
Modern Physics for students of Software Engineering

Doron Cohen
Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel

(based on arXiv:quant-ph/0605180)

This subset of lectures is based on lecture notes in quantum mechanics that are intended for Physics
students. They were adjusted for a Modern Physics Course for students of Software Engineering.

Basic Physics 2

1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Semiclassical Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Classical oscillations and waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Stochastic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Mathematics 33

6 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Translations and momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Rotations and Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

* Polarization of photons and electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

* Quantum Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

Quantum Mechanics 48

9 The evolution of quantum mechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 Dynamics of an N site system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Theory of quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

* optional source - Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

* optional source - Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

Fundamentals 67

12 The uncertainty principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

* Realism and Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

* EPR and Bell inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

* Quantum Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [link]

1

http://arxiv.org/abs/quant-ph/0605180
http://physics.bgu.ac.il/~dcohen/ARCHIVE/qmc.pdf
http://physics.bgu.ac.il/~dcohen/courses/ModernMech
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic21.html
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic25.html
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic61.html
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic63.html
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic51.html
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic53.html
https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic55.html


2

Basic Physics

[1] Basic concepts
הבא בקישור בעברית פתיחה הרצאת של תמלול

Introduction to Modern Physics

====== [1.1] The building blocks of the universe [can be skipped]
The universe consists of a variety of particles which are described by the standard model. The known particles are
divided into two groups:

• Quarks: constituents of the proton and the neutron, which form the ∼ 100 nuclei known to us.
• Leptons: include the electrons, muons, taus, and the neutrinos.

The interaction between the particles is via fields (direct interaction between particles is contrary to the principles
of the special theory of relativity). These interactions are responsible for the way material is organized. On top we
have Gravitation (aka general theory of relativity).

In the present course we focus on the dynamics of a particle in a discrete space that consists of N sites. This
simplified setting is enough in order to clarify the foundations of quantum mechanics. Contrary to the common
pedagogical approach, the continuum limit (particle is 3D space) will not be discussed, and will not be taken as a
starting point.

====== [1.2] Stochastic dynamics [can be skipped]
The simplest type of dynamics assumes that the “phase-space” of the particle consists of N locations (sites) labeled
by a coordinate xn, where n = 1, ..., N . The state of the particle in described by a probability function Pn, such
that

∑
n Pn = 1. The pure-state of being with 100% probability in site n is denoted |n〉. The dynamics is described

by a rate equation

d

dt
P = WP (1.1)

with the solution

P (t) = eWtP (0) (1.2)

where P is a column, and W is a matrix. The off-diagonal elements are the rates of transitions, namely, wnm is
the rate of transition from m to n. The diagonal elements −γi of the W matrix are determined such that each
column sums to zero. Accordingly we get conservation of probability, namely,

d

dt

∑
n

Pn = 0 (1.3)

Simple examples for stochastic dynamics will be introduced in the next section. In general the dynamics features
a relaxation process that leads to a steady state. If the transitions are induced by a thermal environment, the

https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic001.html
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steady state is known as equilibrium state. If we add external fields the system may approach a non-equilibrium
steady state (for example a ring with with a steady state current).

====== [1.3] Quantum dynamics [can be skipped]
The “phase-space” of the particle is an “Hilbert space”. For a particle in N site system this Hilbert space is
spanned by the states |xn〉. For example |ψ〉 = ψ1 |x1〉+ ψ2 |x2〉+ ψ3 |x3〉 is a possible physical pure-state of the
system.

The (statistical) state of the particle in described by a probability matrix ρ. The diagonal elements of ρ are
the probabilities pn, and the off-diagonal elements are complex numbers, aka coherences. The probability matrix
for a system that is prepared in a pure state |ψ〉 =

∑
n ψn |xn〉 is ρnm = ψnψ

∗
m. The diagonal elements are the

probabilities Pn = |ψn|2, while the off-diagonal elements are characterized by two phases φnm.

The postulates of quantum mechanics imply that the evolution of a pure state is dictated by an equation of the
form

d

dt
ψ = −iHψ (1.4)

with the solution

ψ(t) = e−iHtψ(0) (1.5)

The matrix H is called Hamiltonian.

====== [1.4] Classical dynamics [can be skipped]
Classical dynamics can be regarded as some kind of simplified description of quantum dynamics. The phase-space
of the particle consists of classical-like states |x̄, p̄〉. A classical-like state is called “wave-packet”. It is characterized
by an average position x̄, and by a superposition phase that is defined per unit distance, namely p̄ = φ/a, where
a is the distance between sites.

We shall see that classical dynamics can be generated by Hamiltonian function H(x, p) such that

ẋ =
∂H

∂p
(1.6)

ṗ = −∂H
∂x

(1.7)

We have used |x̄, p̄〉 to label classical-like states of the particle. Note that the x of the previous section was merely
a site index, while x̄ can be regarded as a dynamical variable that changes with time. The assumption of classical
mechanics is that we start with a classical-lie state that is characterized by some initial values (x̄,p̄), and that the
subsequent evolution does not spoil its classical-like feature. So at any later moment we have a classical-like state
|x̄(t), p̄(t)〉, that can be visualized as a point (or better to say a small distribution of points) in phase-space (x, p).
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====== [1.5] Waves
A beam of electrons behaves as a ”wave”. Also a beam of light behaves as a ”wave”. The latter is a spacial case of
electromagnetic wave (see figure below). In both cases we have to ”filter” the wave in order to have a plain wave
that has a well defined wavelength λ. We define for particles the momentum as p = 2π/λ, and for electromagnetic
wave the wavenumber as k = 2π/λ. As a matter of style, depending on the context, we use the notation p or k
for the same mathematical concept. The dispersion relation relates the velocity v of the beam to its wavenumber
(k) or momentum (p). For electromagnetic wave in vacuum v(k) = c does not depend on k. For massive particles
v(p) ≈ (1/m)p depends on p. Below we discuss how velocity and wavelength are measured.

====== [1.6] Measurement of velocity
והוחזרה מסתובב, בגלגל שיניים שתי שבין בחריץ שעברה אור קרן שלח הוא האור. מהירות למדידת ניסוי ביצע פיזו 1849 בשנת
סיבוב למהירות ולהגיע מהר, מספיק הגלגל את לסובב הצליח פיזו מסוים. מרחק שעברה לאחר שיניים, גלגל לאותו מראות ידי על
סיבוב מהירות של הידיעה מתוך חריץ. אותו דרך שוב לעבור במקום הגלגל, של בשן נתקעה המוחזרת שהקרן כך מסוימת, מינמלית
במסגרת כיום, לשניה. מטרים 300, 000, 000 בקרוב שהיא האור מהירות את לחשב הצליח פיזו מייל) 5) המסלול ואורך הגלגל

לשניה. מטרים 299, 792, 458 להיות הוגדרה האור מהירות המטרית, השיטה של הסטנדרטיזציה

[v] =

[
L

T

]
=

meter

second
(1.8)
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לעבר האלקטרונים אלומת את נשלח אלקטרונים. של אלומה לנו שיש נניח מהירות. למדידת פיזו שיטת של שונות גרסאות קיימות
לעבור יכולה האלומה אפס היא הסיבוב מהירות אם זוית. באותה יחיד, חור יש דיסק כל בהיקף ציר. על שמסתובבים דיסקים שני
בדיסק נתקעים הראשון בדיסק החור את שעוברים האלקטרונים כי עוברת, לא הקרן נמוכה הסיבוב מהירות אם החורים. שני דרך
מהי לקבוע ניתן הסיבוב וקצב הדיסקים של המרחק לפי עוברת. האלומה שבו למצב שנגיע עד הסיבוב מהירות את השני.נגדיל

האלקטרונים. מהירות

====== [1.7] Measurement of momentum (wavelength)
האור העברת ז"א התאבכות: ניסוי ע"י גל או חלקיק הוא האור האם להכריע יאנג תומאס הפיסיקאי ניסה ה-19 המאה בתחילת
אור של אחידה מריחה נוצרת היתה מחלקיקים מורכב היה האור אם עקיפה". "שריג להשתמש אפשר לחילופין או סדקים" "שני דרך

ההתאבכות: תופעת יוצרת שונים ממקורות המגיעות תנודות חיבור גלית, תופעה הוא שהאור כיוון המרקע. על

In the figure above the separation between the stripes of constructive interference on the screen is ∆y. The angular
separation (in radians) is defined as ∆θ ≡ ∆y/D, where D is the distance to the screen. A simple derivation implies
that this angular separation is determined by the wavelength λ as follows

∆θ =
λ

d
(1.9)

where d is the distance between the slits. From this formula we can deduce λ from the measurement of ∆θ. The
momentum (aka wavenumber) is defined as p = 2π/λ.
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Derivation [can be skipped].– The intensity of the oscillation that originates from two sources is

Intensity =
∣∣∣Aei(ϕ1−ωt) +Aei(ϕ2−ωt)

∣∣∣2 = 2 (1 + cos(ϕ2 − ϕ1)) |A|2 (1.10)

The phase difference between the oscillations that arrive to a given point on the screen is

ϕ2 − ϕ1 ≈ k · d · θ (1.11)

Hence the angular separation between the interference peaks is ∆θ = λ/d.

====== [1.8] Momentum measurement of electrons
אפשר יאנג לניסוי הדומה בניסוי אלקטרונים. של אלומה להפיק המאפשר מכשיר הקתודית, השפופרת הומצאה ה-20 המאה במהלך
מריחה היא התוצאה יחיד, חריץ דרך המסך לעבר האלקטרונים את משגרים אם אלקטרונים. אלומת של ההתנהגות את לבדוק
התאבכות על המעידה מפוספסת תבנית הקלאסית לציפיה בניגוד מתקבלת נוסף חריץ יש אם המסך. גבי על האלקטרונים של אחידה

דה-ברולי". גל "אורך נקרא זה האלומה. של הגל" "אורך את לקבוע מאפשרת ואשר גלית,

לעבר לשגר ניתן ים), גלי (דוגמת קולקטיבית בתופעה מדובר שלא ולודא משמעותה, על לעמוד מנת על מפתיעה. היא התוצאה
בניסוי נוסף שלב אלקטרונים. של גדול מספיק מדגם שצוברים בתנאי התוצאה, אותה את מקבלים פעם. בכל בודד אלקטרון המרקע
כזה במקרה מהאלקטרונים. אחד כל עובר חריץ איזה דרך לראות מצליחים הגלאי בעזרת החריצים. אחד גבי על גלאי הרכבת הוא

"קלאסי". באופן מתנהגים והאלקטרונים נעלמת, ההתאבכות תופעת

כמו מתנהג הוא דואליות: של תכונה יש שלאלקטרון להגיד היא הניסוי של המסקנה את לנסח אחת דרך חלקיק.-- גל דואליות
נעשות הפגיעות מסלולו. לאורך עליו מסתכלים אין אם הגלית ההתאבכות תופעת ע"פ במרקע פוגע אך עליו, שצופים בזמן חלקיק

ההורסת. להתאבכות המועדים באיזורים מאשר הבונה להתאבכות המועדים באיזורים יותר - סטטיסטי באופן

כביכול הם - מוזר באופן תנועתם במהלך מתנהגים קוונטי, חלקיק כל וכמו הפוטון, גם כמו האלקטרון, הסופרפוזיציה.-- עקרון
מצבים שני אם הקוונטית: המכניקה של הבאה היסוד הנחת לניסוח הביא זה בהם. צופים אין עוד כל זמנית בו מקומות בשני עוברים
בסדק "להיות פיסיקלי, מצב זה הראשון" בסדק "להיות שלפננו: במקרה פיסיקלי. הוא "סופרפוזיציה" של מצב גם אז פיסיקליים הם
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במספר אחת ובעונה בעת להמצא יכול חלקיק פיסיקלי. מצב גם זה סדקים" בשני זמנית בו "להיות גם ולכן פיסיקלי, מצב זה השני"
החלקיק. של במיקום "ודאות" שאין אומרים אנו כזה במקרה מקומות.

באופן שיאפשר מה לניסוי, "קלאסי" הסבר לתת ניתן אולי האם היא המתבקשת השאלה הסתברותי.-- תאור לעומת דטרמיניזם
האלקטרון, את משגרים אנו שבו באופן מלאה שליטה לנו שיש היפותתית נניח במסך. אינדיוידואלי אלקטרון יפגע איפה לחזות עקרוני
משמעית חד תשובה נותן לא סדקים שני ניסוי יגיע? הוא לאיפה בודאות לקבוע נוכל האם לדעת. שאפשר מה כל עליו יודעים ושאנו
כך מבוקר, ניסוי של התוצאה את דטרמינסטי באופן לקבוע תוכל עתידית שתאוריה להניח לכאורה אפשר ספקולטיבית זו. לשאלה
של שקביעתו נראה הקורס בהמשך בקוביות". משחק לא "אלוהים אינשטיין של בניסוחו הסתברותי. תאור על להתפשר נצטרך שלא
מסוג הסתברותי בתאור להסתפק עלינו דטרמיניסטי. אינו חיים אנו שבו העולם בקוביות. משחק כן הטבע מוטעית: היתה אינשטיין

הקוונטית. המכניקה שנותנת זה

Einstein’s Letter to Max Born (1926).– ”You believe in a God who plays dice, and I in complete law and
order in a world which objectively exists, and which I in a wildly speculative way, am trying to capture. I firmly
believe, but I hope that someone will discover a more realistic way, or rather a more tangible basis than it has been
my lot to find. Even the great initial success of the quantum theory does not make me believe in the fundamental
dice game, although I am well aware that some of our younger colleagues interpret this as a consequence of senility.”

Later paraphrased as ”God does not play dice with the world”.

====== [1.9] The dispersion relation
Within the framework of quantum mechanics the Newtonian definition of inertial mass is not appropriate. Instead
the mass of a particle is defined in an absolute way, that does not require to fix a reference mass. We shall define
mass as a parameter in the ”dispersion relation”.

It is possible to prepare a ”monochromatic” beam of particles (say electrons) that all have the same velocity. The
velocity of the particles can be measured by using a pair of rotating circular plates (discs). It turns out that such
beam is further characterized by a wavelength, so-called De-Broglie wavelength. The wavelength of the beam can
be measured using a diffraction grating. We define the momentum of the moving particles (aka ”wavenumber”)
as:

p =
d[phase]
d[distance] =

2π

wavelength (1.12)

It is possible to find (say by an experiment) the relation between the velocity of the particle and its momentum.
This relation is called the ”dispersion relation”. Einstein has deduced the following expression

v =
cp√

(mc2)2 + (cp)2
c (1.13)

For low (non relativistic) velocities the relation is approximately linear, namely, v ≈ (1/m)p. Here is a plot of
what we expect to observe:

c

p

v

p

m



8

The dispersion relation defines the ”mass” parameter. The implied units of mass are

[m] =
T

L2
(1.14)

If we use arbitrary units for measuring mass, say ”kg”, then the conversion prescription is:

m[kg] = h̄m
[

second
meter2

]
, h̄ =

h

2π
(1.15)

where h̄ is known as the Planck constant.

