infinite temperature (η = 0), the eigenvalues of the q = 0 block are:

λq=0,0 = 0 (NESS) (S-41)

λq=0,± = 2ν ±
√
ν2 − E2 (S-42)

λq=0,s = 2ν + iEs, (s = ±2,±3, ...) (S-43)

Considering the q dependence of the eigenvalues we get several bands. Our interest below is in the lowest band
(λq,s=0), which determines the long time spreading. For this calculation one needs the eigen-modes corresponding to
the above eigenvalues. These are given by:

|λq=0,s〉 = |r = s〉 , (s = 0,±2,±3, ...) (S-44)

|λq=0,±〉 ≡ |±〉 = α± |1〉+ |−1〉 (unnormalized) (S-45)

α± = −i
(
E
ν

)
∓

√
1−

(
E
ν

)2

(S-46)

NESS at finite temperature.– We can find the NESS, which is the zero mode |λ0,0 = 0〉, and calculate from it
both the momentum distribution and the current.

Setting q = 0, and considering linear order in η, the NESS is obtained by first order perturbation for the |λq=0,0〉 =
|r = 0〉 state. See Fig.S3. Putting V ≡ ηcL(c̄) as the perturbation, one get:

|NESS〉 = |0〉+

〈
+̃
∣∣V ∣∣0〉
λ+

|+〉+

〈
−̃
∣∣V ∣∣0〉
λ−

|−〉 = |0〉+ α0 |1〉+ α∗0 |−1〉 (S-47)

α0 =
3ν − iE
3ν2 + E2

ηc (S-48)

where the left eigenvectors are given by:

〈
±̃
∣∣ =

(
α±
α∓
− 1

)−1 [
〈1| 1

α∓
− 〈−1|

]
, (S-49)

Reverting back from the Bloch basis of ρ(r; q) to the position basis, namely |r; q〉 := L−
1
2

∑
x |x〉〈x+ r|eiqx, the

normalized steady state matrix ρ is:

ρ(NESS) =
1

L

(
11 +

∑
x

α0|x〉〈x+1|+ h.c.

)
=

1

L

(
11 + α0e

+ip + α∗0e
−ip) (S-50)

The momentum distribution.– Using Eq.(S-50) we obtain the steady state momentum distribution:

p(k) = ρkk =
1

L

(
1 + 2Re(α0e

+ik)
)

=
1

L
+

1

L

2ηc

3ν2 + E2
(3ν cos (k) + E sin (k)) (S-51)

For E = 0, the momentum distribution is canonical, see Fig.S4. The above result is indeed consistent with the
canonical distribution to linear order in β = 1/T . The drift velocity can be deduced by calculating the NESS current
using Eq.(S-22). The current over the bond n, to first order in η is:

In =
1

L

(
(w+

n − w−n )− c Im(α0)
)

=
1

L

[
1 +

c2

6ν2 + 2E2

]
2ηE (S-52)

We note that although the expression for the current Eq.(S-22) is complicated, the final NESS current is composed
of the usual stochastic-current, and the usual coherent-current.



====== [7] Diffusion at finite temperature

Here we provide the calculation of D to second order in η. We have to expand λq,0 to second order in q. Inspecting
the gauged Lindblad operator in Eq.(S-33), one observes (see diagram of Fig.S3) that up to order q2 and η2 it is
enough to diagonalize the five sites |r| ≤ 2, keeping the q2 and the η2 corrections. This can be done using perturbation
theory, or optionally using Mathematica for a direct diagonlization and then expand the result in powers of q and η.
Either way one get:

λq,0 = ivq +Dq2 (S-53)

v =

[
1 +

c2

6ν2 + 2E2

]
2ηE (S-54)

D =

[
1 +

c2

6ν2 + 2E2

]
ν −

[(
9ν2 + 11E2

)
(E2 + 3ν2)2

+

(
15E2 + 13ν2

)
(cE)2

4(E2 + ν2)(E2 + 3ν2)3

]
(ηc)2ν (S-55)

Setting E = 0 in the expression for D, we find that the η2 correction in Eq.(S-55) can be absorbed into the first
term via the replacement c2 7→ [1− 6η2]c2. Note that this correction is based on the Ohmic dissipator without the
additional Lindblad term that is added for the purpose of positivity.

