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We re-consider the old problem of Brownian motion in homogeneous high-temperature thermal
environment. The semiclassical theory implies that the diffusion coefficient does not depend on
whether the thermal fluctuations are correlated in space or disordered. We show that the cor-
responding quantum analysis exhibits a remarkable breakdown of quantum-to-classical correspon-
dence. Explicit results are found for a tight binding model, within the framework of an Ohmic
master equation, where we distinguish between on-site and on-bond dissipators.

I. INTRODUCTION

The fingerprints of quantum mechanics on Brownian
motion is an intriguing theme [1–3]. This theme con-
cerns also the motion of a particle or an exiton on a
lattice [4–18], or the closely related studies of motion in
a washboard potential [19–21].

The traditional paradigm is/was that the effects of
quantum mechanics show up only at low-temperatures,
where non-classical effects are related to the failure of
the Markovian approximation. This view has been chal-
lenged by publications regarding excitation transport in
photosynthetic light-harvesting complexes, most notably
by the experiment in [22], and by many theoretical pub-
lications [23–32]. But by now it has been argued [33–38]
that the transport there, by itself, is “classical” in nature.

Nevertheless, contrary to the traditional paradigm, we
suggest below that quantum manifestation in stochastic
motion can be detected via the high-temperature depen-
dence of the transport coefficients. This opens a new av-
enue for challenging the traditional (classical) paradigm
of Brownian motion.

A. Brownian motion

High temperature (T ) classical Brownian motion is de-
scribed by the Langevin equation

ṗ = −ηẋ+ f, (1)

where f is white noise of intensity ν, related to the fric-
tion coefficient via the fluctuation dissipation relation

ν = 2ηT, [can be used as definition of T ] (2)

For the standard dispersion relation ẋ = (1/m)p, where
m is the mass of the particle, one obtains the following
simple results for the transport coefficients:

µ =
1

η
, [mobility] (3)

D =
T

η
, [diffusion coefficient] (4)

The mobility µ is used to determine the drift velocity due
to an applied bias; while D is the coefficient that enters

Fick’s law. The Einstein relation D/µ = T is satisfied.
It is important to realize that Eq.(2) characterizes the
thermal environment, while the Einstein relation charac-
terizes the dissipative dynamics of the particle.

B. Quantum signature

One wonders whether the dependence of the transport
coefficients (µ and D) on the dissipation parameters (η
and ν) is universal. This is the main question that moti-
vates the present study.

Common wisdom.– The high temperature noise
arises from a fluctuating potential, namely,

f = −∂xU(x, t) (5)

This potential features in general a spatial correlation
scale `. Semiclassicaly, the transport coefficients do
not depend on `, and the common practice, as in the
Caldeira-Leggett model [1, 2], is to assume that f is in-
dependent of x, meaning that `=∞. But in the quan-
tum treatment ` does show up in the analysis, be-
cause it determines the lineshape of the stochastic kernel
W(k|k′) for scattering from momentum k′ to momen-
tum k. Namely, the width of the kernel (∼2π/`) has
implication on the transient decoherence process [39–41].
Yet, one does not expect that this lineshape will have
any effect on the long time spreading. The argument is
simple: on the basis of the central limit theorem succes-
sive convolutions should lead to a result that does not
depend on the `-dependent lineshape of the stochastic
kernel, but only on its second moment, which is charac-
terized by ν. Consequently robust quantum-to-classical
correspondence (QCC) is expected at high temperatures.
Such QCC can be regarded as an implication of the
Thomas-Reiche-Kuhn-Bethe-Wang sum rule [42], or as
an extension of the restricted QCC principle [43, 44].

Main Statement.– In the present work we show
that ` independence of the transport coefficients (µ and
D) is a fallacy. Given η we shall see that D acquires a
non-universal dependence on the temperature, that con-
stitutes a quantum-mechanical signature.
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C. Tight binding model

Here we consider a particle or a single exciton that can
hop along a one-dimensional chain whose sites are labeled
by an integer index x. The dynamics of the isolated sys-
tem is determined by the Hamiltonian

H(c) = −c cos(ap)− f0x (6)

where a is the lattice constant, and c is the hopping
frequency, and f0 is an applied bias. The operators
e∓iap generate one-site displacements. This Hamil-
tonian is of quantum mechanical origin, but may be
treated semiclassically, by deriving the equations of mo-
tion ẋ = ca sin(ap) and ṗ = f0. Adopting the standard
jargon of Condensed Matter textbooks, we shall call this
semiclassical treatment of the dynamics. The exact quan-
tum dynamics of Eq.(6) is obtained from the Schrodinger
equation [45] or equivaelently from the Lionville-von-
Neumann equation for the probability matrix ρ.

The dynamics on the lattice features the dispersion re-
lation ẋ = v(p), where v(p) = ca sin(ap). The continuum
limit (small ap) leads to the standard dispersion relation
v = (1/m)p with m = 1/(ca2). Therefore we can regard
the latter case as a special regime of the former. Irrespec-
tive of the dispersion relation, if the particle is coupled to
a thermal environment, the semiclassical treatment leads
to ṗ = F (t), where the force contains a stochastic noise
term and a friction term, namely, F (t) = f0 + f(t)− ηẋ.
In the absence of external bias (f0=0) this leads to the
Langevin equation Eq.(1).

In the corresponding high-temperature Markovian
quantum treatment the dynamics is given by a master
equation for the probability matrix [46]. This master
equation incorporates extra term, aka dissipator, that
represent the noise and the friction:

dρ

dt
= Lρ = −i[H(c), ρ] + L(bath)ρ (7)

The dissipator L(bath) is determined by the coupling be-
tween the isolated chain and the environment, and de-
pends on the temperature of the bath.

D. Regime diagram

Disregarding the optional applied bias f0, the isolated
tight binding model has no free parameters (formally we
can set the units of time and length such that c = a = 1).
With bath, the continuum-version of Quantum Brownian
Motion (QBM) features a single dimensionless parame-
ter, the scaled inverse temperature β, which is the ratio
between the thermal time 1/T and damping time m/η.
In the lattice problem one can define two dimensionless
parameters

α =
ηa2

2π
, θ =

T

c
(8)
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FIG. 1. The Brownian Motion regime diagram.
(a) The various regions in the (η, θ) diagram are indicated.
We distinguish between the Classical-like Brownian Motion
(CBM) region; the low-temperature QBM region where mem-
ory effects dominates; and the high-temperature QBM region
that is discussed in this work. Note that below the dashed
diagonal line (β > 1) memory effects should be taken into ac-
count. (b) The scaled mobility µ/µ0 where µ0 = 1/η versus θ,
based on the analytical results that have been obtained for dif-
fusion in the X/S coupling schemes. The result is independent
of η. We also add the result for the B coupling scheme that
approaches the finite asymptotic value µ∞ = 2η (horizontal
line). In the latter case η = 0.3 has been assumed. Note that
the S/B results are applicable only in the θ > 1 regime.