====== [1.10] Energy [can be skipped]
התנגשויות) (באמצעות קלאסית במכניקה אינרציאלית" "מסה של ההגדרה *

הדיספרסיה) ביחס (פרמטר קוונטית במכניקה אינרציאלית" "מסה של ההגדרה *
אטום...) (פצצות היחסות בתורת המנוחה" "אנרגית בתור מסה של ההגדרה *

הכוכבים) תנועת / מאזניים / שקילה (באמצעות הכבידה בתורת גרביטציונית" "מסה של ההגדרה *

A practical way to define Kinetic Energy in classical mechanics is via the relation

v =
∂E(p)

∂p
(1.16)

E =
√
(mc2)2 + (cp)2 ≈ mc2 + p2

2m (1.17)

Later we shall see that energy in quantum mechanics is defined, in analogy with momentum, as

E =
d[phase]
d[time] =

2π

TimePeriod (1.18)

The implied unit are

[p] =

[
1

L

]
=

1

meter (1.19)

[E] =

[
1

T

]
=

1

second (1.20)
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====== [1.11] Newton’s laws of motion
The ”gravitational mass” is defined using a weighting apparatus. Since gravitational theory is not includes in
this course, we shall not use that definition. Another possibility is to define ”inertial mass”. This type of mass is
determined by considering the collision of two bodies. We postulates that there is a linear combination of velocities
that is conserved in a any collision:

p = m1v1 + m2v2 = m1u1 + m2u2 (1.21)

where v and u are the velocities before and after a collision. From a collision experiment one can extract the mass
ratio of two bodies:

m1

m2
= −u2 − v2

u1 − v1
(1.22)

In order to give information on the inertial mass of an object, we have to agree on some reference mass, say the
”kg”, to set the units. (less arbitrary would be to take the mass of the proton as the reference).

The above postulate regrading momentum conservation is commonly regarded as Newton’s law of motion. Com-
monly it is decomposed into 3 ”laws” that are implied by this postulate. The 1st law concerns a single isolated
particle that does not interact with any other particle or field: conservation of momentum implies that it velocity
v remain constant. The 2nd law define the notion of force. If we have two particles, we define F2;1 = dp1/dt, and
F1;2 = dp2/dt. According to this definition the statement is that force changes that momentum of the particle.
To say that the total momentum p remains constant during a collision is like saying that dp/dt = 0. The 3rd law
is the statement that dp/dt = F1;2 + F2;1 = 0, aka action and reaction.

====== [1.12] Polarization and Spin
Apart from the degrees of freedom of being in space, the particles also have an inner degree of freedom called
”spin”. We say that a particle has spin s if its inner degree of freedom is described by a representation of the
rotations group of dimension 2s+1. For example, ”spin 1/2” can be described by a representation of dimension 2,
and ”spin 1” can be described by a representation of dimension 3. In particular:

• Electrons have spin 1
2 , hence 180o difference in polarization (”up” and ”down”) means orthogonality.

• Photons have spin 1, hence 90o difference in linear polarizations means orthogonality.

If we position two polarizers one after the other in the angles that were noted above, no particles will pass
through. Thus, an abstract mathematical consideration (representations of the rotation group) has very realistic
consequences.
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[2] Semiclassical Dynamics

====== [2.1] The notion of force
Force F is some kind of applied mechanism that affects the dynamics. In stochastic dynamics force is a mechanism
to induce drift: we shall explain later that the drift velocity is proportional to the force. But in classical dynamics
force is a mechanism to induce change of momentum. It is defined via the relation

d

dt
p = F (2.1)

For stylistic reasons we use in this section bold letter for the dynamical variables x and p. Note that the velocity
of the particle is determined by its momentum via a dispersion relation v = v(p), as discussed in the Introduction.
Related notion is the work W done on a particle by a force F along a trajectory that goes from point A to point
B:

WA;B =

ˆ B

A
F · dr (2.2)

For a so-called conservative force the result is the same for all the trajectories that go from A to B. Then we can
define a potential U(x) such that:

F (x) = −∂U(x)

∂x
(2.3)

and we say that F (x) is a field in space, and calculate the work using the formula

WA;B = U(xA)− U(xB) (2.4)

We use here ”1D” notations. The generalization to 3D is straightforward.

====== [2.2] Classical equations of motion
In classical dynamics we have two dynamical variables (x, p) that characterize the state of the particle. It is
assumed that the velocity of the particle is determined by a “dispersion relation”, namely,

d

dt
x = v(p) ≡ ∂K(p)

∂p
(2.5)

The function K(p) as defined above is called kinetic energy. For non-relativistic particle v(p) = (1/m)p and
therefore K(p) = p2/(2m). The momentum obeys so-called Newton law:

d

dt
p = F ≡ −∂U(x)

∂x
(2.6)

We can define Hamiltonian as follows

H(x,p) = K(p) + U(x) (2.7)
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and derive from it the equations of motion. We define the energy as

E = H(x,p) (2.8)

It is easily verified that E is a constant of motion (dE/dt = 0). The sum of kinetic and potential energies is
conserved. Sometimes it is phrased as ”the particle changes its kinetic energy due to the work that is done by the
force”, namely,

K(B)−K(A) = WA;B (2.9)

====== [2.3] Oscillations
Harmonic oscillator.– This is the term used to describe e.g. particle connected to spring. The force is
proportional to the displacement (force constant denote below as α). The outcome is an oscillation with frequency
ω that does not depend on the energy (same ω for any amplitude A).

x = displacement from equilibrium point (2.10)
F = −αx (2.11)

U(x) =
1

2
αx2 (2.12)

The equations of motion ẋ = (1/m)p and ṗ = F lead to Newton’s second law ẍ = (1/m)F , hence the equation of
motion is

ẍ = −αmx (2.13)

whose general solution is

x(t) = A cos(ϕ0 − ωt) (2.14)

The amplitude A and the phase ϕ0 are determined by the initial conditions at t = 0. The frequency is implied by
the equation of motion, namely,

ω(E) =

√
α

m (2.15)

Square well.– Consider a particle that is free to move in a one-dimensional box of width L. The potential is
U(x) = 0 inside the box, and very large outside. Given energy E the velocity of the particle is v = (2E/m)1/2, the
time period of the oscillations is 2L/v, and therefore

ω(E) =
2π

TimePeriod =
π

L
v ∝

√
E (2.16)
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Pendulum.– This is an example for unharmonic oscillator. The frequency ω depends on the energy.

x = angle from the bottom equilibrium position (2.17)
F = −α sin(x) (2.18)

U(x) = −α cos(x) (2.19)
ω(E) = [see figure] (2.20)

המטוטלת של האנרגיה אם אבל הרמוני. אוסצילטור כמו היא המטוטלת קטנות תנודות שעבור לב נשים צילנדרי. הוא הפאזות מרחב
מטוטלת של במקרה אחרות: במילים השעון. מחוגי כיוון נגד או השעון מחוגי בכיוון או שלמים סיבובים מבצעת היא אז גדולה מספיק

אחר. מסוג תנועה יש מהם אחד שבכל אזורים שלושה הפאזה במרחב יש

====== [2.4] Quantization of the energy
Here we present a naive semi-classical perspective for the quantization of the energy. A prototype example is
a particle in a one-dimensional box of length L. The classical energy E = p2/(2m) can be any positive number
E ∈ [0,∞]. But quantum mechanically p is 2π/λ. To have energy E means that the classical is like a standing
wave in the box. Clearly this is feasible only if

L = (λ/2)× integer [semiclassical quantization condition, box] (2.21)

Hence we get

|p| =
π

L
× integer (2.22)

and the energy is quantized

En =
1

2m
(π
L
n
)2
, n = 1, 2, 3, ... (2.23)

Similar reasoning holds for other bounded systems (e.g. see below – electron in an atom).

Oscillators.– The quantized energies of an harmonic oscillator that has an oscillation frequency Ω is

Eν =

(
1

2
+ ν

)
Ω, ν = 0, 1, 2, ... (2.24)
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If we take the lower level as reference we get

Eν = νΩ, ν = 0, 1, 2, ... (2.25)

A modes of any harmonic field, e.g. the electromagnetic field, can be in the ν = 0, 1, 2, ... state. In the modern
jargon we say that ν = 0 is the vacuum state, while the ν = 1, 2, ... are states where the mode occupies ν phonons.

====== [2.5] Relevance of quantization in practice
Atoms.– The simplest atom is the Hydrogen atom. The electron has mass m and is attracted to the proton with
force F = −α/r2. Assuming the (actually wrong) assumption that the orbital looks circular, we require

2πr = λ× integer [semiclassical quantization condition, circular orbit] (2.26)

which leads to Bohr’s quantization condition mvr = n, where n = 1, 2, 3, .... High school physics for circular motion
allows, given E, to deduce from Newton’s laws that r = r(E) = −α/(2E) and v = v(E) =

√
−2E/m, see here.

Then we can deduce from Bohr’s quantization condition that

En = −mα2

2n2
, n = 1, 2, 3, ... (2.27)

Note that the units are OK (α has dimensions of velocity). This result turns out to be identical to the correct
quantum solution of the Schrodinger equation, where the correct shape of the atomic orbitals (s,p,d,f,...) is different.

Energy bands.– Consider a periodic potential, say a sequence of intervals of length a separated by barriers. If
the barriers are very high we get energy spectrum like that of a box (with L replaced by a). Each state has L/a
degeneracy. If the barriers are lowered, each degenerated level become an energy band. The energy bands are
separated by energy gaps.

Thermal occupation.– Consider a system with ordered set of levels En, indexed n = 0, 1, 2, .... The state of the
system at zero temperature is that of the lowest energy E0. At finite temperature T the probability to find the
system in any of the states is

Pn ∝ e−(1/T )En (2.28)

This reasoning holds irrespective of whether the energy is quantized or not.

https://physics.bgu.ac.il/~dcohen/courses/ModernPhys/LectureNotes/topic35.html
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====== [2.6] Concept of Energy in Quantum Mechanics
The definition of energy, say from v = dE/dp, implies that the units of energy are 1/sec. In a future lecture we
shall see that this is a special case of a more general (exact) formula for the natural frequencies of a system:

ω = |En − Em| (2.29)

Below we list several examples that illustrate this idea.

Square well.– We had argued that the energy of a particle is a box is quantized. It follows that also the frequency
ω of the oscillations should be quantized. The naive semiclassical reasoning implies

ω[semiclassical] = π

L
vn, vn =

1

m
(π
L
n
)

(2.30)

But this is in fact an approximation. The exact way to calculate the natural frequencies is from energy differences.
One observed that

ω[quantum] = (En+1 − En) ≈
dEn

dn
=

(π
L

) dE
dp

=
(π
L

)
v = ω[semiclassical] (2.31)

Hence we have consistency with the naive expectation.

Spectroscopy.– Illuminating atoms with an irradiation source of frequency Ω, transitions might be induced. The
transition from an occupied level En that is coupled to a higher level Em takes place if the resonance condition
Ω ∼ ω is satisfied, where ω ≡ (Em − En). This is called absorption. The inverse process is called emission. From
quantum mechanical point of view Ω is the frequency of a field mode, meaning that Ω = (Eν+1 − Eν). Hence we
regard the resonance condition as an energy conservation law: a photon is absorbed or emitted by the atom.
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====== [2.7] Concept of Resonance
הרץ של יחידות (אופציונלי לשניה רדיאן הן והיחידות ,ω באות מסומנת התדירות אופינית. תדירויות יש סגורה מערכת לכל מתנד:
לא מתנד לבין באנרגיה, תלויה לא שלו שהתדירות לקפיץ) קשור חלקיק (לדוגמה הרמוני מתנד בין מבחינים לשניה). מחזורים שזה -
שדה של (המודים) התנודה אופני באנרגיה. תלויה כן שלו שהתדירות מטוטלת) בקופסא, וחזור הלוך שנע חלקיק (לדוגמה הרמוני
(גלי החשמלי השדה של תנודות קול), (גלי האויר בלחץ תנודות מיתר, של תנודות לדוגמה: מתנדים. מתמטית מבחינה הם (תווך)

שונים). צבעים = שונות תדירויות אור:

קלאסית: תמונה - רזוננס

התנודות בין עוברת אנרגיה זכוכית: כוס על שצורחת סופרן זמרת לדוגמה: אנרגיה. ביניהן לעבור יכולה מערכות שתי מצמדים כאשר
יותר עוד דוגמה מצומדות. מטוטלות יותר: פשוטה דוגמה הזכוכית). של (ויברציות הכוס של התנודות לבין קול) (גלי האויר של
בניסוי המסות. שתי את שקושר דק חוט ידי על מיוצג הצימוד האחרונה בדוגמה תרשים). (ראו קפיץ על תלויים גופים פשוטה:

האויר. דרך או התומכת הקורה של רעידות דרך לעבור יכולה אנרגיה כי מיותר החוט בבית לעשות שאפשר אמיתי

דומה: הגופים שני של שהתדירות הוא התנאי הגופים. שני בין אנרגיה למעבר התנאי הוא הרזוננס תנאי

ω(#1) ≈ ω(#2)

לעבור. תצליח לא האנרגיה - שונה הגופים שני של התדירויות אם

קוונטית: תמונה - רזוננס

התנועה לתדירות בקרוב שווים בקופסא חלקיק של האנרגיה שמרווחי הראנו מקוונטטת. גוף כל של האנרגיה הקוונטית בתמונה
מרווחי לפי נקבעת התנועה תדירות כללי: חוק שזה נראה בעתיד הקלאסית. המכניקה במסגרת החלקיק מהירות ידי על שנקבעת

מתקיים אז באטום, אלקטרון לנו יש לדוגמה אם האנרגיה.

ω(atom) = En+1 − En

כלשהי תדירות יש הזו לתנודה חשמלי. שדה של תנודה פנס) (באמצעות יוצרים שאנו נניח

ω(mode) = Eν+1 − Eν

פוטונים. ν מאכלס שהמוד אומרים אנו ,Eν אנרגיה יש החשמלי השדה של התנודה למוד אם

הבאה: בצורה הרזוננס תנאי את לרשום אפשר הקוונטית בתמונה

Eν+1 − Eν ≈ En+1 − En

יותר. גבוהה אנרגיה לרמת מעורר האטום האטום. ידי על נבלעת אשר (פוטון) אנרגיה של מנה מאבד האלקטרומגנטי המוד במילים:
ז"א האלקטרומגנטי, לשדה האנרגיה את חזרה לפלוט יכול המעורר האטום אפשרית: היא ההפוך בכיוון אנרגיה העברת שגם כמובן

לספקטרוסקופיה. הבסיס זה פוטון. לפלוט
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====== [2.8] The photoelectric effect
We can verify experimentally that the quantum perspective of resonance is the correct description. The same
considerations as in the story of absorption can be used to determine whether a photon of energy ω can ionize an
atom. Similarly, the photoelectric effect concerns the emission of electrons from a piece of metal due to irradiation.
A threshold frequency is required. Contrary to the classical expectation the intensity does not matter! The kinetic
energy of the emitted electrons is K = ω −W , where W is the work function (see figure).
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[3] Classical oscillations and waves

====== [3.1] Oscillators
Back to the harmonic oscillator. Assume that it has an oscillation frequency is ω. The units are rad/sec.

