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Breakdown of quantum-to-classical correspondence for diffusion in a high-temperature
thermal environment
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We reconsider the old problem of Brownian motion in a homogeneous high-temperature thermal environ-
ment. The semiclassical theory implies that the diffusion coefficient does not depend on whether the thermal
fluctuations are correlated in space or disordered. We show that the corresponding quantum analysis exhibits
a remarkable breakdown of quantum-to-classical correspondence. Explicit results are found for a tight-binding
model, within the framework of an Ohmic master equation, where we distinguish between on-site and on-bond
dissipators. The breakdown is second order in the inverse temperature and therefore, on the quantitative side,
involves an inherent ambiguity that is related to the Ohmic approximation scheme.
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I. INTRODUCTION

The fingerprints of quantum mechanics on Brownian mo-
tion is an intriguing theme [1–3]. This theme concerns also
the motion of a particle or an exciton on a lattice [4–18], or
the closely related studies of motion in a washboard potential
[19–21].

The traditional paradigm is/was that the effects of quan-
tum mechanics show up only at low temperatures, where
nonclassical effects are related to the failure of the Marko-
vian approximation. This view has been challenged by
publications regarding excitation transport in photosynthetic
light-harvesting complexes, most notably by the experiment
in [22], and by many theoretical publications [23–32]. But by
now it has been argued [33–38] that the transport there, by
itself, is “classical” in nature.

Nevertheless, contrary to the traditional paradigm, we sug-
gest below that quantum manifestation in stochastic motion
can be detected via the high-temperature dependence of the
transport coefficients. This opens an avenue for challenging
the traditional (classical) paradigm of Brownian motion.

A. Brownian motion

High-temperature (T ) classical Brownian motion is de-
scribed by the Langevin equation

ṗ = −ηẋ + f , (1)

where f is the white noise of intensity ν, related to the friction
coefficient via the fluctuation dissipation relation

ν = 2ηT . [can be used as definition of T ] (2)
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For the standard dispersion relation ẋ = (1/m)p, where m
is the mass of the particle, one obtains the following simple
results for the transport coefficients:

μ = 1

η
, [mobility] (3)

D = T

η
. [diffusion coefficient] (4)

The mobility μ is used to determine the drift velocity due to
an applied bias, while D is the coefficient that enters Fick’s
law. The Einstein relation D/μ = T is satisfied. It is important
to realize that Eq. (2) characterizes the thermal environment,
while the Einstein relation characterizes the dissipative dy-
namics of the particle.

B. Quantum signature

One wonders whether the dependence of the transport co-
efficients (μ and D) on the dissipation parameters (η and ν) is
universal. This is the main question that motivates the present
study.

Common wisdom

The high-temperature noise arises from a fluctuating po-
tential, namely,

f = −∂xU (x, t ). (5)

This potential features in general a spatial correlation scale
�. Semiclassically, the transport coefficients do not depend
on �, and the common practice, as in the Caldeira-Leggett
model [1,2], is to assume that f is independent of x, meaning
that � = ∞. But in the quantum treatment � does show up
in the analysis, because it determines the line shape of the
stochastic kernel W (k|k′) for scattering from momentum k′ to
momentum k. Namely, the width of the kernel (∼2π/�) has
implications on the transient decoherence process [39–41].
Yet, one does not expect that this line shape will have any
effect on the long-time spreading. The argument is simple: on
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the basis of the central limit theorem successive convolutions
should lead to a result that does not depend on the �-dependent
line shape of the stochastic kernel but only on its second
moment, which is characterized by ν. Consequently, robust
quantum-to-classical correspondence (QCC) is expected at
high temperatures. Such QCC can be regarded as an implica-
tion of the Thomas-Reiche-Kuhn-Bethe-Wang sum rule [42],
or as an extension of the restricted QCC principle [43,44].

Main statement. In the present work we show that �

independence of the transport coefficients (μ and D) is a
fallacy. Given η, we shall see that D acquires a nonuniversal
dependence on the temperature, which constitutes a quantum-
mechanical signature.

C. Tight-binding model

Here we consider a particle or a single exciton that can
hop along a one-dimensional chain whose sites are labeled
by an integer index x. The dynamics of the isolated system is
determined by the Hamiltonian

H (c) = −c cos(ap) − f0x, (6)

where a is the lattice constant, c is the hopping frequency, and
f0 is an applied bias. The operators e∓iap generate one-site
displacements. This Hamiltonian is of quantum-mechanical
origin but may be treated semiclassically by deriving the
equations of motion ẋ = ca sin(ap) and ṗ = f0. Adopting
the standard jargon of condensed matter textbooks, we shall
call this semiclassical treatment of the dynamics. The exact
quantum dynamics of Eq. (6) is obtained from the Schrodinger
equation [45], or equivalently, from the Liouville–von Neu-
mann equation for the probability matrix ρ.

The dynamics on the lattice features the dispersion re-
lation ẋ = v(p), where v(p) = ca sin(ap). The continuum
limit (small ap) leads to the standard dispersion relation
v = (1/m)p with m = 1/(ca2). Therefore we can regard the
latter case as a special regime of the former. Irrespective of
the dispersion relation, if the particle is coupled to a thermal
environment, the semiclassical treatment leads to ṗ = F (t ),
where the force contains a stochastic noise term and a friction
term, namely, F (t ) = f0 + f (t ) − ηẋ. In the absence of exter-
nal bias ( f0 = 0), this leads to the Langevin equation, Eq. (1).

In the corresponding high-temperature Markovian quan-
tum treatment, the dynamics is given by a master equation for
the probability matrix [46]. This master equation incorporates
an extra term, aka dissipator, that represents the noise and the
friction:

dρ

dt
= Lρ = −i[H (c), ρ] + L(bath)ρ . (7)

The dissipator L(bath) is determined by the coupling between
the isolated chain and the environment, and depends on the
temperature of the bath.