Accordingly β = α/θ. In our model we set the units such
that a = 1, hence, disregarding 2π factor, our scaled fric-
tion parameter η is the same as α. The regime diagram
of the problem is displayed in Fig.1, and further discussed
below. It contains both Classical-like Brownian Motion
(CBM) regime, where memory effects are either not ex-
pressed or appear as a transient, and QBM regimes where
the dynamics is drastically different.

E. Relation to past studies

The standard analysis of QBM [3] reveals that
quantum-implied memory effects are expressed in the
regime β > 1, where a transient log(t) spreading is ob-
served in the absence of bias, followed by diffusion.

The later quantum dissipation literature, regarding
the two-site spin-boson model [47] and regarding multi-
site chains [7, 21], is focused in this low temperature
regime where a transition from CBM-like behavior to
over-damped or localized behavior is observed, notably
for large α of order unity.

Our interest is focused in the α, β � 1 regime. This
regime is roughly divided into two regions by the line
θ ∼ 1, see Fig.1. Along this line the thermal de-Broglie
wavelength of the particle is of order of the lattice con-
stant, hence it bears formal analogy to the analysis of
QBM in cosine potential [20], where it marks the bor-
der to the regime where activation mechanism comes
into action. In our tight binding model we have a sin-
gle band, hence transport via thermal activation is not



3

possible. Rather, in the θ > 1 regime the momentum dis-
tribution within the band is roughly flat. To avoid miss-
understanding, what we call in the present study “high
temperature” regime assumes a single band approxima-
tion by construction.

F. Outline

Overview of the main results is presented in Sec. (II).
The Ohmic master equation is explained in Sec. (III). The
semiclassical analysis is detailed in Sec. (IV) to Sec. (VI).
The quantum analysis is detailed in Sec. (VII). The ef-
fective stochastic description is presented in Sec. (VIII),
where we discuss detailed-balance consideration as well.
Concise summary is provided in Sec. (IX).

II. OVERVIEW OF MAIN RESULTS

In order to demonstrate that the temperature depen-
dency of the transport coefficients is ` dependent, we
consider in detail two extreme cases: (a) The Caldeira-
Leggett X-dissipator L(X) where a single bath is coupled
to x. This corresponds to non-disordered (`=∞) bath.
(b) The S-dissipator L(S) where each site is coupled to an
independent bath. For this coupling `=a. In Sec. (VIII)
we also present results for intermediate values of `. For
completeness we also consider another case: (c) The B-
dissipator L(B) where each bond is coupled to an inde-
pendent bath. For all cases the dynamics is governed
by the Ohmic master equation Eq.(7) and the dissipator
L(bath) takes different forms according to the couplings.
For the 3 cases above the bath parameters are νi and ηi
with i = X,S,B.

A. X-dissipation

As a reference case we calculate the transport coef-
ficients for a particle in a tight binding model, that is
coupled to an Ohmic Caldeira-Leggett bath via the x
variable. We term this standard case ”X-dissipation”.
We set the length units such a = 1. The bath parame-
ters νX and ηX are chosen such that in the semiclassical
Eq.(1), we have ν = νX and η = ηX . The result that we
get for the diffusion coefficient is

D(X) =

[
1− 1

[I0(c/T )]2

]
T

η
(9)

where In is the modified Bessel function. This result is
exact to the extent that the (Markovian) Ohmic mas-
ter equation can be trusted. For the mobility we get
µ = D/T as expected for the Einstein relation. A plot of
the mobility versus temperature is provided in Fig.1.

For low temperatures (in the sense T � c) one recovers
the standard results Eq.(3) and Eq.(4) that apply for non-
relativistic (linear) dispersion. For high temperatures the
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FIG. 2. Dependence of the diffusion coefficient on the
temperature. Given ν the coefficient D‖ is plotted versus
(c/T ) for the Ohmic master equation and different coupling
schemes: Caldeira-Leggett (X); Sites (S); and Bonds (B). The
symbols are obtained numerically through an effective rate
equation (see text). We also show results for the canonical
(“Boltzmann”) versions of the S/B master equation, and for
the semi-classical result in the case of B-coupling (The semi-
classical result for S-coupling is the same as X-coupling). The
naive expectation D ∝

〈
v2
〉

is displayed for sake of compari-
son.

result takes the form D(X) = D‖ with

D‖ ≈ C‖

[
1 +A‖

( c
T

)2] c2
ν

(10)

where C‖=1 and A‖= − 5/16. The reason for using the
subscript notation is clarified below. The same expres-
sion appears for the S/B dissipators, with ν replaced by
νS and νB respectively. The dependence of D on the
temperature is plotted in Fig.2. For sake of compari-
son we plot also the naive expectation D ∝

〈
v2
〉
, with

v = c sin(p), where the average is over the canonical dis-
tribution. This naive expectation would be valid, if the
correlation time were independent of temperature (which
is not the case). The high-temperature dependence is〈

v2
〉
≈
[
1 +A

( c
T

)2] c2
2
, with A = −1/8 (11)

In Sec. (VII) we obtain the same result also within the
framework of an exact quantum treatment.

B. S-dissipation

We shall explain that if the fluctuations of the bath
are characterized by a finite correlation scale `, the semi-
classical result for the transport coefficient are the same
as for ` =∞. This rather trivial observation holds for
any dispersion relation. Specifically for the tight binding
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model Eq.(9) is ` independent. But this is not so in the
quantum analysis. Here we analyze the other extreme
limit of ` ∼ a, meaning that the bath fluctuations at dif-
ferent sites are uncorrelated. We obtain Eq. (10) with
A‖=1/16 and ν 7→ νS , which is not even the same sign
when compared to the X-dissipation result.

Technical note:.– For a tight binding model the pa-
rameter η is defined conventionally as for a two site sys-
tem (aka the Spin-Boson model). The definition via −ηẋ
is not practical because x is a discrete variable. Still, in a
semiclassical context, disregarding an ambiguity regard-
ing numerical prefactor, the dissipation parameter η has
the meaning of a friction coefficient, as for X-coupling.
With our standard conventions we get C‖=1/2 (for S-
dissipation) instead of C‖=1 (for X-dissipation), which
reflects a convention and not a profound difference. In
contrast the A coefficients are independent of convention
and reflect quantum signature.