T =
2π

ω
= time period of the oscillation (3.1)

f =
1

T
= frequency in Hz units (3.2)

Denote by q the coordinate of the oscillator. Oscillations with amplitude A are described by

q = A cos(ϕ0 − ωt) (3.3)
q̇ = Aω sin(ϕ0 − ωt) (3.4)

where ϕ0 is the initial phase. Define a complex coordinate

Ψ = q + i
1

ω
q̇ = Aeiϕ (3.5)

The evolution is described by

ϕ(t) = ϕ0 − ωt (3.6)

Accordingly

ψ(t) = Ae−iωt (3.7)

We have absorbed the initial phase ϕ0 into A, namely

A ≡ Aeiϕ0 (3.8)

The complex amplitude A is determined by the initial conditions: the real part by the initial position q(0), and
the imaginary part by the initial velocity q̇(0). The motion is a clockwise trajectory along a circle in the complex
plane, and we have the relation

q(t) = <
[
Ae−iωt

]
(3.9)

====== [3.2] Coupled oscillators
The equation of motion for N coupled oscillators can be written in a matrix form:

q̈i = −
N∑
j=1

Wijqj (3.10)
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We look for the modes of the system. By definition, each mode of motion is described by a single frequency ω. We
substitute the desired form of solution:

qj = <
[
Aje

−iωt
]

(3.11)

where the Aj are complex amplitudes. We get the equation

WA = ω2A (3.12)

From that we find N independent solutions. The general solution q(t) = <[Ψ(t)] is a superposition of the modes:

Ψ(t) =
N∑

n=1

cnA
(n)e−iωnt (3.13)

The coefficients cn are determined by the initial conditions.

====== [3.3] Modes of masses coupled by springs
We first consider two masses coupled by spring as in the following figure:

α α
0 0

α

Here we have N = 2 masses. The W matrix is

W =
1

m

(
αeff −α
−α αeff

)
(3.14)

where αeff = α0 + α. The frequencies of the two modes are

ω± =

√
αeff ∓ α

m (3.15)

The modes are

A(+) =
1√
2

(
1
1

)
(3.16)

A(−) =
1√
2

(
1
−1

)
(3.17)

The normalization of the eigenvectors is a matter of convention. It is more convenient to use Dirac notations.
Those notation generalizes the usual vector notations. Namely, A⃗ = B⃗ + C⃗ is written as |A〉 = |B〉+ |C〉. Thus
we write

|+〉 =
1√
2
[|1〉+ |2〉] (3.18)

|−〉 =
1√
2
[|1〉 − |2〉] (3.19)
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The |+〉 mode has a frequency ω+ =
√
α0/m ≡ ω0 that does not depend on α, because the masses are oscillating

with the same phase, such that the α spring is not involved. The general solution is any linear combination of the
two modes:

|ψ(t)〉 =
∑
±
cne

−iωnt |n〉 = c+e
−iω+t

(
1
1

)
+ c−e

−iω−t

(
1
−1

)
(3.20)

Let us generalize the solution for the case where we have large N . The equilibrium location of mass j mod(N) is
x = ja, where a is the so called lattice constant. The W matrix takes the form

W =


αeff −α 0 ... −α
−α αeff −α 0 ...
0 −α αeff −α ...
... ... ... ... −α
−α 0 ... −α αeff

 = αeff1− αD − αD−1 (3.21)

For mathematical simplicity we assume periodic boundary condition (a closed chain). Note that αeff = α0 + 2α
instead of αeff = α0 + α because each mass is connected to two α springs. We have expressed W in terms of the
displacement operator D. By definition D |x〉 = |x+a〉. We see that W will be diagonal in the same basis where
D is diagonal. Therefore to find the eigenvector is an easy task. These are plane waves

|k〉 =
1√
N

∑
x

eikx |x〉 (3.22)

such that D |k〉 = e−ika |k〉. The corresponding frequencies are

ωk =

√
1

m
[
αeff − 2α cos(ka)

]
=

√
ω2
0 +

α

m · 2[1− cos(ka)] (3.23)

where ω0 =
√
α0/m. Of particular interest is the case where α0 = 0. It means that the masses are inter-connected

with the α springs, but not to the ground. Then, for small k one obtains ωk ≈ ck, where c = (α/m)1/2a.

Polarization.– Above we had masses that are distinguished by their locations. The notation |x〉 means that we
have a displaced mass in location that is labelled by x. In general the mass can be displaced in any direction. So
we need an additional label s to indicate the so-called polarization. Thus we use the notation |x, s〉 in order to
indicate displacement at location x in direction s.
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====== [3.4] Digression - diagonalization by inspection
We have encountered above the first Pauli matrix S ≡ σ1 and the displacement matrix D. Let us write these
matrices and see how they can be diagonalized by inspection:

S =

(
0 1
1 0

)
, W =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (3.24)

Note that S performs swap. We can label the two basis vectors as x = 0, 1. They can represent two sites or two
states of a qubit. The eigen-vectors and the eigen-values are determined by the equation Sψ = sψ. By inspection
they are

|s=1〉 =

(
1
1

)
, |s=− 1〉 =

(
1
−1

)
(3.25)

A more compact notation for the same eigen-vectors is

|k〉 =
(

1
eik

)
=

∑
x=0,1

eikx|x〉, k = 0, π (3.26)

We turn to diagonalize by inspection the displacement matrix. Here we label the basis vectors as x = 0, 1, 2, · · · , N−1.
Note that x is defined mod (N). In the example above N = 5. The transformation ψ̃ = Dψ in matrix notation
is written as follows:

ψ̃0

ψ̃1

ψ̃2

ψ̃3

ψ̃4

 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



ψ0

ψ1

ψ2

ψ3

ψ4

 =


ψ4

ψ0

ψ1

ψ2

ψ3

 (3.27)

Or it can be written as ψ̃x = ψx−1. By inspection, in order to obtain an eigenvector, the phase-difference between
subsequent sites should be the same, namely,

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




1
eik

ei2k

ei3k

ei4k

 =


ei4k

1
eik

ei2k

ei3k

 = e−ik


ei5k

eik

ei2k

ei3k

ei4k

 = e−ik


1
eik

ei2k

ei3k

ei4k

 (3.28)

The last equality requires 5k = 0 mod (2π), that can be written as k = (2π/N)× integer, or as λ× integer = N ,
where λ = 2π/k is the wavelength. These are the permitted wavelengths that satisfy the periodicity of the system.
In compact notation we write (normalization does not matter):

|k〉 =
N−1∑
x=0

eikx |x〉 , k =
2π

N
× integer (3.29)
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====== [3.5] The term ”wavefuntion”
We have defined a complex coordinate Ψ in order to describe the state of an oscillator. If we have several oscillators
we use the notation Ψj . If we have an oscillator in any location x we use the notation Ψ(x). Namely, Ψ(x) is the
“displacement” of the oscillator that is located at x. We say that Ψ(x) describes a field.

It is important to realize that from a mathematical point of view there are different terms that can be used for
Ψ(x). In Linear Algebra is is regarded as a vector with representation index x. In Calculus in is regarded as a
function that associates a complex value Ψ to each point x is space. From Mathematical Physics point of view it
describes the state of a physical field.

Fields that are described by simple Hamiltonians of the type that we have discussed change in time. In particular
there are field configurations that oscillate in a well defined frequency ω. These are the modes of the field. In
general Ψ(x) can be any superposition of those modes.

====== [3.6] Waves
Consider a chain of identical harmonic oscillators. Each is located at a different position.

Let us assume that they oscillate with frequency ω. Each oscillator may have a different initial phase. Accordingly
we write ϕ(x, t) = ϕ0(x)− ωt. If the oscillations have a fixed phase-lag between adjacent locations write

ϕ(x, t) = kx− ωt (3.30)

where k is called wavenumber. Accordingly we get a wave that is described by the wave-function

Ψ(x, t) = Cei(kx−ωt) (3.31)

where C is the amplitude. In order to avoid accidents with notations, we reserve the letter A for indicating
the normalized eigen-vectors A(k). Here A(k)

x = N−1/2eikx with associated eigen-frequencies ω = ωk. We define
wavelength as the distance where oscillation have the same phase

λ =
2π

k
= wavelength (3.32)

The relation between the frequency and the wavenumber is called dispersion relation. Electromagnetic waves and
sound waves have a linear dispersion relations

ωk = c|k| (3.33)

We shall argue below that c is, in some sense, the propagation velocity of the wave.
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====== [3.7] Wave-packets
Striking a string, a wave-packet is produced. The wavepacket has a spatial width ∆x, and involves a superposition
of plane waves, with dispersion ∆k. Namely,

Ψ(x, t) =
∑
k

Cke
i(kx−ωkt) (3.34)

The superposition coefficients Ck are determined (via Fourier analysis) by the initial condition at t = 0. Namely,
by the initial shape f(x) of the pulse as follows:

Ψ(x, 0) ≡ f(x) ≡
∑
k

Cke
ikx (3.35)

After some time the wavepacket spreads over the whole string (if the string is of finite length). It is also possible
to produce a standing wave via superposition of k and −k terms that have the same frequency ωk.

For a wave with linear dispersion relation we can write

Ψ(x, t) = f(x− ct) (3.36)

More generally we can linearize any dispersion relation around the central frequency and deduce

v =
dω

dk
[calculated for the average wavenumber] (3.37)

An example for a non linear dispersion relation that describes balls that are connected to the ground by springs,
and also inter-connected by flexible bonds:

ωk =
√
ω2
0 + (ck)2 (3.38)

It turns out that also a beam of electrons has formally the same dispersion relation, where k is called momentum
(denoted by p), and ω0 is called rest-energy (denoted by mc2). What is the meaning of “Ψ” in the latter context
will be discussed in a later lecture.
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[4] Electricity

====== [4.1] The electric field
It turns out that particles can influence each other via so-called electrostatic interaction that is described by
Coulomb law. The force is written as F = Qq/r2, where r is the distance, while Q and q denote the electric charge
of the particles. We prefer to regard this interaction in asymmetrical way: one charge (Q) is creating the field, and
the other (q) is influenced by the field. Accordingly we write the electric field of a point charge Q as E = Q/r2,
and the force on the the other particle as

F = qE (4.1)

The electric field E for different charge configuration can be deduced from Coulomb law, but it is more convenient
to say that it is determined by Gauss law:

Flux of Electric Field ≡
‹
E · dS = 4πQ (4.2)

For a point charge Q we get

E =
Q

r2
(4.3)

while for a large plate of area A we get

E = 2π
Q

A
(4.4)

perpendicular to the plate (on each side).

We can define an electric potential V (x), such that

E(x) = − d

dx
V (x) (4.5)

For a point charge we get

V (r) =
Q

r
(4.6)

For two parallel plates, with distance d separation, and opposite charges ±Q, we get potential difference

V = 4π
Qd

A
(4.7)

The dynamics of single particle of charge q is determined by Hamiltonian with the potential energy

U(x) = qV (x) (4.8)
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====== [4.2] The RC circuit
Consider a metallic sphere of radius r0 with charge Q. Its potential relative to the “ground” at infinity is V = Q/r0.
We write it as V = Q/C where the capacitance is C = r0. We can define C for other geometries. For a plate
capacitor V is the potential difference between the plates (optionally one can regard one plate as “grounded”),
and we get

C =
A

4πd
(4.9)

where A is a the area and d is the distance between the plates. Ideally, the work to charge a capacitor is

W =
Q2

2C
(4.10)

This formula can be proved in two ways. One way is to integrate dW = V (q)dq from q = 0 to q = Q, where
V (q) = q/C. The other way, specifically for a plate capacitor, is to calculate the work W = Fd that has to be
done in order to separate the two plates (starting from zero distance), where the force is F = 2πQ2/A.

We can discharge the capacitor. For this purpose we connect a conductor of resistance R between the sphere and
the ground (or between the two plates). The current is given by Ohm law

I =
1

R
V (4.11)

The equation that describes the circuit is

d

dt
Q = −I = −V

R
= − 1

RC
Q (4.12)

The solution is

Q(t) = Q(0)e−t/τ (4.13)

where τ = RC is the “time constant” of the decay. Note that the work that is done on charge dQ = Idt, that is
transferred through the resistor, is

dW = V dQ = RI2dt (4.14)

This is known as Joule law. The work increases the kinetic energy of the electrons, but at the same time this
kinetic energy is dissipated as heat, or possibly emitted as electromagnetic energy (light).
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====== [4.3] Metals and Semiconductors
לאכלס שיכול ערכיות ופס , (gap) אנרגטי פער חורים, לאכלס שיכול ערכיות פס כולל למחצה מוליך של הטיפוסי הפסים מבנה
ידי על נקבעת המטען נושאי של והכמות החורים, למספר שווה האלקטרונים מספר "אינטרינסי" למחצה במוליך אלקטרונים.
ובהתאם האלקטרונים, כמות את או החורים כמות את להגדיל אפשר , (donors, acceptors) זיהומים מוסיפים אם הטמפרטורה.
(gate) שער p מטיפוס למחצה מוליך על-פני יוצרים אם . n מטיפוס למחצה מוליך על או p מטיפוס למחצה מוליך על מדברים
מאוד הפוטנציאל אם אבל מהשער. "יידחו" שהחורים כיוון מטען מנושאי (depletion) להתרוקנות יגרום חיובי פוטנציאל אז ,

שליליים. מטען נושאי שכוללת (inversion layer) היפוך שכבת תיווצר חזק

Figure: (a) Two different metals with the same electrostatic potential. Electrons flow from the metal that has
the larger chemical potential (µL > µR). (b) Two different metals at equilibrium. Same chemical potential. No
flow of current. In order to get current (not displayed) we have to induce a potential difference ((µL − µR) = eV ).
(c) Non coupled n-doped and p-doped semiconductors. (d) The np junction at equilibrium (µL = µR). At zero
temperature electrons form the n-side donors are depleted into the p-side acceptors. A depletion region is formed,
and a constant potential is established. In order to get current we have to induce a potential difference. The plot
illustrated the electron density at the p-side. Finite temperature is assumed (otherwise the carrier density is zero).
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====== [4.4] The design of a Battery
The ions in the solution equalize the electrostatic potential (metal Z+

n cations dissociate from one electrode; Cu+

cations join the other electrode; and SO−−
4 flow to counter ballance the inter-cell potential difference). Hence

contact potential difference is not established, and the flow of electrons persists.