D. Regime diagram

Disregarding the optional applied bias f0, the isolated tight-
binding model has no free parameters (formally we can set
the units of time and length such that c = a = 1). With bath,
the continuum version of quantum Brownian motion (QBM)
features a single dimensionless parameter, the scaled inverse

(a) (b)

FIG. 1. The Brownian motion regime diagram. (a) The vari-
ous regions in the (η, θ ) diagram are indicated. We distinguish
between the classical-like Brownian motion (CBM) region, the low-
temperature QBM region where memory effects dominate, and the
high-temperature QBM region that is discussed in this work. Note
that below the dashed diagonal line (β > 1) memory effects should
be taken into account. (b) The scaled mobility μ/μ0 where μ0 = 1/η

vs θ , based on the analytical results that have been obtained for dif-
fusion in the X/S coupling schemes. The result is independent of η.
We also add the result for the B coupling scheme that approaches the
finite asymptotic value μ∞ = 2η (horizontal line). In the latter case
η = 0.3 has been assumed. Note that the S/B results are applicable
only in the θ > 1 regime.

temperature β, which is the ratio between the thermal time
1/T and damping time m/η. In the lattice problem one can
define two dimensionless parameters

α = ηa2

2π
, θ = T

c
. (8)

Accordingly, β = α/θ . In our model we set the units such that
a = 1, hence disregarding the 2π factor, our scaled friction
parameter η is the same as α. The regime diagram of the
problem is displayed in Fig. 1 and is further discussed below.
It contains both the classical-like Brownian motion (CBM)
regime, where memory effects are either not expressed or
appear as a transient, and QBM regimes where the dynamics
is drastically different.

E. Relation to past studies

The standard analysis of QBM [3] reveals that quantum-
implied memory effects are expressed in the regime β > 1,
where a transient log(t ) spreading is observed in the ab-
sence of bias, followed by diffusion. The later quantum
dissipation literature regarding the two-site spin-boson model
[47] and regarding multisite chains [7,21] is focused in this
low-temperature regime where a transition from CBM-like
behavior to overdamped or localized behavior is observed,
notably for large α of order unity.

Our interest is focused in the α, β � 1 regime. This regime
is roughly divided into two regions by the line θ ∼ 1, see
Fig. 1. Along this line the thermal de Broglie wavelength
of the particle is of the order of the lattice constant, and
hence it bears formal analogy to the analysis of QBM in
the cosine potential [20], where it marks the border to the
regime where the activation mechanism comes into action.
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In our tight-binding model we have a single band, and hence
transport via thermal activation is not possible. Rather, in the
θ > 1 regime the momentum distribution within the band is
roughly flat. To avoid misunderstanding, what we call in the
present study the “high-temperature” regime assumes a single
band approximation by construction.

F. Outline

An overview of the main results is presented in Sec. II. The
Ohmic master equation is explained in Sec. III. The semiclas-
sical analysis is detailed in Secs. IV–VI. The quantum analysis
is detailed in Sec. VII. The effective stochastic description
is presented in Sec. VIII, where we discuss detailed-balance
consideration as well. A concise summary is provided in
Sec. IX.

II. OVERVIEW OF MAIN RESULTS

In order to demonstrate that the temperature dependency of
the transport coefficients is � dependent, we consider in detail
two extreme cases: (a) The Caldeira-Leggett X dissipator L(X)

where a single bath is coupled to x. This corresponds to a
nondisordered (� = ∞) bath. (b) The S dissipator L(S), where
each site is coupled to an independent bath. For this coupling
� = a. In Sec. VIII we also present results for intermediate
values of �. For completeness we also consider another case:
(c) the B dissipator L(B), where each bond is coupled to an
independent bath. For all cases the dynamics is governed by
the Ohmic master equation Eq. (7), and the dissipator L(bath)

takes different forms according to the couplings. For the three
cases above, the bath parameters are νi and ηi with i = X, S, B.

A. X dissipation

As a reference case we calculate the transport coefficients
for a particle in a tight-binding model that is coupled to an
Ohmic Caldeira-Leggett bath via the x variable. We term this
standard case “X dissipation.” We set the length units such
that a = 1. The bath parameters νX and ηX are chosen such
that in the semiclassical Eq. (1) we have ν = νX and η = ηX .
The result that we get for the diffusion coefficient is

D(X) =
[

1 − 1

[I0(c/T )]2

]
T

η
, (9)

where In is the modified Bessel function. This result is exact to
the extent that the (Markovian) Ohmic master equation can be
trusted. For the mobility we get μ = D/T , as expected for the
Einstein relation. A plot of the mobility versus temperature is
provided in Fig. 1.

For low temperatures (in the sense T � c) one recovers the
standard results Eqs. (3) and (4) that apply for nonrelativistic
(linear) dispersion. For high temperatures the result takes the
form D(X) = D‖, with

D‖ ≈ C‖

[
1 + A‖

(
c

T

)2]c2

ν
, (10)

where C‖ = 1 and A‖ = −5/16. The reason for using the
subscript notation is clarified below. The same expression
appears for the S/B dissipators, with ν replaced by νS and

FIG. 2. Dependence of the diffusion coefficient on the tempera-
ture. Given ν the coefficient D‖ is plotted vs (c/T ) for the Ohmic
master equation and different coupling schemes: Caldeira-Leggett
(X), sites (S), and bonds (B). The symbols are obtained numerically
through an effective rate equation (see text). We also show results for
the canonical (“Boltzmann”) versions of the S/B master equation
and for the semiclassical result in the case of B coupling. (The
semiclassical result for S coupling is the same as X coupling). The
naive expectation D ∝ 〈v2〉 is displayed for sake of comparison.

νB, respectively. The dependence of D on the temperature is
plotted in Fig. 2. For sake of comparison we plot also the naive
expectation D ∝ 〈v2〉, with v = c sin(p), where the average is
over the canonical distribution. This naive expectation would
be valid if the correlation time were independent of tempera-
ture (which is not the case). The high-temperature dependence
is

〈
v2

〉 ≈
[

1 + A

(
c

T

)2]c2

2
, with A = −1/8. (11)

In Sec. VII we obtain the same result also within the frame-
work of an exact quantum treatment.

B. S dissipation

We shall explain that if the fluctuations of the bath are
characterized by a finite correlation scale �, the semiclassi-
cal results for the transport coefficient are the same as for
� = ∞. This rather trivial observation holds for any dispersion
relation. Specifically for the tight-binding model Eq. (9) is �

independent. But this is not so in the quantum analysis. Here
we analyze the other extreme limit of � ∼ a, meaning that the
bath fluctuations at different sites are uncorrelated. We obtain
Eq. (10) with A‖ = /16 and ν �→ νS , which is not even the
same sign when compared to the X dissipation result.

Technical note. For a tight-binding model the parameter
η is defined conventionally as for a two-site system (aka the
spin-boson model). The definition via −ηẋ is not practical be-
cause x is a discrete variable. Still, in a semiclassical context,
disregarding an ambiguity regarding the numerical prefactor,
the dissipation parameter η has the meaning of a friction
coefficient, as for X coupling. With our standard conventions
we get C‖ = 1/2 (for S dissipation) instead of C‖ = 1 (for X
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dissipation), which reflects a convention and not a profound
difference. In contrast, the A coefficients are independent of
convention and reflect a quantum signature.