C. B-dissipation

For completeness we also consider the case where
the dissipation is due to uncorrelated noisy bonds
(rather than sites). Here we have an additional term
in the expression for the diffusion coefficient, namely
D = D‖ +D⊥, where

D⊥ ≈ C⊥

[
1 +A⊥

( c
T

)2]
νB (12)

with A⊥ = −1/4. This additional term reflects extra
spreading in the space due to stochastic hopping as dis-
cussed in previous publication [48]. The quantum finger-
prints are not related to this term, but to the D‖ term
that arises due to the noise-induced spreading in p. For
that term we find A‖=0.

Technical note:.– The dissipation parameter ηB is
defined as for the Spin-Boson model. It is the “same”
Ohmic bath as assumed for S-dissipation, but the cou-
pling term is different. We get C‖=1/6 and C⊥=1, as
opposed to X/S-coupling for which C⊥=0.

D. Non-universality

In general, for high temperatures, the diffusion is com-
posed of a term that originates from non-coherent hop-
ping that is induced by the bath, namely D⊥ of Eq.(12),
and from the interplay of noise with coherent hopping be-
tween sites, namely D‖ of Eq.(10). The ` dependence of
the latter is a quantum signature, and consequently our
result for D‖ reflect details of the dissipation mechanism.

The A coefficients are not a matter of convention.
Rather they reflect the thermalization and the spreading
mechanism, and hence indicate quantum manifestation.

We summarize our results:

A‖ =

−5/16 for X-coupling
+1/16 for S-coupling

0 for B-coupling
(13)

Contrary to the X-coupling case, for local (S/B) dis-
sipators the canonical ρ is not the exact steady-state,
and satisfies Lρ ∼ O(β3) rather than zero. We shall ex-
plain that if we ad-hock correct the transition rates to
get agreement with Boltzmann, the results for the A-s
are modified as follows:

A‖ =

{
−1/32 for S-coupling
−1/16 for B-coupling

(14)

We emphasize again that the value of A is a sensitive
probe that is affected by the line-shape of the spreading
kernel. Therefore its precise value is non-universal but
depends on the weights of the quantum transitions. For
completeness we introduce in Sec. (VIII) results for in-
termediate values of `, demonstrating the crossover from
S-coupling (`∼a) to X-coupling (`∼∞).

III. THE OHMIC DISSIPATOR

The isolated chain is defined by the H(c) Hamiltonian.
The X-dissipation scheme involves a single bath, with in-
teraction term −WF , where W is the position operator
x, and F is a bath operator that induces Ohmic fluc-
tuations with intensity ν. More generally we assume a
disordered thermal environment that is composed of nu-
merous uncorrelated baths such that the interaction term
is
∑
αWαFα, where α labels different locations. For S-

dissipation Wα = |xα〉〈xα|, leading to a fluctuating po-
tential that dephases the different sites. For B-dissipation
Wα = |xα+1〉〈xα|+ h.c., which induces incoherent hop-
ping between neighbouring sites. The Ohmic dissipator
L(X/S/B)ρ takes the form [48, 49]:

−
∑
α

(ν
2

[Wα, [Wα, ρ]] +
η

2
i[Wα, {Vα, ρ}]

)
(15)

where η = ν/(2T ) is the friction coefficient, and

Vα ≡ i[H(c),Wα] (16)

The friction terms represent the response of the bath
to the rate of change of the Wα. For X-dissipation
V = c sin(p) is the velocity operator. If we treat the
the friction term of Eq.(15) in a semi-classical way, the
expression for the dissipator in the Wigner phase-space
representation ρw(R,P ) takes the familiar Fokker-Plank
(FP) form with v = c sin(P ), namely,

LFPρw =
ν

2
∂2P [ρw]− ∂P [(f0 − ηv)ρw] (17)

which is a sum of momentum-diffusion and momentum-
drift terms. For the sake of later reference we have added
to the friction force (−ηv) a constant field f0.
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The X-dissipator leads to canonical steady-state for
any friction and for any temperature. This is not the
case for S/B-dissipation, for which the agreement of the
steady-state with the canonical result is guaranteed only
to second order in η. The reason for that is related to the
proper identification of the “small parameter” that con-
trols the deviation from canonical thermalization. The
X-dissipator induces transitions between neighboring mo-
menta, and therefore the small parameter is ∆/T , where
the level spacing ∆ goes to zero in the L → ∞ limit,
where L is the length of the chain. But for local baths,
the coupling is to local scatterers, that create transitions
to all the levels within the band. Therefore the small pa-
rameter is c/T , and canonical thermalization is expected
only for c/T < 1.

IV. SEMICLASSICAL ANALYSIS FOR
X-DISSIPATION

We shall argue later that for X-dissipation the semi-
classical dynamics that is generated by LFP is exact for
the purposed of the A coefficient evaluation. Here we
present the semiclassical solution.

In Sec. (IV A) below we find the steady-state momen-
tum distribution in the presence of a constant field f0. In
Sec. (IV B) we obtain for weak field 〈v〉 = µf0, where µ
is the mobility. Then the diffusion coefficient is deduced
from the Einstein relation, namely, D = µT , leading to
Eq.(9).

Optionally we can calculate directly the velocity-
velocity correlation function 〈v(t)v(0)〉 in the absence of
an external field. This requires a rather complicated re-
cursive procedure, see Appendix (A). The diffusion coef-
ficient is obtained via

D =

∫ ∞
0

dt 〈v(t)v(0)〉 (18)

The same result is obtained, namely Eq.(9). Later we
shall calculate the diffusion in a proper quantum calcu-
lation, this again yields the same result. See Sec. (VII).