====== [4.5] The Diode
Ohm law I = GV , where the conductance isG = 1/R, is a simple example for “stochastic dynamics” that we discuss
in the next section: the drift velocity of the electrons is proportional to the applied field. A more sophisticated
example for stochastic dynamics is provided by the Shockley diode equation

I = IS

[
e|q|V /T − 1

]
(4.15)

where T is the temperature and q = −|q| is the charge of the electron. It is a matter of convention to define V > 0
as the forward bias. Note that for very small V we have approximately Ohmic behaviour with G = (|q|/T )IS , but
for reversed bias (V < 0) the current saturates at a very small value IS , unlike forward bias for which the current
can be very large.

The derivation of the Diode equation goes as follows: (1) The thermionic emission of a metal goes like I ∝ e−W/T

where W is the work function. (2) If we attach two metals with different W -s we get a current, until it is counter-
balanced by a contact potential. (3) Similarly, if we attach n-doped semiconducator with p-doped semiconducator
a depletion layer is formed, which implies a potential step W that equals the band gap. (4) If we add forward bias,
the potential at the p becomes lower, namely, it equals W+U with negative U = qV . Accordingly the electrons at
the n-side face a lower potential step, and their density at the p-side of the depletion layer is enhanced by factor
e|q|V /T . (5) Looking at the p-side the current of electrons is proportional to (e|q|V /T − 1). This is the minority
current at the p side and it should be equal to the majority current of the same electrons at the n side. (6) The
same considerations apply if we look on the hole current. The total current is the sum of electron and hole currents
across the junction. Note: this derivation assumes “narrow junction” meaning that there is no enough time for
recombination within the dpeletion region.
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שלה השפופרתית לגרסא תחילה נתיחס הדיודה של הפעולה עקרון את להבין מנת על הדיודה. לפעולת אינטואיטיבי הסבר להלן
זרם. ונוצר האנודה לעבר מואצים מהקטודה שנפלטים האלקטרונים חיובי בממתח בשרטוט. כמתואר ואנודה קתודה שכוללת
אפשר אם (אלקטרונים). מטען נושאי של אחד סוג על מבוסס שהוא כיוון "יוניפולרי" נקרה כזה התקן זרם. אין כמעט הפוך בממתח
במרכז אז חיובי ממתח שמים אם "ביפולרי". התקן מתקבל היה אז (פוזיטרונים), חיוביים מטען נושאי שפולטת אנודה ליצור היה
האנודה של באיזור שהזרם בעוד אלקטרונים, עם בעיקר הוא הזה לאיזור עד מהקתודה שהזרם כך "רקומבינציה", אזור יהיה ההתקן
זה . p מסוג למחצה למוליך n מסוג למחצה מוליך הצמדת ידי על בפועל ממומש ביפולרי התקן פוזיטרונים. עם בעיקר הוא
דיודה על מדברים ואז אור, בצורת להשתחרר יכולה בצומת והחורים האלקטרונים של הרקומבינציה אנרגית . pn junction נקרא

. LED פולטת-אור

====== [4.6] The transistor
הזרם על לשליטה בדומה . (gate) שער באמצעות שלו ההתנגדות על לשלוט שאפשר אלקטרוני כרכיב טרנזיסטור לתאר אפשר
קטנים שינויים האחרון (במקרה אנלוגיים הגברה מעגלי והן דיגיטליים, מיתוג מעגלי הן ליצור מאפשר זה ברז, באמצעות מים בצינור
מסוג טרנזיסטור של המבנה על להרחיב נבחר אך טרנזיסטור, לבנות דרכים מספר ישנן גדול). זרם על שולטים השער במתח
בין זרם לזרום יכול לא ולכן גב אל גב מחוברות דיודות שתי לנו שיש הרי gate מה- נתעלם אם בשרטוט. כמתואר , MOSFET

היפוך. שכבת שתיווצר כך גדול מספיק חיובי בממתח gate ה- את לשים יש זרם לקבל מנת על . drain ה- לבין source ה-
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====== [4.7] Electronics
זרם "ליישר" כדי לשמש יכולה דיודה ה-20. המאה במהלך שהתפתח תחום - האלקטרוניקה של הבניין אבני הם וטרניזסטונים דיודות
את להפריד כדי להיות יכול וגם חשמליים, למכשירים מתח אספקת עבור להיות יכול המתח יישור ישר. לזרם אותו ולהפוך חילופין
בניית לצורך דיגיטליים במעגלים לשמש יכולים טרניזסטורים גבוהה. תדירות בעל נושא" "גל גבי על רדיו למקלט שמשודר הסיגנל
הטרנזיסטור של לשער שמוזן חלש אות אנלוגי: אות של הגברה לצורך לשמש יכולים טרנזיסטורים - אחר בהקשר לוגיים. שערים
כגלאים לשמש יכולים (מוליך/דיודה) שונות בקונפיגורציות למחצה מוליכים . drain ה- לבין source ה- בין חזק זרם על שולט

וכיו"ב. מצלמות עבור לאור

====== [4.8] Superconductors
לעשות אפשר לייזר. של אלומה - קיטוב) אותו עם תנע מצב (אותו מוד באותו פוטונים הרבה לאכלס אפשר - בוזונים הם פוטונים
לשים אפשר אי פאולי. של האיסור חוק - פרמיונים הם אלקטרונים בוזה-אינשטיין). (קונדסציית קרים אטומים עם דומה משהו
שמתווכת אפקטיבית משיכה בגלל נוצרים קופר זוגות ספין). מצב אותו עם תנע מצב (אותו חד-חלקיקי מצב באותו אלקטרונים שני
יש למחצה למוליך בדומה אפס). תנע (נניח מסוים תנע במצב קונדסציה עושים הזוגות השריג. ידי על קונבנציונלי) מוליך (בסופר
של (תהליך מוליכות הסופר תופעת של הסבר אפסית. סבירות בעלת היא זוג שבירת של ארוע נמוכה בטמפרטורה לעירורים. gap
”n” הבסיס מצבי ג'וזפסון בצומת אפסית). סבירות - אחר במומנטום לקונדסציה אחד במומנטום מקונדסציה החלקיקים העברת

רגיל. לוחות קבל של ”n” למצבי בניגוד היטב. מוגדרים קוונטיים מצבים הם

====== [4.9] Josephson Junctions
מצבי הם הקיוביט מצבי כזה במקרה חלקיק. של "ספין" באמצעות זה קונצפטואלית מבחינה קיוביט של ביותר הפשוט המימוש
בסיס. מצבי שני לה שיש מערכת לממש היא פורמאלית, מבחינה זהה אחרת, אפשרות הקורס. בהמשך נדבר זה על - קיטוב
להיות צריך האתר פבריקציה. מבחינת מאתגרת הזו האפשרות אבל למשימה. להתאים יכול אתרים" שני במערכת "חלקיק לכאורה
כיום גבוהות. אנרגיה לרמות עירורים מעשיות) עבודה (בטמפרטורות להזניח אפשר שיהיה מנת על (quantum dot) קטן מאוד
סופר-מוליכים. הם שלו שהלוחות קבל מעין היא כזו צומת ג'וזפסון. צומת באמצעות קיוביט של מימוש היא המובילה הטכנולוגיה
שני. ללוח אחד מלוח שעוברים הקופר זוגות במספר נבדלים הצומת של של ”n” הבסיס מצבי (charge qubit) המקובל במימוש
באופן לממש יחסית שקל תנאי זה זוג-קופר. לפרק שדרושה מהאנרגיה קטנה יותר להיות צריכה הטמפרטורה יעבוד שההתקן כדי

פרקטי.
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[5] Stochastic Dynamics

====== [5.1] The emergence of Stochastic dynamics
The dynamics of a closed isolated particle is described by the quantum Hamiltonian or its classical approximation.
If the particle is not isolated from the environment the dynamics becomes stochastic. In classical language we say
that the interaction with the thermal environment diminishes the average velocity of the particle. In quantum
language we say that the interaction with the thermal environment diminishes the coherences. Consequently we
can describe the dynamics in a reduced phase-space where only the x coordinate matters.

Consider, without loss of generality, two sites n and m that have binding energies En and Em respectively. In the
absence of field a thermal environment is likely to induce transitions with some rate wnm = wmn. In the presence
of field the transitions will be biased. It turns out that

wmn

wnm
= exp

[
En − Em

T

]
(5.1)

where T is called temperature (by this definition it has units of energy).

At thermal equilibrium the probabilities Pn and Pm satisfies the so-called detailed-ballance relations

wmnPn = wnmPm (5.2)

and we deduce that

Pn ∝ e−(1/T )En (5.3)

More generally, if we have many many energy states En, the same reasoning applies. This is called canonical
thermal state.

====== [5.2] Drift and diffusion
Consider transitions between sites of a chain, that are biased by a field F . Given that the spacing between sites
is a, and the temperature is T , we deduce that the ratio between forward and backward transitions is

w+

w−
= exp

[
Fa

T

]
(5.4)

If F is weak, or if a is small (aka ”continuum limit”) we get that w+ ∼ w− ≡ w, while w+ − w− ≈ [(F a)/T ]w.
Below we further analyse the stochastic dynamics of a particle along a chain. From the analysis we conclude that
in the presence of a weak uniform field F the drift velocity is

d

dt
〈x〉 = µF (5.5)

where µ = wa2/T is the so-called mobility, expressed it in terms of the zero field transition rate w, and the lattice
constant a. In contrast with isolated system, here the force induces drift rather than acceleration. We shall also
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show that the mobility is related to the diffusion coefficient via Einstein’s relation:

µ =
1

T
D (5.6)

The diffusion coefficnet D = wa2 determines the spreading via Var(x) = 2Dt.

====== [5.3] Two level/site system
A two site system is the simplest setup for illustration of equilbration process. The sites are labeled as #1 and #2.
Let us assume that the rate w+ of transitions from site #1 and #2 is larger than the rate w− of transitions from
site #2 and #1. Later we use the notations γ = w+ + w− and u = w+ − w−. The dynamics of the probabilities
(P1, P2) is described by a rate equation

d

dt
P =WP , W =

(
−w+ w−

w+ −w−

)
(5.7)

Using the notation S = P2 − P1 for the probability difference, and recalling that P1 + P2 = 1, we get the equation

dS

dt
= −γS + u (5.8)

which implies exponential relaxation towards the equilibrium value Seq = u/γ. If the transitions are induced by
a bath of temperature TB, then Seq corresponds to equilibrium at temperature TB. If we expose the system to
so-called ”work agent”, say a sun that has infinite temperature, then the new rates are w± = w±

B + wA, and the
system will reach an equilibrium-like state that corresponds to a higher temperature. It is important to realize
that the steady state solution features energy flow from the work agent via the system to the bath (and not the
other way around). We say that the energy is dissipated.

====== [5.4] Three level/site system
The three-level system is the simplest setup for illustration of non-equilibrium thermodynamics. For example,
it can be regarded as a model for a 3-level laser heat engine (see figure) or a mathematically equivalent rolling
marble machine (see figure). The transitions are induced by a hot bath (TH) and by a cold bath (TC). In the first
example photons can be either emitted or absorbed by a work agent (TA =∞). The second example is further
discussed below. Either way the dynamics is generated by the matrix

W =

−γ1 w−
C wA

w+
C −γ2 w−

H

wA w+
H −γ3

 (5.9)

where γ1 = w+
C + wA, and γ2 = w−

C + w+
H , and γ3 = w−

H + wA. The affinity of the cycle is defined as

Φ = E1;2 + E2;3 + E3;1 = ln
[
w13w32w21

w12w23w31

]
=

ωC

TC
− ωH

TH
(5.10)

In order to have a working engine cycle we require Φ > 0, which implies (ωC/ωH) > (TC/TH). The efficiency of
the engine is

η ≡ ωH − ωC

ωH
< 1− TC

TH
(5.11)
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The limiting efficiency is the so-called Carnot efficiency. We can solveWP = 0 to find the probabilities (P1, P2, P3)
at steady state. Then we can find the probability current I(Φ) = (P3 − P1)wA at steady state, and the power output
of the engine (ωH − ωC)I(Φ).

Work agent

Hot bath

Cold bath

(3)

(1)

(2)

ωC

ωH

(3)

(2)

(1)

Work agent.– The mechanical rolling marble machine possibly clarifies better the concept of work agent. Here
the task of the engine is to pull up a weight. The hot bath induces, with some probability, a transition of the
marble form position ”2” to position ”3”. From there, with some probability, it gets into a car of the roller coaster
wheel. Then is rolls (trapped in the car) to position ”1”. The wheel pulls up the weight. In order to maximize
efficiency it is designed such that the potential energy of the whole system (including the weight) is the same at
”3” and at ”1”. Consequently there is an equal probability to do the ride from ”1” to ”3”. However, considering
the full cycle, the condition Φ > 0 ensures that the net work is positive.

====== [5.5] The N site ring
The dynamics of a particle in an N site ring is generated by the matrix

W =


−γ w− 0 ... w+

w+ −γ w− 0 ...
0 w+ −γ w− ...
... ... ... ... w−

w− 0 ... w+ −γ

 = −γ1+ w+D + w−D−1 (5.12)

We have assumed that all the anti-clockwise rates equal w+, and that all the clockwise rates equal w−. Accordingly
γ = w+ + w−. The matrices D and D−1 generate anti-clockwise and clockwise displacements respectively. The
drift velocity is

d

dt
〈x〉 = [w+ − w−]a (5.13)
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where a is the lattice spacing. The proof is as follows:

d

dt
〈x〉 =

d

dt

∑
n

Pnxn =
∑
n

xnWnmPm =
∑
n

xn
[
w+Pn−1 + w−Pn+1 − γPn

]
=

∑
n

[
w+(xn+1 − xn)Pn + w−(xn−1 − xn)Pn

]
= (w+ − w−)a (5.14)

Irrespective of drift, we have diffusion. Say that we start a distribution at x = 0. For simplicity let us assume that
w− = w+ = w. We get that the rate of growth of the spreading is

d

dt

〈
x2

〉
= 2wa2 ≡ 2D (5.15)

More generally, if the drift velocity is non-zero, we can prove that

Var(x) =
〈
x2

〉
− 〈x〉2 = 2Dt (5.16)

where D = (1/2)[w+ + w−]a2 is called the diffusion coefficient.