C. B dissipation

For completeness we also consider the case where the
dissipation is due to uncorrelated noisy bonds (rather than
sites). Here we have an additional term in the expression for
the diffusion coefficient, namely, D = D‖ + D⊥, where

D⊥ ≈ C⊥

[
1 + A⊥

(
c

T

)2]
νB (12)

with A⊥ = −1/4. This additional term reflects extra spreading
in the space due to stochastic hopping, as discussed in a
previous publication [48]. The quantum fingerprints are not
related to this term but to the D‖ term that arises due to the
noise-induced spreading in p. For that term we find A‖ = 0.

Technical note. The dissipation parameter ηB is defined as
for the spin-boson model. It is the “same” Ohmic bath as
assumed for S dissipation, but the coupling term is different.
We get C‖ = 1/6 and C⊥ = 1, as opposed to X/S coupling for
which C⊥ = 0.

D. Nonuniversality

In general, for high temperatures the diffusion is composed
of a term that originates from noncoherent hopping that is
induced by the bath, namely, D⊥ of Eq. (12), and from the in-
terplay of noise with coherent hopping between sites, namely,
D‖ of Eq. (10). The � dependence of the latter is a quantum
signature, and consequently, our result for D‖ reflects details
of the dissipation mechanism.

The A coefficients are not a matter of convention. Rather,
they reflect the thermalization and the spreading mechanism,
and hence indicate quantum manifestation. We summarize our
results:

A‖ =
⎧⎨
⎩

−5/16 for X coupling
+1/16 for S coupling
0 for B coupling

. (13)

Contrary to the X-coupling case, for local (S/B) dissipators
the canonical ρ is not the exact steady state and satisfies Lρ ∼
O(β3) rather than zero. We shall explain that if we ad-hock
correct the transition rates to get agreement with Boltzmann,
the results for the A-s are modified as follows:

A‖ =
{−1/32 for S coupling
−1/16 for B coupling. (14)

We emphasize again that the value of A is a sensitive probe
that is affected by the line shape of the spreading kernel.
Therefore its precise value is nonuniversal but depends on
the weights of the quantum transitions. For completeness we
introduce in Sec. VIII results for intermediate values of �,
demonstrating the crossover from S coupling (�∼ a) to X
coupling (�∼ ∞).

III. THE OHMIC DISSIPATOR

The isolated chain is defined by the H (c) Hamiltonian.
The X dissipation scheme involves a single bath with inter-

action term −W F , where W is the position operator x and
F is a bath operator that induces Ohmic fluctuations with
intensity ν. More generally, we assume a disordered thermal
environment that is composed of numerous uncorrelated baths
such that the interaction term is

∑
α W αFα , where α labels

different locations. For S dissipation W α = |xα〉〈xα|, leading
to a fluctuating potential that dephases the different sites.
For B-dissipation W α = |xα + 1〉〈xα| + H.c., which induces
incoherent hopping between neighboring sites. The Ohmic
dissipator L(X/S/B)ρ takes the form [48,49]

−
∑

α

(
ν

2
[W α, [W α, ρ]] + η

2
i[W α, {V α, ρ}]

)
, (15)

where η = ν/(2T ) is the friction coefficient, and

V α ≡ i[H (c),W α] . (16)

The friction terms represent the response of the bath to the
rate of change of the W α . For X dissipation V = c sin(p) is
the velocity operator. If we treat the friction term of Eq. (15)
in a semiclassical way, the expression for the dissipator in the
Wigner phase-space representation ρw(R, P) takes the famil-
iar Fokker-Plank (FP) form with v = c sin(P), namely,

LFPρw = ν

2
∂2

P[ρw] − ∂P[( f0 − ηv)ρw], (17)

which is a sum of momentum-diffusion and momentum-drift
terms. For the sake of later reference we have added to the
friction force (−ηv) a constant field f0.

The X dissipator leads to canonical steady state for any
friction and for any temperature. This is not the case for S/B
dissipation, for which the agreement of the steady state with
the canonical result is guaranteed only to second order in η.
The reason for that is related to the proper identification of the
“small parameter” that controls the deviation from canonical
thermalization. The X dissipator induces transitions between
neighboring momenta, and therefore the small parameter is
�/T , where the level spacing � goes to zero in the L → ∞
limit, where L is the length of the chain. But for local baths,
the coupling is to local scatterers that create transitions to
all the levels within the band. Therefore the small parameter
is c/T , and canonical thermalization is expected only for
c/T < 1.

IV. SEMICLASSICAL ANALYSIS FOR X DISSIPATION

We shall argue later that for X dissipation the semiclassical
dynamics that is generated by LFP is exact for the purpose of
the A coefficient evaluation. Here we present the semiclassical
solution.

In Sec. IV A below we find the steady-state momentum dis-
tribution in the presence of a constant field f0. In Sec. IV B we
obtain for the weak field 〈v〉 = μ f0, where μ is the mobility.
Then the diffusion coefficient is deduced from the Einstein
relation, namely, D = μT , leading to Eq. (9).

Optionally, we can calculate directly the velocity-velocity
correlation function 〈v(t )v(0)〉 in the absence of an external
field. This requires a rather complicated recursive procedure,
see Appendix A. The diffusion coefficient is obtained via

D =
∫ ∞

0
dt 〈v(t )v(0)〉. (18)
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The same result is obtained, namely, Eq. (9). Later we shall
calculate the diffusion in a proper quantum calculation, and
this again yields the same result; see Sec. VII.

A. The steady state

We consider a Brownian particle that is described by
Eq. (6) under the influence of a thermal nondisordered fluc-
tuating field (X coupling). Below we set a = 1 for the lattice
constant. A fully quantum treatment of this model has been
introduced by [7,21], with focus on the low-temperature
QBM regime, while here we focus on the high-temperature
regime. The semiclassical equations of motion are formally
obtained by the substitution f0 �→ F (t ), where the total force
F (t ) = f0 + f (t ) − ηẋ includes a stochastic term that has
zero average with correlation function 〈 f (t ) f (t ′)〉 = νδ(t −
t ′) and an associated friction term with coefficient η, in addi-
tional to the bias term f0. Thus we get the Langevin equation

ẋ = ∂H

∂ p
= c sin (p) , (19)

ṗ = −∂H

∂x
= f0 − ηẋ + f (t ) . (20)

The steady state for p is solved by inserting
Eq. (19) to Eq. (20). Changing notation p �→ ϕ, and
u(ϕ) = f0 − ηc sin(ϕ), and Dϕ = (1/2)ν, one gets the
equation ϕ̇ = u(ϕ) + f (t ), with the associated Fokker-Planck
equation