A. The steady-state

We consider semiclassical equation of motion for a
Brownian particle that has dispersion as in a tight-
binding chain, with a coupling to a non-disordered fluc-
tuating field. A fully-quantum version of this system was
studied by [7, 21], with focus on low temperature QBM
regime. In this section we find the steady-state in the
regime where the Ohmic master equation is valid. Set-
ting the lattice constant to be unity, the Hamiltonian is:

H = − c
2

(D +D†)− F (t)x (19)

= −c cos (p)− F (t)x (20)

where F (t) = f0 + f(t)− ηẋ is the force, which includes
a stochastic term that has zero average with correlation

function 〈f(t)f(t′)〉 = νδ(t − t′), and associated friction
term with coefficient η, and an additional bias term f0.
The Langevin equation is

ẋ =
∂H

∂p
= c sin (p) (21)

ṗ = −∂H
∂x

= f0 − ηẋ+ f(t) (22)

The steady-state for p is solved by inserting Eq. (21)
to Eq. (22). Changing notation p 7→ ϕ, and
u(ϕ) = f0 − ηc sin(ϕ), and Dϕ = (1/2)ν, one get the
equation ϕ̇ = u(ϕ) + f(t), with the associated Fokker-
Planck equation

∂

∂t
ρ(ϕ, t) = − ∂

∂ϕ
I, (23)

with

I = u(ϕ)ρ−Dϕ
∂ρ

∂ϕ
≡ −Dϕ

[
V ′(ϕ)ρ+

∂ρ

∂ϕ

]
= −Dϕe

−V (ϕ) ∂

∂ϕ

[
eV (ϕ)ρ

]
(24)

This equation describes motion in a tilted potential

V (ϕ) = − ηc

Dϕ
cos(ϕ)− f0

Dϕ
ϕ

≡ W (ϕ)− Eϕ (25)

The non-equilibrium steady-state (NESS) solution is

ρ(ϕ) =

[
C − I

∫ ϕ

0

eV (ϕ′)

Dϕ
dϕ′

]
e−V (ϕ) (26)

where the integration constant C is determined by the
periodic boundary conditions ρ0(0) = ρ0(2π), namely,

C =
I

1− e−2πE

∫ 2π

0

eV (ϕ′)

Dϕ
dϕ′ (27)

Simplifying, the final expression for the NESS is

ρ(ϕ) =
I

1−e−2πE

[∫ 2π

0

dr

Dϕ
eW (ϕ+r)−Er

]
e−W (ϕ) (28)

Where the ϕ-current I is determined by normalization.

B. The transport coefficients

Reverting to the original notations the first order result
in f0 is I = [2πI20(c/T )]−1f0, where In(x) is the modified
Bessel function. For zero field the canonical distribution
is recovered:

ρ(p) ∝ exp[−W (p)] = exp[(c/T ) cos (p)] (29)

Averaging over Eq.(22), and using 〈ṗ〉 = 2πI, one obtains

〈ẋ〉 = [1− 2πI]
f0
η

=
[
1− I−20

( c
T

)] f0
η
≡ µf0
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where µ is the so-called linear mobility. This result for µ
is consistent with direct calculation of D in accordance
with the Einstein relation, namely µ = D/T . The di-
rect calculation of D is more involved. It is obtained by
calculating the variance of x, after time t, for a particle
initially located at x=0:〈
x2
〉

= c2
∫ t

0

∫ t

0

dt′dt′′ 〈sin(ϕt′) sin (ϕt′′)〉 ≡ 2Dt

Defining S1 as the area of the sine correlation function
we write D = c2S1. The calculation of S1 is outlined in
Appendix (A).

V. SEMICLASSICAL ANALYSIS FOR
S-DISSIPATION

In the semiclassical treatment x is regarded as as a
continuous coordinate, and therefore we write

Wα = uα(x) = u(x−xα) (30)

that involves a short-range interaction potential u(r).
The fluctuating potential is

U(x, t) =
∑
α

Fα(t)u(x−xα) (31)

In the semiclassical analysis we define ν as the variance
of f = −U ′(x, t). These fluctuations have the same in-
tensity at any x because we assume that the xα are ho-
mogeneously distributed. It follows automatically that
η = ν/2T is the friction coefficient, as in the case of X-
dissipation. See [40] for details. So in the semiclassical
description we get the same Langevine equation, irre-
spective of the correlation distance ` that is determined
by the width of u(r).

In the tight-binding quantum model, we define νS as
the variance of the on-site fluctuation of the potential.
With that we associate a fluctuating force intensity

ν =
1

`2
νS (32)

where ` is the correlation scale. We set ` ∼ a where a=1
is the lattice constant. Consequently ν, up to numer-
ical factor, is the same as νS . The price for having a
vague definition for ν is the prefactor C that we get in
the formula for D. This prefactor reflects that the semi-
classical limit has an inherent numerical ambiguity due
to the residual freedom in the choice of u(r).

VI. SEMICLASSICAL ANALYSIS FOR
B-DISSIPATION

Using the same prescription as for the S-dissipation
case, and ignoring commutation issues, we write∑
α (|xα+1〉〈xα|+ h.c.) as [2 cos (p)]|x〉〈x|, and get for

the B-coupling term

Wα = [2 cos (p)]uα(x) (33)

This means that motion with momentum |p| ∼ π/2 is not
affected by the baths. This is an artifact of the semiclas-
sical treatment, and does not hold for the quantum dy-
namics. Still, the semiclassical perspective provides some
insight that helps to clarify how Eq.(12) comes out.

The equations of motion that are derived from the full
Hamiltonian are of Langevin-type:

ẋ =

[
c+ 2

∑
α

uα(x)Fα(t)

]
sin (p) (34)

ṗ =

[
2
∑
α

u′α(x)Fα(t)

]
cos (p) (35)

For infinite temperature the Fα are uncorrelated white
noise terms, with some intensity proportional to νB .
Therefore we get from Eq. (35) diffusion in p with co-
efficient νp = (1/`)2[2 cos(ap)]2νB , and from Eq.(34) ex-
tra diffusion in x with coefficient νx = (a)2[2 cos(ap)]2νB ,
where ` ≈ a and a=1. The latter term, after mo-
mentum averaging, is responsible for getting the D⊥
term in Eq. (12). For a particle that moves with con-
stant momentum p, ignoring the variation in p, the
velocity-velocity correlation decays as exp(−νxt) due to
this x-diffusion. This leads to an extra Drude term
D‖ = v2/νx that diverges at p=π/2. However, taking
the variation of the momentum into account, this di-
vergence has zero measure, and the final result is fi-
nite, leading to the first term in Eq.(10) with C‖ = 0.49.
For finite temperature the fluctuations gain a non-zero
average 〈Fα〉 = 2ηB ([uα(x) sin (p)]ṗ− [u′α(x) cos (p)]ẋ),
where ηB = νB/T , leading to canonical-like thermaliza-
tion, and over-estimated A‖ = −0.2. The results for A‖
and C‖ were obtained using a procedure that is described
in the Sec. (VIII), where we treat the quantum and the
semiclassical on equal footing: the latter can be regarded
as a special case of the former.