FIG. S3. Diagrammatic representation of the couplings in the reduced tight binding model (in r), that is used in order to
determine the eigenvalues λq,s for a given Bloch momentum q. Different orders of q and η are indicated by the different arrows.
The formation of the |λq=0,±〉 eigenmodes is due to the dashed ν coupling. Up to order q2 and η it is enough to consider second
order perturbation theory involving r = −1, 0, 1. For η2 corrections one needs to include also r = ±2.
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FIG. S4. The steady state and the diffusion coefficient at zero bias. The parameters are ν = 1 and η = 0.01. (a) Nu-
merically determined momentum distribution (without the Lindblad correction) compared with the Boltzmann distribution
p(k) ∝ exp

[
θ−1 cos (k)

]
. The distribution is plotted for a few values of θ. For small θ the distribution is no longer Boltzmann-

like and its tails become negative. The Ohmic master equation is no longer valid in this regime. The calculation is for L = 40,
and for clarity only 20 data points are presented. (b) Numerical verification of the η2 correction to D. The analytically
predicted correction factor [1− 6η2] is plotted as a solid line. The numerical data points are [6ν/c2](D − ν).



====== [8] Effective disorder

For c=0 the off-diagonal terms of ρ decouple from the diagonal, and the relaxation spectrum is the same as that
of the stochastic model. For small c, we keep only the three-central diagonals (r ≤ 1), thus ignoring the couplings
to higher bands. We also ignore transitions of the order cη. The r = ±1 space can be eliminated, in the price of
getting a λ-dependent transition rate matrix Heff(λ) = H0 +W ′G(λ)W , where H0 includes the transitions along r=0,
and G(λ) is a resolvent operator that describes the dynamics within the excluded diagonal, while the W -s include
the couplings between the r=0 elements and the excluded r = ±1 elements. See diagram of the couplings in Fig.S5.
The effective matrix Heff(λ) is non-hermitian due to the asymmetry of the transitions. It is a probability conserving
tight-binding operator, but with rates that can be negative. For the forward and backward hopping rates in the n-th
bond we get w±n = ν + νn ± ηEn, where

νn =
( c

2

)2

(G11 +G22 −G12 −G21) =
c2

2

ν − λ
(2ν − λ)2 + E2

n − ν2
(S-56)

where G = −(λ+ Ln)−1 is a 2× 2 matrix which is defined in terms of Ln = −2ν − iEnσz + νσx within the subspace
that is spanned by the super-vectors |n〉〈n+1| and |n+1〉〈n|. The eigenvectors of this matrix are the |±〉 of Eq.(S-46)
with E → En.

In order to estimate the effective disorder, we proceed as outlined in the main text. For high-temperatures
one obtains from Eq. (22) approximations for the wn and for the stochastic field, namely, wn ≈ (ν + νn), and
Ẽn ≈ ηE(ν + νn)−1. We define an associated hermitian matrix H̃, that has the same matrix elements as Heff(λ),
but with Ẽn = 0 in the off diagonal elements. The eigenvalues of H̃ are real, with some inverse localization length
κ(λ). Ignoring the diagonal disorder that arises due to non-uniform field Ẽn, the localization length of eigenvalues
near λ are roughly given by [Weinberg, de Leeuw, Kottos, Cohen, Phys. Rev. E 93, 062138 (2016)]:

κ(λ) ≈ 1

4

(σ⊥
ν

)2 λ

ν
(S-57)

with σ2
⊥ = Var(wn). This, as explained in the main text, determines whether the eigenvalues of Heff(λ) will turn

complex. We focus on representative region around λ = 2ν in the center of the spectrum. Around this point, for
small disorder, one obtains:

wn ≈ ν
c2

2(ν2 − E2)

(
1 +Bδn + Cδ2

n

)
(S-58)

B =
2E

(ν2 − E2)
, C =

ν2 + 3E2

(ν2 − E2)2
(S-59)

with δn ≡ En − E that are randomly distributed within [−σE , σE ]. Consequently we get the estimate

σ2
⊥ = Var(wn) ≈

(
c2ν

2(ν2 − E2)

)2 (
B2 Var(δ) + C2 Var(δ2)

)
=

(
c2ν

2(ν2 − E2)

)2 (
B2(σ2/3) + C2(4σ4/45)

)

FIG. S5. Diagrammatic representation of the couplings in the 3 band approximation. Along the main diagonal (filled circles)
we have asymmetric stochastic transitions (not indicated). Those are coupled to the coherences (empty circles) due to the
c-related terms that are packed into W and W ′ matrices. The non-Pauli ν coupling and the on-site “energies” at the |r| = 1
sites constitute the Ln operator, which determines the resolvent G(λ).

http://dx.doi.org/%2010.1103/PhysRevE.93.062138
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