∂

∂t
ρ(ϕ, t ) = − ∂

∂ϕ
I, (21)

with

I = u(ϕ)ρ − Dϕ

∂ρ

∂ϕ
≡ −Dϕ

[
V ′(ϕ)ρ + ∂ρ

∂ϕ

]

= −Dϕe−V (ϕ) ∂

∂ϕ
[eV (ϕ)ρ]. (22)

This equation describes motion in a tilted potential

V (ϕ) = − ηc

Dϕ

cos(ϕ) − f0

Dϕ

ϕ

≡ W (ϕ) − Eϕ. (23)

The nonequilibrium steady-state (NESS) solution is

ρ(ϕ) =
[
C − I

∫ ϕ

0

eV (ϕ′ )

Dϕ

dϕ′
]

e−V (ϕ), (24)

where the integration constant C is determined by the periodic
boundary conditions ρ0(0) = ρ0(2π ), namely,

C = I

1 − e−2πE

∫ 2π

0

eV (ϕ′ )

Dϕ

dϕ′. (25)

Simplifying, the final expression for the NESS is

ρ(ϕ) = I

1−e−2πE

[∫ 2π

0

dr

Dϕ

eW (ϕ+r)−Er

]
e−W (ϕ), (26)

where the ϕ current I is determined by normalization.

B. The transport coefficients

Reverting to the original notations the first-order result in
f0 is I = [2π I2

0(c/T )]−1 f0, where In(x) is the modified Bessel
function. For zero field the canonical distribution is recovered:

ρ(p) ∝ exp[−W (p)] = exp[(c/T ) cos (p)]. (27)

Averaging over Eq. (20) and using 〈ṗ〉 = 2π I , one obtains

〈ẋ〉 = [1 − 2π I]
f0

η
=

[
1 − I−2

0

( c

T

)] f0

η
≡ μ f0 ,

where μ is the so-called linear mobility. This result for μ is
consistent with direct calculation of D in accordance with the
Einstein relation, namely, μ = D/T . The direct calculation of
D is more involved. It is obtained by calculating the variance
of x, after time t , for a particle initially located at x = 0:

〈
x2

〉 = c2
∫ t

0

∫ t

0
dt ′dt ′′〈sin(ϕt ′ ) sin (ϕt ′′ )〉 ≡ 2Dt .

Defining S1 as the area of the sine correlation function
we write D = c2S1. The calculation of S1 is outlined in
Appendix A.

V. SEMICLASSICAL ANALYSIS FOR S DISSIPATION

In the semiclassical treatment x is regarded as as a contin-
uous coordinate and therefore we write

W α = uα (x) = u(x−xα ), (28)

which involves a short-range interaction potential u(r). The
fluctuating potential is

U (x, t ) =
∑

α

Fα (t )u(x−xα ). (29)

In the semiclassical analysis we define ν as the variance of
f = −U ′(x, t ). These fluctuations have the same intensity at
any x because we assume that the xα are homogeneously
distributed. It follows automatically that η = ν/2T is the fric-
tion coefficient, as in the case of X dissipation. See [40] for
details. So in the semiclassical description we get the same
Langevin equation, irrespective of the correlation distance �

that is determined by the width of u(r).
In the tight-binding quantum model, we define νS as the

variance of the on-site fluctuation of the potential. With that
we associate a fluctuating force intensity

ν = 1

�2
νS, (30)

where � is the correlation scale. We set � ∼ a, where a = 1 is
the lattice constant. Consequently ν, up to numerical factor,
is the same as νS . The price for having a vague definition for
ν is the prefactor C that we get in the formula for D. This
prefactor reflects that the semiclassical limit has an inherent
numerical ambiguity due to the residual freedom in the choice
of u(r).

VI. SEMICLASSICAL ANALYSIS FOR B DISSIPATION

Using the same prescription as for the S-dissipation
case, and ignoring commutation issues, we write
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∑
α (|xα+1〉〈xα| + H.c.) as [2 cos (p)]|x〉〈x|, and get for

the B-coupling term

Wα = [2 cos (p)] uα (x). (31)

This means that motion with momentum |p| ∼ π/2 is not
affected by the baths. This is an artifact of the semiclassical
treatment and does not hold for the quantum dynamics. Still,
the semiclassical perspective provides some insight that helps
to clarify how Eq. (12) comes out.

The equations of motion that are derived from the full
Hamiltonian are of Langevin type:

ẋ =
[

c + 2
∑

α

uα (x)Fα (t )

]
sin (p), (32)

ṗ =
[

2
∑

α

u′
α (x)Fα (t )

]
cos (p). (33)

For infinite temperature the Fα are uncorrelated white
noise terms, with some intensity proportional to νB. There-
fore we get from Eq. (33) diffusion in p with coefficient
νp = (1/�)2[2 cos(ap)]2νB and from Eq. (32) extra diffusion
in x with coefficient νx = (a)2[2 cos(ap)]2νB, where � ≈ a
and a = 1. The latter term, after momentum averaging, is
responsible for getting the D⊥ term in Eq. (12). For a par-
ticle that moves with constant momentum p, ignoring the
variation in p, the velocity-velocity correlation decays as
exp(−νxt ) due to this x diffusion. This leads to an extra
Drude term D‖ = v2/νx that diverges at p = π/2. How-
ever, taking the variation of the momentum into account,
this divergence has zero measure and the final result is fi-
nite, leading to the first term in Eq. (10) with C‖ = 0.49.
For finite temperature the fluctuations gain a nonzero av-
erage 〈Fα〉 = 2ηB([uα (x) sin (p)] ṗ − [u′

α (x) cos (p)]ẋ), where
ηB = νB/T , leading to canonical-like thermalization and over-
estimated A‖ = −0.2. The results for A‖ and C‖ were obtained
using a procedure that is described in Sec. VIII, where we treat
the quantum and the semiclassical on equal footing; the latter
can be regarded as a special case of the former.

VII. THE QUANTUM ANALYSIS

The quantum evolution is generated by L of Eq. (7)
with the dissipators of Eq. (15), and it can be written
as sum of Hamiltonian, noise, and friction terms, namely,
L = cL(c) + νL(ν) + ηcL(η). Various representations can be
used, notably the Wigner and the Bloch representations see
Appendix B. For the purpose of finding the spectrum (and
from that the transport coefficients), it is most convenient to
use the latter (Bloch), as explained below.