VII. THE QUANTUM ANALYSIS

The quantum evolution is generated by L of Eq. (7)
with the dissipators of Eq. (15), and it can be written
as sum of Hamiltonian, noise and friction terms, namely
L = cL(c) + νL(ν) + ηcL(η). various representations can
be used, notably the Wigner and the Bloch representa-
tions see Appendix (B). For the purpose of finding the
spectrum (and from that the transport coefficients) it is
most convenient to use the latter (Bloch), as explained
below.

The elements of the super-vector ρ are
given in the standard representation by
ρ(R, r) ≡ 〈R+ r/2|ρ|R− r/2〉, and in Dirac nota-
tion we write ρ =

∑
R,r ρ(R, r) |R, r〉. The super-matrix

L is invariant under R-translations, and therefore it is
convenient to switch to a Bloch representation ρ(q; r)
where L decomposes into q blocks. In the q subspace we
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have the following expressions Appendix (C):

L(c) = + sin(q/2)
(
D⊥ −D†⊥

)
L(νX) = −(1/2)r̂2

L(ηX) = cos (q/2)
r̂

2

(
D⊥ −D†⊥

)
L(νS) = −1 + 1|0〉〈0|

L(ηS) =
cos (q/2)

2

(
D⊥ +D†⊥ + | ± 1〉〈0| − |0〉〈±1|

)
L(νB) = −2 + 2 cos(q)|0〉〈0|+

(
|1〉〈−1|+ |−1〉〈1|

)
L(ηB) =

1

2
cos (q/2)

(
D⊥ +D†⊥

)
+

1

2
cos(3q/2)

(
| ± 1〉〈0| − |0〉〈±1|

)
+

1

2
cos(q/2)

(
|∓2〉〈±1| − | ± 1〉〈∓2|

)
(36)

The subscripts X/S/B distinguish the different coupling
schemes, and D⊥ = |r+1〉〈r| is the displacement operator
in r space.

A. Extracting the diffusion coefficient

To obtain the diffusion coefficient, we consider the
spectrum of L for a finite system of L sites. In the Bloch
representation the equation Lρ = −λρ decomposes into
q-blocks. For a given q we have a tight binding equation
in the |r〉 basis. For example L(c) induces near-neighbor
hopping in r. The eigenvalues for a given q are labeled
λq,s, where s is a band index. The long-time dynamics
is determined by the slow (s=0) modes. Specifically, the
diffusion coefficient is determined by the small q expan-
sion

λq,0 = Dq2 +O(q4) (37)

The NESS eigenvector belongs to the q=0 block, and
for η=0 it is given by |r=0〉. Non-zero q and η can be
treated as a perturbation. The key observation is that
in order to get an exact result for D it is enough to use
second-order perturbation theory in q. The outcome of
this procedure is the analytical expression for D with the
associated results for the A coefficients. Extra technical
details are provided in the next subsection.

B. Perturbation theory

We use perturbation theory to find the eigenvalue λq,0
of L(q), from which we can obtain D. We regard the
Bloch quasimomentum q and the friction η as the per-
turbation. For q = η = 0 the state |r = 0〉 is an exact
eigenstate that is associated with the eigenvalue λ = 0.
Due to the perturbation it is mixed with neighboring |r〉

states. We outline below how we get analytical expres-
sions for λq,0 to any order in q and η. In practice we go
up to second order.

In the following we demonstrate how we perform per-
turbation theory for the X-coupling scheme. The same
method is used for the S/B coupling schemes either with
the Ohmic dissipators or with the Boltzmann dissipators.
We would like to diagonalize the q block

L(q) = cL(c) + νL(νX) + (cη)L(ηX)

= c sin(q/2)
(
D⊥ −D†⊥

)
− (ν/2)r̂2

+(cη) cos (q/2)
r̂

2

(
D⊥ −D†⊥

)
(38)

Each such block produces eigenvalues L(q) |s〉 = −λq,s |s〉,
that are distinguished by the index s. We are interested
in the slowest mode λq,0. The NESS is the eigenvector
that corresponds to the zero eigenvalue. It belongs to
the q=0 block, which results from probability conserva-
tion. In the Bloch representation, probability conserva-
tion means that 〈0| L(0) = 0. To obtain the eigenvalues
to order q2 it is enough to Taylor expand the operator to
that order. Accordingly,

L(q) = −(ν/2)r̂2 + c(q/2)
(
D⊥ −D†⊥

)
+ (cη)

[
1− (q/2)2

] r̂
2

(
D⊥ −D†⊥

)
(39)

The first term is the zero order term. Here (for X-
coupling) it is diagonal in r. For the other coupling
schemes it is not necessarily diagonal in r, but for any of
them |r = 0〉 is an eigenstate of the zero-order term.

To find the eigenvalue λq,0 via perturbation theory one
has to sum over different paths that begin and end in
r=0. In the case of Eq.(39) these paths are composed of
hops between near neighbor sites. Second order contribu-
tions involve terms with 〈0| L(q)|r〉〈r|L(q) |0〉, with r 6=0.
Each transition involves a factor cq or (cη), or (cηq2).
Hence only the sites |r| ≤ 2 contribute to the perturbed
eigenvalue up to order η2q2. Furthermore, the (cηq2)
transitions are always multiplied by other O(q) transi-
tions, and therefore can be ignored in any second order
expansion.

From the above it should be clear that for X-coupling
the matrix that should be diagonalized is

L(q) 7→ 1

2


−4ν 2cη−cq 0 0 0
−cη+cq −ν cη−cq 0 0

0 cq 0 −cq 0
0 0 cη+cq −ν −cη−cq
0 0 0 2cη+cq −4ν


A convenient way to obtain analytical result is to write
the characteristic equation det[λ+ L(q)] = 0 with the
above (truncated) matrix, and to substitute an expan-
sion λq,0 =

∑
n anq

n. Then we solve for the coefficients
an iteratively. The outcome is expanded in η to order
η2. Note that to go beyond second order in η does not
makes sense, because the Ohmic master equation and the
associated NESS are valid only up to this order.
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VIII. EFFECTIVE STOCHASTIC
DESCRIPTION

The propagation of the Wigner distribution function
ρw(R,P ) is generated by a kernel L(R,P |R0, P0) that is
obtained from Eq.(36) in a straightforward manner via
Fourier transform Appendix (B). For simulations of the
long time spreading it is enough to approximate L in
a way that is consistent with second order perturbation
theory in q. As explained in the previous paragraph,
such approximation provides an exact result as far as D
calculation is concerned. Replacing sin(q/2) by (q/2),
the L(c) term by itself generates classical motion in the
X direction with velocity v = c sin(P ). In the quantum
calculation this motion is decorated by a Bessel func-
tion, but D is not affected. The cos(q) in the L(νB),
after expansion to second order and Fourier transform,
leads to an x-diffusion term, that is responsible to for the
C⊥ contribution in Eq.(12). As far as this term is con-
cerned, there is no difference between the quantum and
the semiclassical picture, and therefore we ignore it in
the subsequent analysis. The cosine factors in the other
dissipators can be replaced by unity. The reason is as fol-
lows: by themselves those cosine terms do not lead to any
diffusion; only when combined with the L(c) term they
lead to the Drude-type C‖ contribution in Eq.(10); the

L(c) is already first order in q; hence no need to expand
the cosines beyond zero order.