====== [5.6] Relaxation modes
The steady state of the stochastic system is found from the equation WP SS = 0. The relaxation modes are the
eigenstates, namely Wψ = −λψ, where {−λ} are the eigenvalues. Note the sign convention, and note that the
λ = 0 mode is the steady-state. An arbitrary initial state can be expanded in this basis, and consequently the
solution of the rate equation is

P (t) = eWtP (0) = P SS +
∑
λ 6=0

Cλ e
−λt ψ(λ) (5.17)

As an example we consider theN site ring. The eigenstates ofW are the eigenstates of the displacement operator D.
Those eigenstates are called momentum states. Before we proceed note about notations: It is convenient to write
the column representation ψn as a function, namely ψn ≡ ψ(xn). It is easily verified that the solution of Dψ = λ̃ψ
are the functions ψ(x) = eikx. Operating on them with D we get Dψ(x) = eik(x−a). We deduce that the eigenvalues
are λ̃ = e−ika. With standard normalization the momentum states are written as follows:

|k〉 =
1√
N

∑
n

eikxn |n〉 (5.18)

In the present context the momentum states have formal (non-physical) meaning. They are useful in order to write
the solution of the rate equation as a sum of the |k=0〉 steady state and the |k 6=0〉 decaying relaxation modes.
Namely,

Pn(t) =
∑
k

Ck e
−λkt eikxn (5.19)

where

λk = γ − w+e−ika − w−eika = γ[1− cos(ka)] + iv̄ sin(ka) (5.20)

We shall discuss further the k states in a later lecture.
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Mathematics

[6] Algebra
The required background for this course: Complex numbers; Familiarity with elementary functions; and Linear
algebra.

====== [6.1] Complex numbers
Real number x is the coordinate of a point along an axis, aka ”the real axis”. Complex number z = (a, b) is
the coordinate of a point in a the so called ”complex plane”. Common notation i ≡ (0, 1), hence z = a+ ib.
Polar representation in terms of (r, φ). In multiplication the r-s are multiplied and the φ-s are added. Hence
i2 = −1. Complex conjugation z∗ = a− ib, which means in polar coordinates φ 7→ −φ. The absolute value is
r = |z| =

√
z∗z =

√
a2 + b2. From Taylor expansion we get the Euler formula eiφ = cos(φ) + i sin(φ), hence

z = a+ ib = r cos(φ) + ir sin(φ) = reiφ (6.1)

The N roots of the equation zN = 1 are z = e−i(2π/N)n, where n is an integer modulo N . The Fundamental
theorem of algebra tells us that any polynomial of degree N has N roots, and can be factored accordingly. A
quadratic equation with real coefficients might have two real root or two complex-conjugated roots.

====== [6.2] Differential equations
We encounter in this course two differential equations. One can be regrded as describing population dynamics, or
stochastic relaxation, or the dynamics of an RC circuit:

Initial condition: f(0) = f0 (6.2)

Equation: df

dt
= −λf + c (6.3)

Solution: f(t) =
c

λ
+
(
f0 −

c

λ

)
e−λt (6.4)

The other equation of interest describes harmonic motion:

Equation: d2f

dt2
= −ω2f (6.5)

Solution: f(t) = a cos(ωt) + b sin(ωt) = |A| cos(φ− ωt) = <
[
Ae−iωt

]
(6.6)

where the A = a+ ib = |A|eiφ is the complex amplitude. The a and the b are determined by the initial ”position”
and the initial ”velocity” respectively. Namely, f(0) = a and ḟ(0) = ωb.

====== [6.3] Linear algebra
In Euclidean geometry, three dimensional vectors can be written as:

u⃗ = u1e⃗1 + u2e⃗2 + u3e⃗3 (6.7)
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Using Dirac notation we can write the same as:

|u〉 = u1|e1〉+ u2|e2〉+ u3|e3〉 (6.8)

We say that the vector has the representation:

|u〉 7→ ui =

u1u2
u3

 (6.9)

The operation of a linear operator A is written as |v〉 = A|u〉 which is represented by:v1v2
v3

 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

u1u2
u3

 (6.10)

or shortly as vi = Aijuj . Thus a linear operator is represented by a matrix:

A 7→ Aij =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (6.11)

====== [6.4] Inner product
The length of a vector is a generalization of the ”absolute value” of complex number. Namely

|u|2 =
∑
j

|uj |2 =
∑
j

u∗juj (6.12)

More generally we define an inner product

〈u|v〉 =
∑
j

u∗jvj = u∗1v1 + u∗2v2 + u∗3v3 + ... (6.13)

Accordingly |u| =
√
〈u|u〉. A basis is called orthonormal if

〈ei|ej〉 = δi,j (6.14)

It follows that the representation of a given vector can be calculated by pojecting it on the basis-vectors:

uj = 〈ej |u〉 (6.15)

For the matrix elements it follows that

Aij = 〈ei|A|ej〉 (6.16)
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====== [6.5] Hilbert space
Later we are going to say that the pure-states of a system form a linear vector space with an inner-product. The
inner-product tells us whether the states are orthogonal. We call such space Hilbert space. We shall not use the
term ”vector”, instead we shall use the term ”state”. Vectors that differ by normalization or by phase factor (aka
gauge) define the same state. More elegant phrasing is to say that pure states of the system have one-to-one
correspondence with projectors over Hilbert space.

====== [6.6] Completeness of the basis
In Dirac notation the expansion of a vector is written as:

|u〉 = |e1〉〈e1|u〉+ |e2〉〈e2|u〉+ |e3〉〈e3|u〉 (6.17)

which implies

1 = |e1〉〈e1|+ |e2〉〈e2|+ |e3〉〈e3| (6.18)

Above 1 7→ δij stands for the identity operator, and P j = |ej〉〈ej | are called ”projector operators”,

1 7→

1 0 0
0 1 0
0 0 1

 , P 1 7→

1 0 0
0 0 0
0 0 0

 , P 2 7→

0 0 0
0 1 0
0 0 0

 , P 3 7→

0 0 0
0 0 0
0 0 1

 , (6.19)

Now we can define the ”completeness of the basis” as the requirement∑
j

P j =
∑
j

|ej〉〈ej | = 1 (6.20)

From the completeness of the basis it follows e.g. that for any operator

A =

[∑
i

P i

]
A

∑
j

P j

 =
∑
i,j

|ei〉〈ei|A|ej〉〈ej | =
∑
i,j

|ei〉Aij〈ej | (6.21)

====== [6.7] Operators
In what follows we are interested in ”normal” operators that are diagonal in some orthonormal basis. Say that we
have an operator A. By definition, if it is normal, there exists an orthonormal basis {|a〉} such that A is diagonal.
Hence we write

A =
∑
a

|a〉a〈a| =
∑
a

aP a (6.22)

In matrix representation it means:a1 0 0
0 a2 0
0 0 a3

 = a1

1 0 0
0 0 0
0 0 0

+ a2

0 0 0
0 1 0
0 0 0

+ a3

0 0 0
0 0 0
0 0 1

 (6.23)
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It is useful to define what is meant by B̂ = f(Â) where f() is an arbitrary function. Assuming that Â =
∑
|a〉a〈a|,

it follows by definition that B̂ =
∑
|a〉f(a)〈a|. Another useful rule to remember is that if A|k〉 = B|k〉 for some

complete basis k, then it follows by linearity that A|ψ〉 = B|ψ〉 for any vector, and therefore A = B.

With any operator A, we can associate an “adjoint operator” A†. By definition it is an operator that satisfies the
following relation:

〈u|Av〉 = 〈A†u|v〉 (6.24)

If we substitute the basis vectors in the above relation we get the equivalent matrix-style definition

(A†)ij = A∗
ji (6.25)

If A is normal then it is diagonal in some orthonormal basis, and then also A† is diagonal in the same basis. It
follows that a normal operator has to satisfy the necessary condition A†A = AA†. As we show below this is also
a sufficient condition for ”normality”.

We first consider Hermitian operators, and show that they are ”normal”. By definition they satisfy A† = A. If we
write this relation in the eigenstate basis we deduce after one line of algebra that (a∗ − b)〈a|b〉 = 0, where a and b
are any two eigenvalues. If follows (considering a = b) that the eigenvalues are real, and furthermore (considering
a 6= b) that eigenvectors that are associate with different eigenvalues are orthogonal. This is called the spectral
theorem: one can find an orthonormal basis in which A is diagonal.

We now consider a general operator Q. Always we can write it as

Q = A+ iB, with A =
1

2
(Q+Q†), and B =

1

2i
(Q−Q†) (6.26)

One observes that A and B are Hermitian operators. It is easily verified that Q†Q = QQ† iff AB = BA. It follows
that there is an orthonormal basis in which both A and B are diagonal, and therefore Q is a normal operator.

We see that an operator is normal iff it satisfies the commutation Q†Q = QQ† and iff it can be written as a
function f(H) of an Hermitian operator H. We can regard any H with non-degenerate spectrum as providing a
specification of a basis, and hence any other operator that is diagonal in that basis can be expressed as a function
of this H.

Of particular interest are unitary operators. By definition they satisfy U †U = 1, and hence they are ”normal” and
can be diagonalized in an orthonormal basis. Hence their eigenvalues satisfy λ∗rλr = 1, which means that they can
be written as:

U =
∑
r

|r〉eiφr〈r| = eiH (6.27)

where H is Hermitian. This is an example for the general statement that any normal operator can be written as
a function of some Hermitian operator H.
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====== [6.8] Generators
Later we are going to discuss unitary operations that depend on some parameter. For example: D(a) is distance a
displacement; R(Φ) is angle Φ rotation; and U(t) is evolution during time t. Note that D(0) = R(0) = U(0) = 1.
We shall define generators for those operations. For example, for evolution we define U(t) = exp(−itH).

Proof: We assume that the operation, say the evolution, has the so-called group property

U(t2 + t1) = U(t2) U(t1) (6.28)

It follows that

U(t) = [U(t/N)]N (6.29)

where N can be as large as we want. The evolution during an infinitesimal time interval can be written as:

U(dt) = 1̂ +Gdt+O(dt2) ≡ 1̂− idtH+O(dt2) (6.30)

The first equality is a Taylor expansion, or one may say that G is the derivative of U(t). Loosely speaking G is the
”evolution per unit of time”. From U †U = 1 it follows that G† = −G. The physics community does not like anti-
hermitian operators, and therefore we define H ≡ iG, that satisfies H† = H. By multiplying many infinitesimal
time steps we get:

Û = (1− idtH) · · · (1− idtH)(1− idtH) =

(
1− i t

N
H
)N

= e−itH (6.31)

In the last step we have taken the N →∞ limit, and used the definition of the exponential function, Namely,
exp(t) = lim(1 + t/N)N , that follows from the assumed multiplicative property exp(t1) exp(t2) = exp(t1 + t2).

====== [6.9] Conventions regarding notations
In Mathematica there is a clear distinction between dummy indexes and fixed values. For example f(x_) = 8
means that f(x) = 8 for any x, hence x is a dummy index. But if x = 4 then f(x) = 8 means that only one
element of the vector f(x) is specified. Unfortunately in the printed mathematical literature there are no clear
conventions. However the tradition is to use notations such as f(x) and f(x′) where x and x′ are dummy indexes,
while f(x0) and f(x1) where x0 and x1 are fixed values. Thus

Aij =

(
2 3
5 7

)
(6.32)

Ai0j0 = 5 for i0 = 2 and j0 = 1

Another typical example is

Tx,k = 〈x|k〉 = matrix (6.33)
Ψ(x) = 〈x|k0〉 = column (6.34)

In the first equality we regard 〈x|k〉 as a matrix: it is the transformation matrix form the position to the momentum
basis. In the second equality we regard the same object (with fixed k0) as a column, or as a ”wave-function”.
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[7] Translations and momentum

====== [7.1] N site system
A site is a location where a particle can be positioned. If we have N = 5 sites it means that we have a 5-
dimensional Hilbert space of quantum states. Later we shall assume that the particle can ”jump” between sites.
For mathematical reasons it is conveneint to assume torus topology. This means that the next site after x = 5 is
x = 1. This is also called periodic boundary conditions.

The standard basis is the position basis. For example: |x〉 with x = 1, 2, 3, 4, 5. So we can define the position
operator as follows:

x̂|x〉 = x|x〉 (7.1)

In this example we get:

x̂ 7→


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 (7.2)

The operation of this operator on a state vector is for example:

|ψ〉 = 7|3〉+ 5|2〉 (7.3)
x̂|ψ〉 = 21|3〉+ 10|2〉

====== [7.2] Translation operators
The one-step translation operator is defined as follows:

D̂|x〉 = |x+ 1〉 (7.4)

For example:

D 7→


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (7.5)

and hence D|1〉 = |2〉 and D|2〉 = |3〉 and D|5〉 = |1〉. Let us consider the superposition:

|ψ〉 = 1√
5
[|1〉+ |2〉+ |3〉+ |4〉+ |5〉] (7.6)
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It is clear that D|ψ〉 = |ψ〉. This means that ψ is an eigenstate of the translation operator (with eigenvalue ei0).
The translation operator has other eigenstates that we will discuss in the next section.

====== [7.3] Momentum states
The momentum states are defined as follows:

|k〉 → 1√
N

eikx (7.7)

k =
2π

N
n, n = integer mod (N)

In the previous section we have encountered the k = 0 momentum state. In Dirac notation this is written as:

|k〉 =
∑
x

1√
N

eikx|x〉 (7.8)

or equivalently as:

〈x|k〉 = 1√
N

eikx (7.9)

while in old fashioned notation it is written as:

ψk
x = 〈x|k〉 (7.10)

where the upper index k identifies the state, and the lower index x is the representation index. Note that if x were
continuous then it would be written as ψk(x).

The k states are eigenstates of the translation operator. This can be proved as follows:

D|k〉 =
∑
x

D|x〉〈x|k〉 =
∑
x

|x+ 1〉 1√
N

eikx =
∑
x′

|x′〉 1√
N

eik(x′−1) = e−ik
∑
x′

|x′〉 1√
N

eikx′ = e−ik|k〉 (7.11)

Hence we get the result:

D|k〉 = e−ik|k〉 (7.12)

and conclude that |k〉 is an eigenstate of D̂ with an eigenvalue e−ik. Note that the number of independent
eigenstates is N . For exmaple for a 5-site system we have eik6 = eik1 .

====== [7.4] Momentum operator
The momentum operator is defined as follows:

p̂|k〉 ≡ k|k〉 (7.13)
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From the relation D̂|k〉 = e−ik|k〉 it follows that D̂|k〉 = e−ip̂|k〉. Therefore we deduce the operator identity:

D̂ = e−ip̂ (7.14)

We can also define 2-step, 3-step, and a-step translation operators as follows:

D̂(2) = (D̂)2 = e−i2p̂ (7.15)
D̂(3) = (D̂)3 = e−i3p̂

D̂(a) = (D̂)a = e−iap̂

====== [7.5] The algebra of the generator
The following identity reflects the idea that p̂ is the generator of a displacements:

[x̂, D̂(a)] = aD̂ (7.16)

In order to prove it, let us see that the identity is correct for any basis state, and hence it is correct for any state.