The elements of the supervector ρ are given in the stan-
dard representation by ρ(R, r) ≡ 〈R + r/2|ρ|R − r/2〉, and in
Dirac notation we write ρ = ∑

R,r ρ(R, r)|R, r〉. The super-
matrix L is invariant under R translations, and therefore it is
convenient to switch to a Bloch representation ρ(q; r) where
L decomposes into q blocks. In the q subspace we have the
following expressions (Appendix C):

L(c) = + sin(q/2)(D⊥ − D†
⊥)

L(νX ) = −(1/2)r̂2

L(ηX ) = cos (q/2)
r̂

2
(D⊥ − D†

⊥)

L(νS ) = −1 + 1|0〉〈0|
L(ηS ) = cos (q/2)

2
(D⊥ + D†

⊥ + |±1〉〈0| − |0〉〈±1|)
L(νB ) = −2 + 2 cos(q)|0〉〈0| + (|1〉〈−1| + |−1〉〈1|)
L(ηB ) = 1

2
cos (q/2)(D⊥ + D†

⊥)

+ 1

2
cos(3q/2)(| ± 1〉〈0| − |0〉〈±1|)

+ 1

2
cos(q/2)(|∓2〉〈±1| − | ± 1〉〈∓2|). (34)

The subscripts X/S/B distinguish the different coupling
schemes, and D⊥ = |r+1〉〈r| is the displacement operator in
r space.

A. Extracting the diffusion coefficient

To obtain the diffusion coefficient, we consider the spec-
trum of L for a finite system of L sites. In the Bloch
representation the equation Lρ = −λρ decomposes into q
blocks. For a given q we have a tight-binding equation in the
|r〉 basis. For example, L(c) induces near-neighbor hopping in
r. The eigenvalues for a given q are labeled λq,s, where s is
a band index. The long-time dynamics is determined by the
slow (s = 0) modes. Specifically, the diffusion coefficient is
determined by the small q expansion:

λq,0 = Dq2 + O(q4). (35)

The NESS eigenvector belongs to the q = 0 block, and for
η = 0 it is given by |r = 0〉. Nonzero q and η can be treated
as a perturbation. The key observation is that in order to
get an exact result for D, it is enough to use second-order
perturbation theory in q. The outcome of this procedure is the
analytical expression for D with the associated results for the
A coefficients. Extra technical details are provided in the next
section.

B. Perturbation theory

We use perturbation theory to find the eigenvalue λq,0 of
L(q), from which we can obtain D. We regard the Bloch
quasimomentum q and the friction η as the perturbation. For
q = η = 0 the state |r = 0〉 is an exact eigenstate that is asso-
ciated with the eigenvalue λ = 0. Due to the perturbation it is
mixed with neighboring |r〉 states. We outline below how we
get analytical expressions for λq,0 to any order in q and η. In
practice, we go up to second order.

In the following we demonstrate how we perform pertur-
bation theory for the X-coupling scheme. The same method
is used for the S/B coupling schemes, either with the Ohmic
dissipators or with the Boltzmann dissipators. We would like
to diagonalize the q block

L(q) = cL(c) + νL(νX ) + (cη)L(ηX )

= c sin(q/2)(D⊥ − D†
⊥) − (ν/2)r̂2

+ (cη) cos (q/2)
r̂

2
(D⊥ − D†

⊥). (36)
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Each such block produces eigenvalues L(q)|s〉 = −λq,s|s〉, that
are distinguished by the index s. We are interested in the
slowest mode λq,0. The NESS is the eigenvector that corre-
sponds to the zero eigenvalue. It belongs to the q = 0 block,
which results from probability conservation. In the Bloch rep-
resentation, probability conservation means that 〈0|L(0) = 0.
To obtain the eigenvalues to order q2, it is enough to Taylor
expand the operator to that order. Accordingly,

L(q) = −(ν/2)r̂2 + c(q/2)(D⊥ − D†
⊥)

+ (cη)[1 − (q/2)2]
r̂

2
(D⊥ − D†

⊥). (37)

The first term is the zero-order term. Here (for X coupling)
it is diagonal in r. For the other coupling schemes it is not
necessarily diagonal in r, but for any of them |r = 0〉 is an
eigenstate of the zero-order term.

To find the eigenvalue λq,0 via perturbation theory one has
to sum over different paths that begin and end in r = 0. In the
case of Eq. (37) these paths are composed of hops between
near-neighbor sites. Second-order contributions involve terms
with 〈0|L(q)|r〉〈r|L(q)|0〉, with r �= 0. Each transition involves
a factor cq or (cη), or (cηq2). Hence only the sites |r| � 2
contribute to the perturbed eigenvalue up to order η2q2. Fur-
thermore, the (cηq2) transitions are always multiplied by other
O(q) transitions and therefore can be ignored in any second-
order expansion.

From the above it should be clear that for X coupling the
matrix that should be diagonalized is

L(q) �→ 1

2

⎛
⎜⎜⎜⎝

−4ν 2cη − cq 0 0 0
−cη + cq −ν cη − cq 0 0

0 cq 0 −cq 0
0 0 cη + cq −ν −cη − cq
0 0 0 2cη + cq −4ν

⎞
⎟⎟⎟⎠.

A convenient way to obtain the analytical result is to
write the characteristic equation det[λ + L(q)] = 0 with the
above (truncated) matrix and to substitute an expansion
λq,0 = ∑

n anqn. Then we solve for the coefficients an itera-
tively. The outcome is expanded in η to order η2. Note that to
go beyond second order in η does not makes sense, because
the Ohmic master equation and the associated NESS are valid
only up to this order.

VIII. EFFECTIVE STOCHASTIC DESCRIPTION

The propagation of the Wigner distribution function
ρw(R, P) is generated by a kernel L(R, P|R0, P0) that is ob-
tained from Eq. (34) in a straightforward manner via the
Fourier transform, Appendix B. For simulations of the long-
time spreading it is enough to approximate L in a way that
is consistent with second-order perturbation theory in q. As
explained in the previous paragraph, such an approximation
provides an exact result as far as D calculation is concerned.
Replacing sin(q/2) by (q/2), the L(c) term by itself generates
classical motion in the X direction with velocity v = c sin(P).
In the quantum calculation this motion is decorated by a
Bessel function but D is not affected. The cos(q) in the L(νB ),
after expansion to second order and Fourier transform, leads to
an x diffusion term that is responsible for the C⊥ contribution
in Eq. (12). As far as this term is concerned, there is no

difference between the quantum and the semiclassical picture,
and therefore we ignore it in the subsequent analysis. The
cosine factors in the other dissipators can be replaced by unity.
The reason is as follows: by themselves those cosine terms
do not lead to any diffusion; only when combined with the
L(c) term do they lead to the Drude-type C‖ contribution in
Eq. (10); the L(c) is already first order in q; and hence there is
no need to expand the cosines beyond zero order.