A. The effective rate equation

With the approximations that were discussed in
the previous paragraph (excluding for presentation
purpose the trivial R diffusion in the case of B-
disspation), we find that the evolution of the Wigner
function is generated by a stochastic-like kernel
L(R,P |R0, P0) =W(P |P0)δ(R−R0). The explicit ex-
pressions for infinite temperature (η=0) are:

W(νX)(P |P0) =

(
L

2π

)2
ν

2
δP,P0±(2π/L) (40)

W(νS)(P |P0) =
(νS
L

)
(41)

W(νB)(P |P0) =
(νB
L

)
4 cos2

(
P + P0

2

)
(42)

These are the transition rates (P 6= P0), while the diago-
nal elements of W are implied by conservation of proba-
bility. For X-dissipation Eq.(40) describes local spreading
of momentum which is in complete correspondence with
the semiclassical analysis. The noise intensity is reflected
in the second moment:

ν =
∑
p

W (p) p2 (43)

where p = (P − P0). This implies consistency with the
Langevin equation Eq.(1). Optionally Eq.(40) can be re-

garded as the discrete version of the Fokker-plank equa-
tion Eq.(17). For S-dissipation Eq.(41) describes quan-
tum diffractive spreading. In the latter case, if the dy-
namics were treated semiclassically one would obtain the
same result as for X-dissipation, namely Eq.(40), with
prefactor of order unity that can be by re-scaled to unity
by adopting the appropriate convention for the definition
of ν. In other words: the coupling strength to the bath
should be re-defined such that ν is the second-moment of
W(P |P0) irrespective of the lineshape. Similarly, if the
dynamics were treated semiclassically for the B-coupling,
one would obtain Eq.(40) multiplied by 4 cos2(P ), as im-
plied by the semiclassical analysis.

The result for W for finite temperature, in leading or-
der in η (which serves here as a dimensionless version of
the inverse temperature) can be written as

W(P |P0) =W(ν)(P |P0) exp

[
−E(P )−E(P0)

2T

]
(44)

where E(P ) = −c cos(P ). More precisely, if we incor-
porate the L(η) term of the Ohmic master equation, we
get Eq.(44) with ex 7→ (1 + x). This reflects the well
known observation that the Ohmic approximation satis-
fies detailed balance to second order in η. Accordingly
the Ohmic steady-state agrees to second order with the
canonical steady-state ρSS(P ) ∝ exp[−E(P )/T ].

B. Analytical and numerical estimates

The stochastic description allows a convenient way to
obtain exact results for D either analytically or numeri-
cally. Analytically we use the same procedure as in the
quantum case, namely, given the dissipator L(q), we ex-
tract D from Eq.(37). The relation between L(q) and the
stochastic kernel is〈

r
∣∣∣L(q)

∣∣∣r0〉 = 〈r, q|L|r0, q〉

=
1

L

∑
P,P0

W(P |P0)eiPr−iP0r0 (45)

The X-coupling and S-coupling schemes provide two
extremes, with ` = L and ` = 1 respectively. This is mir-
rored in the infinite-temperature kernel W of Eq. (40)
and Eq.(41). On equal footing we can interpolate be-
tween the two extremes by introducing a kernel of width
2π/`. Then we use Eq.(44) to get the finite-temperature
kernel. The calculation of L(q) using Eq.(45) is provided
in Appendix (D). The result for A‖ is displayed in Fig.3.

Note that the convention regarding the prefactor inW(ν)

plays no role in the determination of A‖.
At this point we have to emphasize again that for the

“Ohmic” results we use the prescription ex 7→ (1 + x)
as explained after Eq.(44). If we perform the calcula-
tion literally using Eq. (44) we get Eq. (14) instead of
Eq.(13). Note that the same results are obtained with
ex 7→ (1 + x+ (1/2)x2), because higher orders do not af-
fect the expansion in Eq.(37). The difference between
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w = 2π`−1

−0.3

−0.2

−0.1

0.0
A
‖

Ohmic

Boltzmann

Classical

FIG. 3. Quantum non-universality. The dependence
of the coefficient A‖ on `. In the semiclassical analysis the
result (dashed line) is universal, independent of `. In the
quantum analysis we obtain an interpolation between the X-
coupling and the S-coupling case Eq.(13). We plot results for
the Ohmic and for the Boltzmann-corrected versions of the
master equation (see text).

Eq.(14) and Eq.(13) reflects the limited accuracy of the
Ohmic master equation with respect to the small param-
eter c/T .

The analytial results for the A‖ coefficients that are
plotted in Fig. 3 are derived and displayed in Ap-
pendix (D). Here we write expressions that approximate
very well the exact results:

A‖ ≈ −
5

16

(
1− 6

5

(a
`

)2)
[Ohmic] (46)

A‖ ≈ −
5

16

(
1− 9

10

(a
`

)2)
[Boltzmann] (47)

Note that this practical approximation provides the ex-
act results for both X-coupling (`=∞) and S-coupling
(`=a=1).

In Fig.2 we test the analytical approximation Eq.(10)
against exact numerical calculation that is based on the
effective rate equation. In the numerical procedure the
diffusion coefficient D is calculated using Eq.(18). The
momentum spreading kernel is K(t) ≡ exp(Wt), and the
velocity is vP = c sin(P ). Accordingly

〈v(t)v(0)〉 =
∑
P,P0

vP [KP,P0(t)]vP0ρSS(P0) (48)

If we perform the calculation literally using Eq.(44) we
get results that agree with Eq.(14). If on the other hand
we use for W the Ohmic expression (as specified after
Eq.(44)) we get results that agree with Eq.(13). Note that
for ρSS we can use the canonical steady state, because it
agree with the Ohmic steady state to second order.