[x̂,D] |x0〉 = (x̂D −Dx̂) |x0〉 = x̂D |x0〉 −Dx̂ |x0〉 = x̂ |x0+a〉 − x0D |x0〉
= (x0+a) |x0+a〉 − x0 |x0+a〉 = a |x0+a〉 = aD |x0〉

The infinitesimal version of this relation is

[x̂, p̂] = i (7.17)

And a more general statement that can be proved for any function g(p) is

[x̂, g(p̂)] = ig′(p) (7.18)

The dual relation for any function f(x) is

[f(x̂), p̂] = if ′(x) (7.19)
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[8] Rotations and Spin

====== [8.1] Groups
A group is a set of elements with a binary operation:

• The operation is defined by a multiplication table for τ ∗ τ ′.
• There is a unique identity element 1.
• Every element has an inverse element such that ττ−1 = 1
• Associativity: τ ∗ (τ ′ ∗ τ ′′) = (τ ∗ τ ′) ∗ τ ′′

Commutativity does not have to be obeyed: this means that in general τ ∗ τ ′ 6= τ ′ ∗ τ . In practice, a group that
has a finite number of elements, can be defined via a multiplication table. But this is strategy is not practical if
we are dealing with a group that has infinite number of elements. Such is the group of rotations SO(3).

For a Lie group, we assume that each element τ of the group is labeled by a set of parameters that serve as
coordinates. Therefore we can regard the set of elements as a set of points that form a manifold. By convention
we label the identity 1 as τ = (0, 0, ..., 0), and refer to it as the origin of the manifold. For SO(3) the standard
labeling of rotations is Φ⃗ = (Φx,Φy,Φz), and the manifold is a ball of radius π.

In order to provide a tangible definition for the group operation, each element of the group is regarded as a
transformation over some space:

element of the group = τ = (τ1, τ2, ..., τd) (8.1)
corresponding transformation = U(τ ) (8.2)

the group property = U(τ ′)U(τ ′′) = U(τ ′ ∗ τ ′′) (8.3)

The association τ 7→ U(τ ) is called a realization. We use the notations τ ∗ τ ∗ ... ∗ τ ≡ nτ , where n is the number
of repetitions. Accordingly U(0) = 1, and U(nτ) = U(τ)U(τ)...U(τ) = U(τ)n. The crucial observation for a Lie
group is that we can generate large transformations from infinitesimal transformations. Thus it is meaningful to
define a ray of elements as U(ατ) where α is a real number. For SO(3) a ray of elements includes all the rotations
around the same axis.

====== [8.2] Realizations and Representations
As defined above, a realization means that we regard each element of the group as an operation over a space.
We treat the elements as transformations. Below we discuss the possibility of finding a realization that consists
of linear transformations. Such transformations are represented by matrices. Consequenctly, with each element
τ of the group, we associate a matrix Uij(τ ). The “multiplication table” of the matrices is required to be be
in one-to-one correspondence to the multiplication table of the elements of the group. Below we ”soften” this
requirement, being satisfied with having a ”multiplication table” that is the same ”up to a phase factor”:

U(τ ′ ∗ τ ′′) = ei(phase)U(τ ′)U(τ ′′) (8.4)

It is natural to consider realizations that consist of orthogonal transformations over a real space, or unitary
transformations over a complex space. Any realization using a linear transformations provides a “representation”
once a basis is chosen: linear transformations are represented by matrices.

Finding a ”representation” for a group is very useful: the operative meaning of ”multiplying group elements”
becomes ”multiplying matrices”. This means that we can deal with groups using linear algebra tools.
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====== [8.3] The rotation group SO(3)
The rotation group SO(3) is a non-commutative group. That means that the order of rotations is important. Its
defining representation consists of all the real unitary matrices (aka Orthogonal matrices) that have determinant
that equals unity. Such matrices rotate vectors in the Euclidean 3D space, without changing their length. The
positivity of the determinant implies that we excluded reflections (mirror operations) from the group.

An element of SO(3) is parameterized by

Φ⃗ ≡ Φn⃗ = (Φx,Φy,Φz) (8.5)

where Φ is the angle of rotation, and n⃗ is a unit vector that indicates the axis of rotation. In spherical coordinates

n⃗ = (sin θ cosφ, sin θ sinφ, cos θ) (8.6)

It is trivial to write SO(3) matrix that represent rotation around the Z axis in the standard basis:

R(Φe⃗z) =

cos(Φ) − sin(Φ) 0
sin(Φ) cos(Φ) 0

0 0 1

 (8.7)

For a small rotation:

R(δΦe⃗z) =

 1 −δΦ 0
δΦ 1 0
0 0 1

 = 1̂ + δΦ

0 −1 0
1 0 0
0 0 0

 = 1̂− iδΦMz (8.8)

Thus, the generator of rotations around the Z axis is

Mz =

0 −i 0
i 0 0
0 0 0

 (8.9)

We can find the other generators in the same way:

Mx =

0 0 0
0 0 −i
0 i 0

 , My =

 0 0 i
0 0 0
−i 0 0

 (8.10)

The way to construct a general rotation matrix (proof below) is

R(Φ⃗) = e−iΦMn (8.11)

where the generator of rotation around the n⃗ axis is

Mn = nxMx + nyMy + nzMz ≡ n⃗ · M⃗ (8.12)
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It is important to realize that contrary to translation we are dealing here with a non-commutative group, and
therefore in general

R(Φ⃗) ≡ R(Φ⃗′′)R(Φ⃗′) 6= R(Φ⃗′)R(Φ⃗′′) 6= R(Φ⃗′ + Φ⃗′′) (8.13)

Given Φ′ and Φ′′ there is no trivial way to find Φ. For example if we rotate a body 90deg around the X axis, and
after that 90deg around the Y axis, the outcome is not a rotation around the the n⃗ ∝ (1, 1, 0) axis, but rather a
120deg rotation around the n⃗ ∝ (1, 1,−1) axis... The way to make such a deduction is to calculate the matrices
R(Φ⃗′′) and R(Φ⃗′), then to multiply them to get equivalent rotation matrix R, and then to extract Φ⃗ by writing
the result in terms of the generators as R = e−iΦMn .

====== [8.4] Proof of Mn = n⃗ · M⃗
The following proof is based on the observation that given matrices A and B, the product eAeB is not the same
as eA+B, because the multiplication of the matrices is not commutative. On the other hand for arbitrarily small ϵ
the equality eϵAeϵB = eϵ(A+B) is arbitrarily accurate, as implied by first-order Taylor expansion of the exponent.

Given that we know how to construct rotation matrices say around the X and the Y axes, we would like to have a
recipe to construct a general rotation matrix around an arbitrary axis n⃗. For that we need an expression for the
generator Mn. We would like to prove that Mn = n⃗ · M⃗ .

Without loss of generality, let us assume that Φ⃗ = (Φx,Φy, 0). As already explained, the naive prescription for
construction a general rotation matrix is wrong. Namely, in general, the decomposition R(Φ⃗) = R(Φxe⃗y)R(Φy e⃗x)
is not valid. On the other hand, for a very small angle Φ := Φ/N , where N is arbitrarily large, this equality is
arbitrarily accurate. Equipped with this observation we deduce the following

R(Φ⃗) =
[
R(Φ⃗/N)

]N
(8.14)

= [R(Φy/N) R(Φx/N)]N (8.15)
= [exp (−i(Φy/N)My) exp (−i(Φx/N)Mx)]

N (8.16)
= [exp (−i(Φy/N)My − i(Φx/N)Mx)]

N (8.17)
= exp (−i(ΦxMx +ΦyMy)) (8.18)

= exp
(
−iΦ⃗ · M⃗

)
= exp (−iΦMn) (8.19)

The logic of the proof is illustrated using the following schematic figure:
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====== [8.5] The Lie Algebra
In general, the result of eAeB is not eA+B. The result depends on the commutator of the matrices

[A,B] ≡ AB −BA (8.20)

Note that [B,A] = −[A,B]. In the present context the multiplication table of the rotation-matrices is determined
by the commutators of the generators. This is the so-called Lie Algebra of the group:

[Mx,My] = iMz (8.21)
[My,Mz] = iMx (8.22)
[Mz,Mx] = iMy (8.23)

These commutation relations serve as the DNA of the rotation group. Namely, it is the starting point for the
construction of other representations of the group, as illustrated in the next section.

====== [8.6] The dim=2 representation
We have defined the rotation group by the Euclidean realization over 3D space. Obviously, this representation can
be used to make calculations (”to multiply rotations”). The advantage is that it is intuitive, and there is no need
for complex numbers. The disadvantage is that they are 3× 3 matrices with inconvenient algebraic properties, so
a calculation could take hours. It would be convenient if we could ”multiply rotations” with simple 2×2 matrices.
In other words, we are interested in a dim=2 representation of the rotation group. The mission is to find three
simple 2× 2 matrices that satisfy the same Lie Algebra:

[Sx, Sy] = iSz (8.24)
[Sy, Sz] = iSx (8.25)
[Sz, Sx] = iSy (8.26)

There is a systematic approach for building all the representations of the rotation group. In the present lecture,
we simply find the requested representation by guessing. First we recall the definition of the Pauli matrices

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(8.27)

Any 2×2 matrix can be written as a linear combination of these 4 matrices. In particular all the linear combinations
σn = n⃗ · σ⃗, where n⃗ is a unit vector, have the property σ2n = 1, and therefore have the eigenvalues ±1, which
means that they are all similar to σz. We also note that multiplication of different Pauli matrices is very simple,
namely σxσy = iσz, and similarly for all the cyclic permutations. Note also that for anti-cyclic multiplication we
have σyσx = −σxσy. It follows that the matrices

Sx =
1

2
σx, Sy =

1

2
σy, Sz =

1

2
σz (8.28)

satisfy the same commutation relations as those of (Mx,My,Mz). Therefore we can use them to generate a dim=2
representation of the rotation group. We construct the rotation matrices using the formula:

R(Φ⃗) = e−iΦ⃗·S⃗ (8.29)



45

The matrices that are generated necessarily satisfy the group multiplication table.

====== [8.7] The calculation of rotation matrices
The calculation of a 2× 2 rotation matrix is extremely simple. All the even powers of a given Pauli matrix are
equal to the identity matrix, while all the odd powers are equal to the original matrix. From this (using Taylor
expansion and separating into two partial sums), we get the result:

R(Φ⃗) = R(Φn⃗) = e−iΦSn = e−i(Φ/2)σn = cos(Φ/2)1̂− i sin(Φ/2)σn (8.30)

where σn = n⃗ · σ⃗, and Sn = (1/2)σn is the generator of a rotation around the n⃗ axis. Of particular interest are
rotations around the Z axis and around the Y axis:

R(Φe⃗z) = e−iΦSz =

(
e−iΦ/2 0

0 eiΦ/2

)
(8.31)

R(Φe⃗y) = e−iΦSy =

(
cos(Φ/2) − sin(Φ/2)
sin(Φ/2) cos(Φ/2)

)
(8.32)

The analogous formula for constructing a 3× 3 rotation matrix is somewhat more complicated:

R(Φ⃗) = R(Φn⃗) = e−iΦMn = 1 + (cos(Φ)− 1)M2
n − i sin(Φ)Mn (8.33)

where Mn = n⃗ · M⃗ is the generator of a rotation around the n⃗ axis. The proof is based on a Taylor expansion.
We notice that M3

z =Mz, from this it follows that for all the odd powers Mk
z =Mz, while for all the even powers

Mk
z =M2

z where k > 0. The same properties apply to any Mn, because all the rotations are ”similar” (similarity
transformation represents a change of basis).

====== [8.8] An example for multiplication of rotations
Let us make a 90o rotation R(900ez) around the Z axis, followed by a 90o rotation R(900ey) around the Y axis. We
would like to know what this sequence gives. Using the dim=3 Euclidean representation requires multiplication
of 3× 3 matrices, so we prefer to do the calculation with the simpler dim=2 representation.

R(Φ) = cos(Φ/2)1̂− i sin(Φ/2)σn (8.34)

R(900ez) =
1√
2
(1̂− iσz)

R(900ey) =
1√
2
(1̂− iσy)

Hence

R = R(900ey)R(90
0ez) =

1

2
(1− iσx − iσy − iσz) (8.35)

where we have used the fact that σyσz = iσx. We can write this result as:

R = cos 120
o

2
− i sin 120o

2
n⃗ · σ⃗ (8.36)
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where n = 1√
3
(1, 1, 1). This defines the equivalent rotation which is obtained by combining the two 90o rotations.

====== [8.9] Polarization states of Spin 1/2

We now discuss the physical interpretation of the ”states” that the s = 1/2 matrices rotate. Any state of ”spin
1/2” is represented by a vector with two complex number. That means we have 4 parameters. After gauge and
normalization, we are left with 2 physical parameters which can be associated with the polarization direction
(θ, φ). Thus it makes sense to represent the state of spin 1/2 by an arrow that points to some direction in space.

The eigenstates of Sz do not change when we rotate them around the Z axis (aside from a phase factor). Therefore
the following interpretation comes to mind:

∣∣∣∣m = +
1

2

〉
= |z⃗〉 = | ↑〉 7→

(
1
0

)
(8.37)∣∣∣∣m = −1

2

〉
= |←z 〉 = | ↓〉 7→

(
0
1

)
(8.38)

This interpretation is confirmed by rotating the ”up” state by 180 degrees, and getting the ”down” state.

R = e−iπSy =

(
0 −1
1 0

)
(8.39)

We see that:(
1
0

)
; 1800 ;

(
0
1

)
; 1800 ; −

(
1
0

)
(8.40)

With two rotations of 180o we get back the ”up” state, with a minus sign. Optionally one observes that

e−i2πSz = e−iπσz = −1 (8.41)

and hence by similarity this holds for any 2π rotation. We see that the representation that we found is not a
one-to-one representation of the rotation group. It does not obey the multiplication table in a one-to-one fashion!
In fact, we have found a representation of SU(2) and not SO(3). The minus sign has a physical significance.
In a two slit experiment it is possible to turn destructive interference into constructive interference by placing a
magnetic field in one of the paths. The magnetic field rotates the spin of the electrons. If we induce 360o rotation,
then the relative phase of the interference change sign, and hence constructive interference becomes destructive
and vice versa. The relative phase is important! Therefore, we must not ignore the minus sign.

It is important to emphasize that the physical degree of freedom that is called ”spin 1/2” cannot be visualized as
a arising from the spinning of small rigid body around some axis like a top. If it were possible, then we could say
that the spin can be described by a wave function. In this case, if we would rotate it by 360o we would get the
same state, with the same sign. But in the representation we are discussing we get minus the same state. That is
in contradiction with the definition of a (wave) function as a single valued object.