A. The effective rate equation

With the approximations that were discussed in the previ-
ous paragraph (excluding for presentation purpose the trivial
R diffusion in the case of B-dissipation), we find that the evo-
lution of the Wigner function is generated by a stochasticlike
kernel L(R, P|R0, P0) = W (P|P0)δ(R − R0). The explicit ex-
pressions for infinite temperature (η = 0) are

W (νX )(P|P0) =
(

L

2π

)2
ν

2
δP,P0±(2π/L), (38)

W (νS )(P|P0) =
(νS

L

)
, (39)

W (νB )(P|P0) =
(νB

L

)
4 cos2

(
P + P0

2

)
. (40)

These are the transition rates (P �= P0), while the diagonal ele-
ments of W are implied by conservation of probability. For X
dissipation Eq. (38) describes local spreading of momentum,
which is in complete correspondence with the semiclassical
analysis. The noise intensity is reflected in the second mo-
ment:

ν =
∑

p

W (p) p2 , (41)

where p = (P − P0). This implies consistency with the
Langevin equation, Eq. (1). Optionally, Eq. (38) can be re-
garded as the discrete version of the Fokker-Plank equation,
Eq. (17). For S dissipation Eq. (39) describes quantum diffrac-
tive spreading. In the latter case, if the dynamics were treated
semiclassically one would obtain the same result as for X
dissipation, namely, Eq. (38), with prefactor of order unity
that can be by rescaled to unity by adopting the appropri-
ate convention for the definition of ν. In other words, the
coupling strength to the bath should be redefined such that
ν is the second moment of W (P|P0) irrespective of the line
shape. Similarly, if the dynamics were treated semiclassically
for the B coupling, one would obtain Eq. (38) multiplied by
4 cos2(P), as implied by the semiclassical analysis.

The result for W for finite temperature, in leading order in
η (which serves here as a dimensionless version of the inverse
temperature) can be written as

W (P|P0) = W (ν)(P|P0) exp

[
−E (P)−E (P0)

2T

]
, (42)

where E (P) = −c cos(P). More precisely, if we incorpo-
rate the L(η) term of the Ohmic master equation, we get
Eq. (42) with ex �→ (1 + x). This reflects the well-known
observation that the Ohmic approximation satisfies detailed
balance to second order in η. Accordingly, the Ohmic steady
state agrees to second order with the canonical steady state,
ρSS(P) ∝ exp[−E (P)/T ].
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FIG. 3. Quantum nonuniversality. The dependence of the coef-
ficient A‖ on �. The insets caricature the fluctuating potential for
large (left) and for small (right) values of �. In the semiclassical
analysis the result (dashed orange line) is universal, independent of
�. In the quantum analysis we obtain an interpolation between the
X-coupling and the S-coupling case Eq. (13). We plot results (see
text) for the Ohmic (blue triangles) and for the Boltzmann-corrected
(green crosses) versions of the master equation.

B. Analytical and numerical estimates

The stochastic description allows a convenient way to ob-
tain exact results for D either analytically or numerically.
Analytically, we use the same procedure as in the quan-
tum case, namely, given the dissipator L(q), we extract D
from Eq. (35). The relation between L(q) and the stochastic
kernel is

〈r|L(q)|r0〉 = 〈r, q|L|r0, q〉
= 1

L

∑
P,P0

W (P|P0)eiPr−iP0r0 . (43)

The X-coupling and S-coupling schemes provide two ex-
tremes, with � = L and � = 1, respectively. This is mirrored
in the infinite-temperature kernel W of Eqs. (38) and (39). On
equal footing we can interpolate between the two extremes
by introducing a kernel of width 2π/�. Then we use Eq. (42)
to get the finite-temperature kernel. The calculation of L(q)

using Eq. (43) is provided in Appendix D. The result for A‖
is displayed in Fig. 3. Note that the convention regarding the
prefactor in W (ν) plays no role in the determination of A‖.

At this point we have to emphasize again that for the
“Ohmic” results we use the prescription ex �→ (1 + x), as
explained after Eq. (42). If we perform the calculation literally
using Eq. (42) we get Eq. (14) instead of Eq. (13). Note that
the same results are obtained with ex �→ (1 + x + (1/2)x2),
because higher orders do not affect the expansion in Eq. (35).
The difference between Eqs. (14) and (13) reflects the limited
accuracy of the Ohmic master equation with respect to the
small parameter c/T .

The analytical results for the A‖ coefficients that are plotted
in Fig. 3 are derived and displayed in Appendix D. Here we
write expressions that approximate very well the exact results:

A‖ ≈ − 5

16

[
1 − 6

5

(a

�

)2
]

[Ohmic] (44)

A‖ ≈ − 5

16

[
1 − 9

10

(a

�

)2
]

[Boltzmann]. (45)

Note that this practical approximation provides the ex-
act results for both X coupling (� = ∞) and S coupling
(� = a = 1).

In Fig. 2 we test the analytical approximation Eq. (10)
against exact numerical calculation that is based on the effec-
tive rate equation. In the numerical procedure the diffusion
coefficient D is calculated using Eq. (18). The momentum
spreading kernel is K (t ) ≡ exp(Wt ), and the velocity is
vP = c sin(P). Accordingly,

〈v(t )v(0)〉 =
∑
P,P0

vP[KP,P0 (t )]vP0ρSS(P0). (46)

If we perform the calculation literally using Eq. (42) we get
results that agree with Eq. (14). If, on the other hand, we
use for W the Ohmic expression [as specified after Eq. (42)]
we get results that agree with Eq. (13). Note that for ρSS we
can use the canonical steady state, because it agrees with the
Ohmic steady state to second order.

IX. DISCUSSION

The prototype Caldeira-Leggett model corresponds to the
standard Langevin equation where the dispersion relation is
v = (1/m)p. In the tight-binding framework we have the
identification m �→ 1/(ca2), where a is the lattice constant.
There is a crossover to standard QBM as θ ≡ T/c is lowered.
It is illuminating to summarize this crossover in terms of
mobility. Using the Einstein relation Eqs. (10) and (12) imply

μ = D

T
= B(θ )

η
+ 2Q(θ )η, (47)

where the B(θ ) term is related to the coherent hopping, and
the Q(θ ) term is due to bath-induced incoherent hopping. We
believe that this functional form is rather robust and apply it
to any type of dissipation mechanism. The traditional result is
the first term with B(θ ) = 1, while Eq. (10) implies that for
large θ the result is

B(θ ) ∝ (1/θ )2 + A‖(1/θ )4. (48)

We have shown how A‖ depend on �, with emphasis on the
extreme limits of X coupling and S coupling. We conclude
that the A coefficients provide a way to probe the underlying
mechanism of dissipation and to identify the high-temperature
fingerprints of quantum mechanics.