IX. DISCUSSION

The prototype Caldeira-Leggett model corresponds to
the standard Langevin equation where the dispersion re-
lation is v = (1/m)p. In the tight-binding framework we
have the identification m 7→ 1/(ca2), where a is the lat-
tice constant. There is a crossover to standard QBM as
θ ≡ T/c is lowered. It is illuminating to summarize this
crossover in terms of mobility. Using the Einstein rela-
tion we get

µ =
D

T
=

B(θ)

η
+ 2C(θ)η (49)

where the B(θ) part is due to coherent hopping, and the
C(θ) term is due to bath-induced incoherent hopping.
We believe that this functional form is rather robust,
and apply to any type of dissipation mechanism. The
standard result is the first term with B(θ) = 1, while
Eq.(10) implies that for large θ the result is

B(θ) ∝ (1/θ)2 +A‖(1/θ)
4 (50)

We have shown how A‖ depend on `, with emphasis on
the extreme limits of X-coupling and S-coupling. We
conclude that the A coefficients provide a way to probe
the underlying mechanism of dissipation, and to identify
the high-temperature fingerprints of quantum mechanics.

Acknowledgment.– This research was supported by
the Israel Science Foundation (Grant No.283/18).



Appendix A: The sine correlation function

First we recall that for zero field the steady-state is an equilibrium canonical state ρ(ϕ) ∝ exp[−W (ϕ)], where
W (ϕ) = z cos(ϕ), and z = (c/T ). At equilibrium we have

wn ≡ 〈cos (nϕ)〉 =
In(z)

I0(z)
(A1)

We define Sn as the area of the sine-sine correlation function sn(t) = 〈sin(nϕt) sin(ϕ0)〉, namely,

Sn =

∫ ∞
0

sn(t)dt, n = 0, 1, 2, ... (A2)

Eventually we are interested only in S1, but for the derivation we define a full set of sine correlation functions.
Explicitly these are written as

sn(t) =

∫ 2π

0

〈sin(nϕt)〉0 sin (ϕ0)ρ(ϕ0)dϕ0 =

∫ 2π

0

〈sin(nϕ)〉t sin (ϕ0)ρ(ϕ0)dϕ0 (A3)

The average without subscript assumes equilibrium state, while the average with subscript “0” indicates initial con-
dition ϕ0 and assumes a Langevin picture. The subscript “t” indicates expectation value after time t within the
framework of the associated Fokker-Planck picture. Initially we have

sn(0) = 〈sin (nϕ) sin (ϕ)〉 =
1

2

In−1(z)− In+1(z)

I0(z)
=

n

z

In(z)

I0(z)
(A4)

In order to find sn(t) at later times, we realize that the it satisfies the same equation of motion as that of 〈sin(nϕt)〉0,
where 0 indicates any initial state. This is known as the “regression theorem”. The adjoint equation for any observable
A(ϕ) is

∂

∂t
〈A(ϕ)〉t =

〈
Dϕ

(
∂2

∂ϕ2
−W ′(ϕ)

∂

∂ϕ

)
A(ϕ)

〉
t

(A5)

Substituting A(ϕ) := sin(ϕ) sin(ϕ0), and integrating over time, one obtains a recursive equation for the Sn,

sn(0) = n2
ν

2
Sn + n

ηc

2
(Sn+1 − Sn−1) (A6)

with the boundary conditions S0 = S∞ = 0. At this point it is useful to realize that from Eq.(A5) with A(ϕ) := cos(nϕ)
it follows that the stationary values wn of Eq.(A1) obey Eq.(A6) with zero on the left hand side. It is therefore useful

to substitute Sn := wnS̃n in order to get a first order difference equation for the S̃n that can be solved by recursion.
The procedure is explained with details in Section VII of [Shapira and Cohen, Phys. Rev. E 96, 042152 (2017)] and
leads to the solution

S1 = − 1

ηc

∞∑
n=1

(−1)n

n
sn(0)wn = − ν

(ηc)2

∞∑
n=1

(−1)n
[

In(z)

I0(z)

]2
=

ν

2(ηc)2
[
1− I−20 (z)

]
(A7)

Where we used the completeness relation

1 = I20(z) + 2
∑
n

I2n(z)(−1)n (A8)

https://link.aps.org/doi/10.1103/PhysRevE.96.042152


Appendix B: The Wigner phase space representation

Here we treat (x, p) as extended continuous coordinates and derive the standard Wigner representation for the
quantum propagation in the absence of dissipators. The elements of the ρ are given in the standard space representation
by ρx′,x′′ ≡ 〈x′|ρ|x′′〉. We define r = x′ − x′′ and R = (x′ + x′′)/2, and use super-vector Dirac notations, namely
ρ =

∑
R,r ρ(R, r) |R, r〉. The space representation is ρ(R, r) ≡ ρx′,x′′ , the momentum representation ρ(q, P ) is related

by double Fourier transforms, and the intermediate representations are those of Wigner ρw(R,P ) and Bloch ρ(q; r).
For the unitary evolution with U = exp[ict cos(p)], the propagator of the Wigner function in momentum representation
is

K(q, P |q0, P0) = 〈P+(q/2)|U |P0+(q0/2)〉 〈P−(q/2)|U |P0−(q0/2)〉∗ (B1)

= 2πδ(q − q0) 2πδ(P − P0) exp [−i2ct sin(q/2) sin(P )] (B2)

leading to

K(R,P |R0, P0) = 2πδ(P − P0)

∫
dq

2π
exp [−i2ct sin(q/2) sin(P ) + iq(R−R0)] (B3)

Note that this kernel is properly normalized with respect to the integration measure dRdP/(2π).
With sin(q/2) 7→ (q/2) we get the classical result

K(R,P |R0, P0) = 2πδ(P − P0) δ((R−R0)− ct sin(P )) (B4)

But quantum mechanically we get

K(R,P |R0, P0) =
∑
n

2πδ(P − P0)δ((R−R0)− n)J2n (2ct sin(P )) (B5)

In the above sum n runs formally over all the integer and half-integer values. Note that Wigner function on a lattice
has support on both integer and half integer lattice points (weight on half integer lattice points is the fingerprint of
interference due to superposition of integer lattice locations).

Appendix C: The Bloch representation

For an infinite chain the conventional way to define the Bloch representation is to perform R 7→ q Fourier transform
of ρ(R, r) for a given r to obtain ρ(q; r). Note that R runs over integer values for r = 0, 2, 4, ... and over half integer
values for r = 1, 3, 5.... This definition has a problem if we consider a finite chain with periodic boundary conditions.
Still it can be justified after a short transient if L is large enough because distant points in space loose phase correlation
(if there was to begin with). For a small ring (small L) this might not be the case. Therefore in a previous work
[48] we have defined ad-hock the Bloch representation ρq(r) as the Fourier transform of 〈x|ρ|x+ r〉. The ad-hock
definition differs by gauge transformation (and non-intentionally also by sign) from the conventional definition, and
allows to handle correctly the periodicity in both coordinates, namely, also in r. For a small chain, or for a complete
investigation of the eigenvalues problem, these phases are important. See for example [41].