We can get from the ”up” state all the other possible states merely by using the appropriate rotation matrix. In
particular we can get any spin polarization state by combining a rotation round the Y axis and a rotation round



47

the Z axis. The result is:

|n⃗θ,φ〉 = R(φ)R(θ)| ↑〉 = e−iφSze−iθSy | ↑〉 7→
(

e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)
(8.42)

that can be written in Dirac notations as

|n⃗θ,φ〉 = e−iφ/2 cos(θ/2) |↑〉+ eiφ/2 sin(θ/2) |↓〉 (8.43)

or in different gauge as

|n⃗θ,φ〉 = cos(θ/2) |↑〉+ eiφ sin(θ/2) |↓〉 (8.44)
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Quantum Mechanics

[9] The evolution of quantum mechanical systems

====== [9.1] The evolution operator and the Hamiltonian
Consider a particle in an N site system. If we redefine the first basis state as |1̃〉 = −8|1〉 we get a non-orthonormal
basis, and therefore not convenient for practical mathematical calculations. Explanation: if we represent the state
|ψ〉 as a linear combination of normalized basis vectors |ψ〉 =

∑
j ψj |j〉, then we can find the coefficients of the

combination by using the formula ψi = 〈i|ψ〉.

Even if we decide to work with a set of orthonormal states, still there is some freedom left which is called ”gauge
freedom” or ”phase freedom”: multiplying a state with a phase factor does not imply a different state, ρ stays the
same, and hence all physical expectation values remain the same too. Example: The spin states | ↑〉 and eπ

8
i| ↑〉

are represented by the same polarization vector, or optionally by the same ρ.

From the superposition principle, and from the above remarks regarding the normalization, it follows that the
evolution in quantum mechanics is described by a unitary operator:

|ψt=0〉 → |ψt〉 (9.1)
|ψt〉 = U |ψt=0〉

It is assumed here that the system is isolated. In order to simplify the discussion below we further assume
that the external fields are constant in time. In such a case, the evolution operator has the group property
U(t2 + t1) = U(t2) U(t1). It follows (see section 5.8) that the evolution operator can be written as

U(t) = e−itH (9.2)

where H, the generator of the evolution, is called Hamiltonian.

====== [9.2] The Schrödinger Equation
Consider the evolution of a pure state ψt = Uψt=0. From the rerlation ψt+dt = (1− idtH)ψt it follows that

dψ

dt
= −iHψ (9.3)

This is the Schrödinger equation. We have allowed ourselves above to use sloppy notations (the ”ket” has been
omitted). One should realize that the Schrödinger equation reflects the definition of the Hamiltonian as the
generator of the evolution.

====== [9.3] Stationary States (the ”Energy Basis”)
We can find the eigenstates |n〉 and the eigenvalues En of a Hamiltonian, which is called diagonalization:

H|n〉 = En|n〉 (9.4)
U |n〉 = e−iEnt|n〉 (9.5)
U → δn,me−iEnt (9.6)
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Using Dirac notations:

〈n|U |m〉 = δnme−iEnt (9.7)

If we prepare a superposition of basis states:

|ψt=0〉 =
∑
n

ψn |n〉 (9.8)

we get after time t

|ψ(t)〉 =
∑
n

e−iEntψn |n〉 (9.9)

====== [9.4] How do we construct the Hamiltonian?
We construct the Hamiltonian from ”symmetry” considerations. In the next lecture our object will be to show
that the Hamiltonian of a non-relativistic particle is of the form:

H =
1

2m(p−A(x))2 + U(x) (9.10)

In this lecture we discuss a simpler case: the Hamiltonian of a particle in a two-site system. We make the following
assumptions about the two-site dynamics:

• The system is symmetric with respect to reflection.
• The particle can move from site to site.

These two assumptions determine the form of the Hamiltonian. In addition, we will see how ”gauge” considerations
can make the Hamiltonian simpler, without loss of generality.

In advance we note that because of gauge considerations, the Hamiltonian can only be determined up to a constant.

H → H+ ϵ01̂ (9.11)

Namely, if we add a constant to a Hamiltonian, then the evolution operator only changes by a global phase factor:

U(t) → e−it(H+ϵ01̂) = e−iϵ0t e−itH (9.12)

This global phase factor can be gauged away by means of time dependent gauge transformation. We shall discuss
gauge transformations in the next sections.
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====== [9.5] The Hamiltonian of a two-site system
It would seem that the most general Hamiltonian for a particle in a two-site system includes 4 parameters:

H =

(
ϵ1 ce−iϕ

ceiϕ ϵ2

)
(9.13)

The first observation is that thanks to gauge freedom we can define a new basis such that ϕ = 0. The new basis is

|1̃〉 = |1〉 (9.14)
|2̃〉 = eiϕ|2〉

and we see that:

〈2̃|H|1̃〉 = e−iϕ〈2|H|1〉 = e−iϕceiϕ = c (9.15)

Next we can make change the Hamiltonian by a constant ϵ0. This can be regarded as gauge transformation in
time. This means that the basis in time t is identified as |1̃〉 = exp(−iϵ0t)|1〉 and |2̃〉 = exp(−iϵ0t)|2〉. In this time
dependent basis the diagonal matrix elements of the Hamiltonian becomes ϵ̃1 = ϵ1 − ϵ0 and ϵ̃2 = ϵ2 − ϵ0. It should
be emphasized that on physical grounds one cannot say whether the old or new basis is “really” time dependent.
All we can say is that the new basis is time dependent relative to the old basis. This is just another example of
the relativity principle.

The bottom line is that, without loss of generality, we can set ϕ = 0 and write the most general Hamiltonian of a
two site systems with just two physical parameters:

H =

(
ϵ c
c 0

)
= cσ1 + (ϵ/2)σ3 + const = h⃗ · σ⃗ + const = hσn + const (9.16)

where h⃗ = (c, 0, ϵ/2), and h =
√
c2 + (ϵ/2)2, such that h⃗ = hn⃗, and σn = n⃗ · σ⃗. The matrices σ1 and σ3 and in

general σn are known as the Pauli matrices. They satisfy σ2
n = 1, and therefore have eigenvalues ±1. It follows

that the eigenvalues of H are ±h+ const.

====== [9.6] The evolution of a two-site system
For the purpose of demonstration we further assume the the two-site system has a reflection symmetry. This
implies ϵ = 0. We are left with a single parameter Hamiltonian: In a future lecture we will see that the hopping
frequency c is just a different (optional) was to specify the inertial mass of the particle. The eigenstates of the
mirror symmetric Hamiltonian are the states that are symmetric or anti-symmetric with respect to reflection:

|+〉 =
1√
2
(|1〉+ |2〉) (9.17)

|−〉 =
1√
2
(|1〉 − |2〉) (9.18)

The Hamiltonian in the new basis is:

H =

(
c 0
0 −c

)
≡

(
E+ 0
0 E−

)
(9.19)



51

Let us assume that we have prepared the particle in the first site:

|ψt=0〉 = |1〉 =
1√
2
(|+〉+ |−〉) (9.20)

The state of the particle, after time t will be:

|ψt〉 =
1√
2
(e−ict|+〉+ e−i(−c)t|−〉) = cos(ct)|1〉 − i sin(ct)|2〉 (9.21)

We see that a particle in a two-site system makes coherent oscillations between the two sites. In particular the
probability to find it in the initial site is:

P (t) = | cos(ct)|2 =
1

2
[1 + cos(Ωt)] (9.22)

where the frequency of oscillations is Ω = 2c. This result should be contrasted with classical stochastic evolution
where the probability to be in each site (if we wait long enough time) would become equal. We can repeat the
procedure for a non-symmetric two site system, with the result

Ω = E+ − E− =
√
(2c)2 + ϵ2 (9.23)

Here ± signifies arbitrary indexing of the two eigenstates, namely, |+〉 is the upper orbital and |−〉 is the lower
orbital.

====== [9.7] Expectation value
In a later lecture we clarify the notion of quantum state. A pure quantum preparation is represented in some sense
by a state ψ that provides the information regarding the expected statistics of a measurement: it is the quantum
version of probability function. We might have an interest in a measurement whose aim is to probe whether that
system is in state ϕ. The fundamental postulate of quantum mechanics implies that the probability for that is
provided by the projection formula:

Prob(ϕ|ψ) = |〈ϕ|ψ〉|2 (9.24)

Given an observable A and a state ψ, we define the expectation value 〈A〉 as follows

〈A〉 =
∑
a

Prob(a|ψ) a (9.25)

where |a〉 are the eigenstates of A. From the projection formula it follows that

〈A〉 =
∑
a

|〈a|Ψ〉|2 a (9.26)

Using linear-algebra identities we get the Sandwich formula:

〈A〉 = 〈ψ|A|ψ〉 (9.27)
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In a later lecture we clarify that this formula should be regarded as a special case of a more general formula that
follows from the basic postulate that defines the notion of quantum state.

====== [9.8] Rate of change of the expectation value
Given an Hamiltonian, with any operator Â we can associate an operator B̂,

B̂ = i[Ĥ, Â] (9.28)

such that

d〈Â〉
dt

= 〈B̂〉 (9.29)

proof: From the expectation value formula:

〈Â〉t = 〈ψ(t)|Â|ψ(t)〉 (9.30)

Using the Schrödinger equation, we get

d

dt

〈
Â
〉

=
〈 d
dt
ψ
∣∣∣Â∣∣∣ψ〉+

〈
ψ
∣∣∣A∣∣∣ d

dt
ψ
〉

(9.31)

= i
〈
ψ
∣∣∣HA∣∣∣ψ〉− i〈ψ∣∣∣AH∣∣∣ψ〉 = ...

====== [9.9] The semiclassical limit
For the Hamiltonian H = K(p) + U(x) one obtains

d〈x̂〉
dt

= 〈i[H,x]〉 =
〈
K ′(p̂)

〉
≈ K ′(〈p̂〉) (9.32)

d〈p̂〉
dt

= 〈i[H, p]〉 = −
〈
U ′(x̂)

〉
≈ −U ′(〈x̂〉) (9.33)

where the approximation hold for a particle whose state is represented by a “minimal” wavepacket, meaning that
its position and momentum have very small dispersion. The approximation fails for a particle whose state is
extended in phase-space (superposition of distant locations, etc).

====== [9.10] Beyond the semiclassical limit
Mathematically we can formally regard space (1D for simplicity) as a chain of sites that have separation a. The
particle can hop from site to site. In the mathematical limit a→ 0 we get the standard Newtonian semiclassical
description, where the energy is constant of motion. Consider now a physical potential that divided space into
actual sites of size a, as in a metal. Classically the particle (say electron) cannot hop from site to site because
there are barriers between the sites. But quantum-mechanically we have to think of the electron as wave. Think
of an array of strings in a music instrument. The vibration can move from string to string. This is known as
tunneling. In a metal the electron can hop from orbital of one atom to the same-energy orbital of the next atom,
hence a conduction band is formed.
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[10] Dynamics of an N site system

====== [10.1] Two site system
The simplest non-trivial network that we can imagine is of course a two site system. Without loss of generality
we can write the Hamiltonian with a real hopping amplitude c, namely,

H =

(
ϵ/2 c
c −ϵ/2

)
=

ϵ

2
σz + cσx = Ω⃗ · S⃗ (10.1)

where Ω⃗ = (2c, 0, ϵ). The evolution operator is:

U(t) = e−itĤ = e−i(Ω⃗t)·S⃗ = R(Φ⃗(t)) (10.2)

where Φ⃗(t) = Ω⃗t. This means that the spin makes precession. It is best to represent the state of the spin using
the polarization vector M⃗ = (〈σx〉 , 〈σy〉 , 〈σz〉). Then we can describe the precession using a classical-like ”Bloch
sphere picture”. Considering a symmetric two site system (ϵ = 0) we can find the eigenstates, and then find
the evolution by expanding the initial state at that basis. The frequency of the oscillations equals to the energy
splitting of the eigen-energies. But once (ϵ 6= 0) this scheme becomes very lengthy and intimidating. It is much
easier to use the analogy with spin 1/2. Then it is clear, just by looking at the Hamiltonian that the oscillation
frequency is

Ω =
√

(2c)2 + ϵ2 (10.3)

and hence the eigenenergies are E± = ±Ω/2. Furthermore, it is clear that the precession axis is tilted relative to
the z axis with an angle

θ = arctan(2c/ϵ) (10.4)

Accordingly the eigenstates can be obtained from the ↑ and from the ↓ states by rotating them an angle θ around
the y axis:

|+〉 =
(

cos(θ/2)
sin(θ/2)

)
, |−〉 =

(
− sin(θ/2)
cos(θ/2)

)
(10.5)

If we are interested in studying the dynamics there is no need to expand the initial state in this basis. It is much
easier to write the explicit expression for the evolution operator:

U(t) = R(Φ⃗(t)) = cos(Ωt/2)− i sin(Ωt/2)
[

cos θ σz + sin θ σx

]
(10.6)

Let us assume that initially the system is in the ”up” state. We get that the state after time t is

|ψ(t)〉 = U(t)| ↑〉 =
[

cos(Ωt/2)− i cos θ sin(Ωt/2)
]
| ↑〉 − i

[
sin θ sin(Ωt/2)

]
| ↓〉 (10.7)
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Let us define P (t) as the probability to be found after time t in the same state. Initially we have P (0) = 1. We can
easily find the explicit expression for P (t) without having to do any diagonalization of the Hamiltonian. Rather
we exploit the explicit expression above and get

P (t) =
∣∣∣〈↑ |ψ(t)〉∣∣∣2 = 1− sin2(θ) sin2

(
Ωt

2

)
(10.8)

This result is called the Rabi Formula. We see that in order to have nearly complete transitions to the other site
after half a period, we need a very strong coupling (c � ϵ). In the opposite limit (c � ϵ) the particle tends to
stay in the same site, indicating that the eigenstates are barely affected.

====== [10.2] N site chain
Of particular important is the the standard tight binding model where we have a chain of N sites with near
neighbor hopping. For simplicity we assume periodic boundary conditions, which is like saying that we have a
closed ring. The sites are positioned at x = a× integer. The Hamiltonian, with real hopping amplitudes −c, can
be written as

H = −c(D̂ + D̂−1) + U(x̂) = −2c cos(ap̂) + U(x̂) (10.9)

where D is the one site displacement operator. The definition of the velocity operator is implied by the ”rate of
change formula”, namely

v̂ = i[H, x̂] = ica(D̂ − D̂−1) = 2ca sin(ap̂) (10.10)

Note that for small velocities we have linear dispersion relation v = (1/m)p, where the mass is m = 1/(2ca2).
The small a continuum limit of the above Hamiltonian is the standard non-relativistic Hamiltonian. For a full
presentation of the standard non-relativistic Hamiltonian is 3D, including magnetic field, see lectures 9 and 10 of
arXiv:quant-ph/0605180.