It should be instructive to demonstrate experimentally
that μ(T ; �) indeed depends on �. Reference [50] provides
an experimental demonstration of measuring mobility ver-
sus temperature for a semiconductor device, while Ref. [51]
reviews experimental methods used to extract the mobility
in organic semiconductors. Consider the possibility of fab-
ricating a metallic gate that produces thermal electrostatic
fluctuations. Metals that differ in their granularity are char-
acterized by a different form factor, with different correlation
scale �. Thus it would be possible to demonstrate that � has
significance. Hopefully, it would be possible to further extract,
experimentally, the nonuniversal dependence of A‖ on the
correlation distance � and to test the prediction of Fig. 3.
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APPENDIX A: THE SINE CORRELATION FUNCTION

First we recall that for zero field the steady state is
an equilibrium canonical state ρ(ϕ) ∝ exp[−W (ϕ)], where
W (ϕ) = z cos(ϕ), and z = (c/T ). At equilibrium we have

wn ≡ 〈cos (nϕ)〉 = In(z)

I0(z)
. (A1)

We define Sn as the area of the sine-sine correlation function
sn(t ) = 〈sin(n ϕt ) sin(ϕ0)〉, namely,

Sn =
∫ ∞

0
sn(t )dt, n = 0, 1, 2, . . . . (A2)

Eventually we are interested only in S1, but for the derivation
we define a full set of sine correlation functions. Explicitly
these are written as

sn(t ) =
∫ 2π

0
〈sin(n ϕt )〉0 sin (ϕ0)ρ(ϕ0)dϕ0

=
∫ 2π

0
〈sin(n ϕ)〉t sin (ϕ0)ρ(ϕ0)dϕ0 . (A3)

The average without a subscript assumes an equilibrium state,
while the average with subscript “0” indicates an initial con-
dition ϕ0 and assumes a Langevin picture. The subscript “t”
indicates an expectation value after time t within the frame-
work of the associated Fokker-Planck picture. Initially we

have

sn(0) = 〈sin (nϕ) sin (ϕ)〉 = 1

2

In−1(z) − In+1(z)

I0(z)

= n

z

In(z)

I0(z)
. (A4)

In order to find sn(t ) at later times, we realize that it satisfies
the same equation of motion as that of 〈sin(nϕt )〉0, where 0
indicates any initial state. This is known as the “regression
theorem.” The adjoint equation for any observable A(ϕ) is

∂

∂t
〈A(ϕ)〉t =

〈
Dϕ

(
∂2

∂ϕ2
− W ′(ϕ)

∂

∂ϕ

)
A(ϕ)

〉
t

. (A5)

Substituting A(ϕ) := sin(ϕ) sin(ϕ0) and integrating over time,
one obtains a recursive equation for the Sn:

sn(0) = n2 ν

2
Sn + n

ηc

2
(Sn+1 − Sn−1), (A6)

with the boundary conditions S0 = S∞ = 0. At this point it
is useful to realize that from Eq. (A5) with A(ϕ) := cos(nϕ)
it follows that the stationary values wn of Eq. (A1) obey
Eq. (A6) with zero on the left-hand side. It is therefore useful
to substitute Sn := wnS̃n in order to get a first-order difference
equation for S̃n that can be solved by recursion. The procedure
is explained with details in Sec. VII of Ref. [52] and leads to
the solution

S1 = − 1

ηc

∞∑
n=1

(−1)n

n
sn(0)wn = − ν

(ηc)2

∞∑
n=1

(−1)n

[
In(z)

I0(z)

]2

= ν

2(ηc)2

[
1 − I−2

0 (z)
]
, (A7)

where we used the completeness relation

1 = I2
0(z) + 2

∑
n

I2
n(z)(−1)n. (A8)

APPENDIX B: THE WIGNER PHASE-SPACE REPRESENTATION

Here we treat (x, p) as extended continuous coordinates and derive the standard Wigner representation for the quantum
propagation in the absence of dissipators. The elements of ρ are given in the standard space representation by ρx′,x′′ ≡ 〈x′|ρ|x′′〉.
We define r = x′ − x′′ and R = (x′ + x′′)/2 and use supervector Dirac notations, namely, ρ = ∑

R,r ρ(R, r)|R, r〉. The space
representation is ρ(R, r) ≡ ρx′,x′′ , the momentum representation ρ(q, P) is related by double Fourier transforms, and the
intermediate representations are those of Wigner ρw(R, P) and Bloch ρ(q; r). For the unitary evolution with U = exp[ict cos(p)],
the propagator of the Wigner function in momentum representation is

K(q, P|q0, P0) = 〈P + (q/2)|U |P0 + (q0/2)〉 〈P − (q/2)|U |P0 − (q0/2)〉∗ (B1)

= 2πδ(q − q0) 2πδ(P − P0) exp [−i2ct sin(q/2) sin(P)], (B2)

leading to

K(R, P|R0, P0) = 2πδ(P − P0)
∫

dq

2π
exp [−i2ct sin(q/2) sin(P) + iq(R − R0)]. (B3)

Note that this kernel is properly normalized with respect to the integration measure dRdP/(2π ).
With sin(q/2) �→ (q/2) we get the classical result

K(R, P|R0, P0) = 2πδ(P − P0) δ[(R − R0) − ct sin(P)]. (B4)
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But quantum mechanically we get

K(R, P|R0, P0) =
∑

n

2πδ(P − P0)δ[(R − R0) − n]J2n[2ct sin(P)]. (B5)

In the above sum n runs formally over all the integer and half-integer values. Note that Wigner function on a lattice has support
on both integer and half-integer lattice points. (Weight on half-integer lattice points is the fingerprint of interference due to
superposition of integer lattice locations).

APPENDIX C: THE BLOCH REPRESENTATION

For an infinite chain the conventional way to define the Bloch representation is to perform R �→ q Fourier transform of ρ(R, r)
for a given r to obtain ρ(q; r). Note that R runs over integer values for r = 0, 2, 4, ... and over half integer values for r = 1, 3, 5....
This definition has a problem if we consider a finite chain with periodic boundary conditions. Still it can be justified after a short
transient if L is large enough because distant points in space loose phase correlation (if there was to begin with). For a small ring
(small L) this might not be the case. Therefore in a previous work [48] we have defined ad hoc the Bloch representation ρq(r) as
the Fourier transform of 〈x|ρ|x + r〉. The ad hoc definition differs by gauge transformation (and non-intentionally also by sign)
from the conventional definition and allows one to correctly handle the periodicity in both coordinates, namely, also in r. For a
small chain, or for a complete investigation of the eigenvalues problem, these phases are important. See, for example, Ref. [41].