Our system is invariant under translations, therefore it is natural to perform the diagonalization of L is the Bloch
representation. In practice one can obtain the expressions in Eq.(36) by inspection. As an example let us see how the
expression for L(c) is obtained. It originates from i[cos(p), ρ]. In the standard representation its matrix elements are

L(c)(x′, x′′|x′0, x′′0) = i 〈x′|cos(p)|x′0〉 δ(x′′ − x′′0)− iδ(x′ − x′0) 〈x′′|cos(p)|x′′0〉 (C1)

Recall that cos(p) is the sum of displacement operators e∓ip. In super-vector notations the above expression can be
written in terms of operators e∓i(1/2)q and e∓iP that induce translations in R and in r respectively. Namely,

L(c)(R, r|R0, r0) = i
〈
R, r

∣∣∣cos
(q

2
+ P

)∣∣∣R0, r0

〉
− i
〈
R, r

∣∣∣cos
(q

2
− P

)∣∣∣R0, r0

〉
(C2)

Thus we can write

L(c) = −i2 sin
(q

2

)
sin (P ) = sin

(q
2

) [
D⊥ −D†⊥

]
(C3)

In the Bloch (q, r) representation this super-operator becomes block diagonal in q.



Appendix D: From Bloch to Wigner and back

In the main text we present in Eq.(36) the Bloch representation L(q) of the dissipators. The transformation to the
Wigner representation is essentially a Fourier transform:

L(R,P |R0, P0) =

∫
dq

2π
eiq(R−R0)

x
drdr0e

−irP+ir0P0

〈
r
∣∣∣L(q)

∣∣∣r0〉 (D1)

Note that the inner integral transforms
〈
r
∣∣L(q)

∣∣r0〉 to the momentum representation
〈
P
∣∣L(q)

∣∣P0

〉
. Note also that

W(P |P0) =
〈
P
∣∣L(q=0)

∣∣P0

〉
are the Fermi Golden Rule (FGR) transition rates between momentum eigenstates. Com-

monly the FGR is considered as an approximation, while we have rigorously established that W(P |P0) can be used
within an effective rate equation in order to evaluate the exact quantum result for D.

In the main text we use a discrete momentum notation, such that 〈r|P 〉 = L−1/2 exp(iPR), etc. Consequently, in
the discrete version of Eq.(D1), the integrand of the drdr0 integral contains an extra 1/L factor. On the other hand
for summation

∑
P over momenta the measure becomes [L/(2π)]dP .

Transforming to Bloch.– It is convenient to handle the calculations of the spectrum on equal footing for all the
coupling schemes, for both Ohmic and Boltzmann versions of the dissipators. For this purpose we have to transform
Eq.(44) back from the Wigner representation to the Bloch representation using Eq.(45). Note that this equation
does not depend on q, reflecting the δ(R−R0) of the transitions. Making the distinction between the diagonal terms
(P = P0) and the off-diagonal terms (P 6= P0), taking into account that by definition the kernel conserves probability,
namely,

∑
P W(P |P0) = 0, one can write〈

r
∣∣∣L(q)

∣∣∣r0〉 = W̃(r, r0)− W̃(0, r0 − r) (D2)

where

W̃(r, r0) =
1

L

x
W(P |P0) eiPr−iP0r0

L

2π
dP

L

2π
dP0 (D3)

In the latter expression it is implicit that P = P0 has measure zero, so it reflects the contribution of the P 6= P0 terms
in the discrete sum of Eq.(45). Finally, note that for η=0 the Bloch kernel is diagonal (the no zero elements are those
with r = r0), and that from Eq.(43) it follows that for r = r0 = ±1 we have by convention

〈
r
∣∣L(q)

∣∣r0〉 = −(ν/2).
General kernel. – We consider a kernel W(P |P0) of width w = 2π/`. Its normalization C should be determined

such that the dp integral over [1− cos(p)] equals 1/2 (see the last sentence of the previous paragraph). Note this
normalization affects the result for C‖ but not the significant result for A‖. Expressing the double-integral Eq.(D3)
with k = (P+P0)/2 and p = P−P0, and using the notation z = (c/T ), it reads

W̃(r, r0) = ν

∫ w/2

−w/2
dpCe(ip/2)(r+r0)

∫ π

−π

dk

2π
eik(r−r0) exp [−z sin (p/2) sin(k)] (D4)

The inner integral may be written as Ir−r0 [−z sin(p/2)]], however to calculate A‖ in the high-temperature limit it is
enough to Taylor expand z to second order. The inner integral provides “selection rules”. The zero order result gives
a constant along the main diagonal of W̃, while the first order contributes to the near-neighbor hopping (|r−r0| = 1).
The second order contributes both to next-near-neighbor hopping and to the main diagonal.

Including in L(q) also the cL(c) term, and using the method described in Sec. (VII B), one finds

A‖(w) =
w2 + 16 sin2

(
w
2

)
− sin2(w) + 4w sin(w)− 4 sin

(
w
2

)
(3w + sin(w))

16
(
w − 2 sin

(
w
2

))
(w − sin(w))

−
3w − 8 sin

(
w
2

)
+ sin(w)

32
(
w − 2 sin

(
w
2

)) (D5)

The first term is the Ohmic result, while the second term is added to get the Boltzmann-corrected result. The results
for the X-coupling and for the S-coupling in Eq.(13) are obtained for w = 0 and w = 2π respectively.

Boltzmann case for S/B.– For the Boltzmann-corrected versions of the S and B one obtains

W̃(S)(r, r0) = νSIr(z/2)Ir0(−z/2) (D6)

W̃(B)(r, r0) = 2νBIr(z/2)Ir0(−z/2) + ν [Ir+1(z/2)Ir0−1(−z/2) + Ir−1(z/2)Ir0+1(−z/2)] (D7)

Expanding in z = (c/T ) the first order result for L(q) is a q = 0 version of the S/B dissipators that were presented
in the main text Eq. (36). In the Boltzmann-corrected approximation both schemes acquire second-order terms
−(3/16)(c/T )2ν |±1〉 〈±1| that are required for the calculation of D. For the S coupling scheme one finds additional
second-order terms that are needed for the calculations, namely, −(3/32)(c/T )2ν |1〉 〈−1| and −(3/32)(c/T )2ν |−1〉 〈1|.
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