Our system is invariant under translations, and therefore it is natural to perform the diagonalization of L in the Bloch
representation. In practice one can obtain the expressions in Eq. (34) by inspection. As an example, let us see how the expression
for L(c) is obtained. It originates from i[cos(p), ρ]. In the standard representation its matrix elements are

L(c)(x′, x′′|x′
0, x′′

0 ) = i〈x′|cos(p)|x′
0〉δ(x′′ − x′′

0 ) − iδ(x′ − x′
0)〈x′′|cos(p)|x′′

0 〉. (C1)

Recall that cos(p) is the sum of displacement operators e∓ip. In supervector notations the above expression can be written in
terms of operators e∓i(1/2)q and e∓iP that induce translations in R and in r, respectively. Namely,

L(c)(R, r|R0, r0) = i〈R, r| cos
(q

2
+ P

)
|R0, r0〉 − i〈R, r| cos

(q
2

− P
)
|R0, r0〉. (C2)

Thus we can write

L(c) = −i2 sin
(q

2

)
sin (P) = sin

(q
2

)
[D⊥ − D†

⊥]. (C3)

In the Bloch (q, r) representation, this superoperator becomes block diagonal in q.

APPENDIX D: FROM BLOCH TO WIGNER AND BACK

In the main text we present in Eq. (34) the Bloch representation L(q) of the dissipators. The transformation to the Wigner
representation is essentially a Fourier transform:

L(R, P|R0, P0) =
∫

dq

2π
eiq(R−R0 )

∫∫
drdr0e−irP+ir0P0〈r|L(q)|r0〉. (D1)

Note that the inner integral transforms 〈r|L(q)|r0〉 to the momentum representation 〈P|L(q)|P0〉. Note also that
W (P|P0) = 〈P|L(q=0)|P0〉 are the Fermi golden rule (FGR) transition rates between momentum eigenstates. Commonly the
FGR is considered as an approximation, while we have rigorously established that W (P|P0) can be used within an effective rate
equation in order to evaluate the exact quantum result for D.

In the main text we use a discrete momentum notation such that 〈r|P〉 = L−1/2 exp(iPR), etc. Consequently, in the discrete
version of Eq. (D1), the integrand of the drdr0 integral contains an extra 1/L factor. On the other hand, for summation

∑
P over

momenta the measure becomes [L/(2π )]dP.

1. Transforming to Bloch

It is convenient to handle the calculations of the spectrum on equal footing for all the coupling schemes, for both Ohmic and
Boltzmann versions of the dissipators. For this purpose we have to transform Eq. (42) back from the Wigner representation to
the Bloch representation using Eq. (43). Note that this equation does not depend on q, reflecting the δ(R − R0) of the transitions.
Making the distinction between the diagonal terms (P = P0) and the off-diagonal terms (P �= P0), taking into account that by
definition the kernel conserves probability, namely,

∑
P W (P|P0) = 0, one can write

〈r|L(q)|r0〉 = W̃ (r, r0) − W̃ (0, r0 − r), (D2)

where

W̃ (r, r0) = 1

L

∫∫
W (P|P0) eiPr−iP0r0

L

2π
dP

L

2π
dP0 . (D3)
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In the latter expression it is implicit that P = P0 has measure zero, so it reflects the contribution of the P �= P0 terms in the
discrete sum of Eq. (43). Finally, note that for η = 0 the Bloch kernel is diagonal (the nonzero elements are those with r = r0)
and that from Eq. (41) it follows that for r = r0 = ±1 we have by convention 〈r|L(q)|r0〉 = −(ν/2).

2. General kernel

We consider a kernel W (P|P0) of width w = 2π/�. Its normalization C should be determined such that the d p integral over
[1 − cos(p)] equals 1/2 (see the last sentence of the previous paragraph). Note this normalization affects the result for C‖ but
not the significant result for A‖. Expressing the double-integral Eq. (D3) with k = (P + P0)/2 and p = P − P0, and using the
notation z = (c/T ), it reads

W̃ (r, r0) = ν

∫ w/2

−w/2
d pCe(ip/2)(r+r0 )

∫ π

−π

dk

2π
eik(r−r0 ) exp [−z sin (p/2) sin(k)]. (D4)

The inner integral may be written as Ir−r0 [−z sin(p/2)]; however, to calculate A‖ in the high-temperature limit it is enough to
Taylor expand z to second order. The inner integral provides “selection rules.” The zero-order result gives a constant along the
main diagonal of W̃ , while the first order contributes to the near-neighbor hopping (|r−r0| = 1). The second order contributes
both to next-near-neighbor hopping and to the main diagonal.

Including in L(q) also the cL(c) term, and using the method described in Sec. VII B, one finds

A‖(w) = w2 + 16 sin2
(

w
2

) − sin2(w) + 4w sin(w) − 4 sin
(

w
2

)
[3w + sin(w)]

16
[
w − 2 sin

(
w
2

)]
[w − sin(w)]

− 3w − 8 sin
(

w
2

) + sin(w)

32
[
w − 2 sin

(
w
2

)] . (D5)

The first term is the Ohmic result, while the second term is added to get the Boltzmann-corrected result. The results for the X
coupling and for the S coupling in Eq. (13) are obtained for w = 0 and w = 2π , respectively.

3. Boltzmann case for S/B

For the Boltzmann-corrected versions of S and B one obtains

W̃ (S)(r, r0) = νSIr (z/2)Ir0 (−z/2), (D6)

W̃ (B)(r, r0) = 2νBIr (z/2)Ir0 (−z/2) + ν[Ir+1(z/2)Ir0−1(−z/2) + Ir−1(z/2)Ir0+1(−z/2)]. (D7)

Expanding in z = (c/T ), the first-order result for L(q) is a q = 0 version of the S/B dissipators that were presented in the main
text Eq. (34). In the Boltzmann-corrected approximation, both schemes acquire second-order terms −(3/16)(c/T )2ν|±1〉〈±1|
that are required for the calculation of D. For the S coupling scheme one finds additional second-order terms that are needed for
the calculations, namely, −(3/32)(c/T )2ν|1〉〈−1| and −(3/32)(c/T )2ν| − 1〉〈1|.
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