====== [10.3] Applying a force on a particle
Consider particle whose coordinate x describes its position in the lattice or along an axis. Let us add to the
Hamiltonian a term U(x) = −fx. The meaning of such term is that the particle experiences a uniform field of
force. The classical equation of motion ṗ = f implies that the momentum increases, namely p = p0 + ft. Let us
verify that the same result strictly holds also quantum mechanically:

e−iU(x)t |p0〉 = eiftx̂
∑
x

eip0x |x〉 =
∑
x

ei(p0+ft)x |x〉 = |p0 + ft〉 (10.11)

So both quantum mechanics and classical mechanics agree that the momentum is growing. What about the
location of the particle? Here it is important to distinguish between motion along chain and motion along axis.
The dispersion relation is not the same. The equation of motion is ẋ = 2ca sin(ap) in the lattice case, as opposed
to ẋ = (1/m)p in the continuum case. Therefore, instead of getting accelerated motion in space, we get so called
Bloch oscillations, which can be regarded as generalization of two-site Rabi oscillations.

Note that the room-temperature motion of electrons in metals is very different. We have neither acceleration nor
oscillations. Rather we have diffusion and drift, with drift velocity that is proportional to the force. This reflects
stochastic dynamics due to the surrounding environment.

http://arxiv.org/abs/quant-ph/0605180
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[11] Theory of quantum computation

====== [11.1] Motivating Quantum Computation
Present day secure communication is based on the RSA two key encryption method. The RSA method is based
on the following observation: Let N be the product of two unknown big prime numbers p and q. Say that we
want to find are what are its prime factors. The simple minded way would be to try to divide N by 2, by 3, by 5,
by 7, and so on. This requires a huge number (∼ N) of operations. It is assumed that N is so large such that in
practice the simple minded approached is doomed. Nowadays we have the technology to build classical computers
that can handle the factoring of numbers as large as N ∼ 2300 in a reasonable time. But there is no chance to
factor larger numbers, say of the order N ∼ 2308. Such large numbers are used by Banks for the encryption of
important transactions. In the following sections we shall see that factoring of a large number N would become
possible once we have a quantum computer.

Computational complexity: A given a number N can be stored in an n-bit register. The size of the register
should be n ∼ log(N), rounded upwards such that N ≤ 2n. As explained above in order to factor a number which
is stored in an n bit register by a classical computer we need an exponentially large number (∼ N) of operations.
Obviously we can do some of the operations in parallel, but then we need an exponentially large hardware. Our
mission is to find an efficient way to factor an n-bit number that do not require exponentially large resources.
It turns out that a quantum computer can do the job with hardware/time resources that scale like power of n,
rather than exponential in n. This is done by finding a number N2 that has a common divisor with N . Then it is
possible to use Euclid’s algorithm in order to find this common divisor, which is either p or q.

Euclid’s algorithm: There is no efficient algorithm to factor a large number N ∼ 2n. The classical computational
complexity of this task is exponentially large in n. But if we have two numbers N1 = N and N2 we can quite
easily and efficiently find their greater common divisor GCD(N1, N2) using Euclid’s algorithm. Without loss of
generality we assume that N1 > N2. The two numbers are said to be co-prime if GCD(N1, N2) = 1. Euclid’s
algorithm is based on the observation that we can divide N1 by N2 and take the reminder N3 = mod(N1, N2)
which is smaller than N2. Then we have GCD(N1, N2) = GCD(N2, N3). We iterate this procedure generating a
sequence N1 > N2 > N3 > N4 > · · · until the reminder is zero. The last non-trivial number in this sequence is the
greater common divisor.

The RSA encryption method: The RSA method is based on the following mathematical observation. Given
two prime numbers p and q define N = pq. Define also a and b such that ab = 1 mod [(p− 1)(q − 1)]. Then we
have the relations

B = Aa mod [N ] (11.1)
A = Bb mod [N ] (11.2)

This mathematical observation can be exploited as follows. Define

public key = (N, a) (11.3)
private key = (N, b) (11.4)

If anyone want to encrypt a message A, one can use for this purpose the public key. The coded message B cannot
be decoded unless one knows the private key. This is based on the assumption that the prime factors p and q and
hence b are not known.
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====== [11.2] The factoring algorithm
According to Fermat’s theorem, if N is prime, then MN = M mod (N) for any number M(< N). If the ”seed”
M is not divisible by N , this can be re-phrased as saying that the period of the function f(x) =Mx mod (N) is
r = N−1. That means f(x+ r) = f(x). To be more precise the primitive period can be smaller than N (not any
”seed” is ”generator”). More generally if N is not prime, and the seed M has no common divisor with it, then the
primitive period of f(x) is called “the order”.

The quantum computer is a black box that allows to find the period r of a function f(x). How this is done will
be discussed in the next section. Below we explain how this ability allows us to factor a given large number N .

(1) We have to store N inside an n-bit register.

(2) We pick a large number M , so called seed, which is smaller than N . We assume that M is co-prime to N .
This assumption can be easily checked using Euclid’d algorithm. If by chance the chosen M is not co-prime
to N then we are lucky and we can factor N without quantum computer. So we assume that we are not
lucky, and M is co-prime to N .

(3) We build a processor that can calculate the function f(x) = Mx mod (N). This function has a period r
which is smaller than N .

(4) Using a quantum computer we find one of the Fourier components of f(x) and hence its period r. This
means that M r = 1 mod (N).

(5) If r is not even we have to run the quantum computer a second time with a different M . Likewise if ar/2 = −1.
There is a mathematical theorem that guarantees that with probability of order one we should be able to
find M with which we can continue to the next step.

(6) We define Q = M r/2 mod (N). We have Q2 = 1 mod (N), and therefore (Q− 1)(Q+ 1) = 0 mod (N).
Consequently both (Q− 1) and (Q+ 1) must have either p or q as common divisors with N .

(6) Using Euclid’s algorithm we find the GCD of N and Ñ = (Q− 1), hence getting either p or q.

The bottom line is that given N and M an an input, we would like to find the period r of the functions

f(x) =Mx mod (N) (11.5)

Why do we need a quantum computer to find the period? Recall that the period is expected to be of order N .
Therefore the x register should be nc bits, where nc is larger or equal to n. Then we have to make order of 2nc

operations for the purpose of evaluating f(x) so as to find out its period. It is assumed that n is large enough
such that this procedure is not practical. We can of course try to do parallel computation of f(x). But for that
we need hardware which is larger by factor of 2n. It is assumed that to have such computational facility is equally
not practical. We say that factoring a large number has an exponentially complexity.

The idea of quantum processing is that the calculation of f(x) can be done “in parallel” without having to duplicate
the hardware. The miracle happens due to the superposition principle. A single quantum register of size nc can
be prepared at t = 0 with all the possible input x values in superposition. The calculation of f(x) is done in
parallel on the prepared state. The period of f(x) in found via a Fourier analysis. In order to get good resolution
nc should be larger than n so as to have 2nc � 2n. Neither the memory, nor the number of operation, are required
to be exponentially large.
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====== [11.3] The quantum computation architecture
We shall regard the computer as a machine that has registers for memory and gates for performing operations.
The complexity of the computation is determined by the total number of memory bits which has to be used times
the number of operations. In other words the complexity of the calculation is the product memory× time. As
discussed in the previous section classical parallel computation do not reduce the complexity of a calculation. Both
classical and quantum computers work according to the following scheme:

|output〉 = U [input] |0〉 (11.6)

This means that initially we set all the bits or all the qubits in a zero state (a reset operation), and then we
operate on the registers using gates, taking the input into account. It is assumed that there is a well define set
of elementary gates. An elementary gate (such as ”AND”) operates on few bits (2 bits in the case of AND) at a
time. The size of the hardware is determined by how many elementary gates are required in order to realize the
whole calculation.

The quantum analog of the digital bits (”0” or ”1”) are the qubits, which can be regarded as spin 1/2 elements.
These are ”analog” entities because the ”spin” can point in any direction (not just ”up” or ”down”). The set of
states such that each spin is aligned either ”up” or ”down” is called the computational basis. Any other state of a
register can be written a superposition:

|Ψ〉 =
∑

x0,x1,x2,...

ψ(x0, x1, x2...) |x0, x1, x2, ...〉 (11.7)

The architecture of the quantum computer which is requited in order to find the period r of the function f(x) is
illustrated in the figure below. We have two registers:

x = (x0, x1, x2, ..., xnc−1) (11.8)
y = (y0, y0, y2, ..., yn−1) (11.9)

The registers x and y can hold binary numbers in the range x < Nc and y < N̄ respectively, where Nc = 2nc and
N̄ = 2n > N . The y register is used by the CPU for processing mod(N) operations and therefore it requires a
minimal number of n bits. The x register has nc bits and it is used to store the inputs for the function f(x).
In order to find the period of f(x) the size nc of the latter register should be significantly larger compared with
n. Note that that nc = n+ 10 implies that the x range becomes roughly ×1000 larger than the expected period.
Large nc is required if we want to determine the period with large accuracy.

x1

xnc−1

x0

y0
y1

yn−1

...

...

viewerx=00..000

y=00..001 M

FH

We are now ready to describe the quantum computation. In later sections we shall give more details, and in
particular we shall see that the realization of the various unitary operations which are listed below does not
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require an exponentially large hardware. The preliminary stage is to make a ”reset” of the registers, so as to have

|Ψ〉 = |x; y〉 = |0, 0, 0, ..., 0, 0; 1, 0, 0, ..., 0, 0〉 (11.10)

Note that it is convenient to start with y = 1 rather than y = 0. Then come a sequence of unitary operations

U = UFUMUH (11.11)

where

UH = UHadamard ⊗ 1 (11.12)
UM =

∑
x

|x〉〈x| ⊗ U (x)
M (11.13)

UF = UFourier ⊗ 1 (11.14)

The first stage is a unitary operation UH that sets the x register in a democratic state. It can realized by operating
on Ψ with the Hadamard gate. Disregarding normalization we get

|Ψ〉 =
∑
x

|x〉 ⊗ |y=1〉 (11.15)

The second stage is an x controlled operation UM . This stage is formally like a quantum measurement: The x
register is ”measured” by the y register. The result is

|Ψ〉 =
∑
x

|x〉 ⊗ |y=f(x)〉 (11.16)

Now the y register is entangled with the x register. The fourth stage is to perform Fourier transform on the x
register:

|Ψ〉 =
∑
x

[∑
x′

ei
2π
Nc

xx′ |x′〉

]
⊗ |f(x)〉 (11.17)

We replace the dummy integer index x′ by k = (2π/Nc)x
′ and re-write the result as

|Ψ〉 =
∑
k

|k〉 ⊗

[∑
x

eikx|f(x)〉
]
≡

∑
k

pk|k〉 ⊗ |χ(k)〉 (11.18)

The final stage is to measure the x register. The probability to get k as the result is

pk =

∣∣∣∣∣
∣∣∣∣∣∑

x

eikx|f(x)〉
∣∣∣∣∣
∣∣∣∣∣
2

(11.19)

The only non-zero probabilities are associated with k = integer× (2π/r). Thus we are likely to find one of these
k values, from which we can deduce the period r. Ideally the error is associated with the finite length of the x
register. By making the x register larger the visibility of the Fourier components becomes better.
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====== [11.4] Elementary qubit quantum gates
Classical operations can be constructed using single bit NOT gates, and two-bit AND gates. Similarly, quantum
operations can be constructed using single qubit operations (rotations), and two-qubit CNOT gates. We review
below the common gates that are used, e.g. in the IBM composer.

The single qubit gates can be regarded as spin rotations. It is useful to define the following notations for the
observable that ‘measures’ the state of the qubit in the standard basis:

Q =

(
0 0
0 1

)
=

1

2
(1− Z) = |1〉〈1| (11.20)

The notations X,Y, Z are used for the Pauli matrices. The notations RX, RY, RZ are used for rotations. A phase
gate is defined as follows:

P(φ) = eiφQ = ei(φ/2)RZ(φ) = |0〉〈0|+ |1〉eiφ〈1| (11.21)

Note that

Z = P(π) = iRZ(π) (11.22)

More interesting are two-qubit gates. The controlled-phase gate is

CP(φ) = eiφQ⊗Q = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ P(φ) (11.23)

This gate is symmetric: we can say that the first qubit controls the phase operation on the second qubit, or vice
versa. In particular the controlled-Z gate is

CZ = CP(π) = eiπQ⊗Q = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z (11.24)

Most useful is the controlled-X (CNOT) gate

CX = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X =


1 0
0 1

0

0
0 1
1 0

 (11.25)

Ising-type phase gates are defined as follows:

RZZ(φ) = e−i(φ/2)Z⊗Z (11.26)

Similarly one can define RXX and RYY gates, etc.

https://quantum-computing.ibm.com/composer
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For completeness we list some common notations:

T = P (π/4) =

(
1 0

0 eiπ/4
)

(11.27)

S = T 2 = P (π/2) =

(
1 0
0 i

)
Z = S2 = P (π) =

(
1 0
0 −1

)
= σz = iRZ(π)

X =

(
0 1
1 0

)
= σx = ie−iπSx = iRX(π) = NOT gate

Y =

(
0 −i
i 0

)
= σy = ie−iπSy = iRY(π)

H =
1√
2

(
1 1
1 −1

)
=

1√
2
(σx + σz) = ie−iπSn = Hadamard gate

R =
1√
2

(
1 −1
1 1

)
=

1√
2
(1− iσy) = e−i(π/2)Sy = RY(π/2) = 90deg Rotation

We have R4 = −1 which is a 2π rotation in SU(2). We have X2 = Y 2 = Z2 = H2 = 1 which implies that these
are π rotations in U(2). We emphasize that though the operation of H on ”up” or ”down” states looks like π/2
rotation, it is in fact a π rotation around a 45o inclined axis:

H =
1√
2

(
1 1
1 −1

)
=

(
1√
2
, 0,

1√
2

)
·→σ =

→
n ·→σ (11.28)

Global phase issue.– Mathematically we can define a U(1) operation on a qubit, namely, a multiplication by a phase.
Let us use the notation G(φ) = eiφ. Clearly, from a physical perspective this operation has no significance. Oper-
ations like X and RX(π) are equivalent. If we have, say, a two-qubit register, then [G(φ) |x0〉]⊗ |x1〉 = eiφ |x0, x1〉.
What about a controlled-G? For that we have the identity

CG(φ) = |0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗ eiφ = P(φ)⊗ 1 (11.29)

Namely, CG is mathematically equivalent to an operation with a phase-gate on the control qubit. For that reason
the G-gate is redundant.
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====== [11.5] The CNOT quantum gate
It is popular to consider the controlled NOT (CNOT) gate as an elementary gate, with which we can construct
more complicated gates. We shall use for it the notation CX. In the standard computational basis the control
bit (x) of CX is not affected by its operation, while the controlled bit (y) undergoes NOT provided the x bit
is turned-on. The gate is schematically illustrated in the following figure. We also provide in the figure another
variation of CX that performs NOT provided the x bit is turned-off. Below we explain that CX can be constructed
using CZ and R operations (right panel of the figure).

x

y

x

y+x

= =

R R
−1

In order to realize a two qubit gate we need a coupling mechanism. If we regard the two qubits as spins, it is most
natural to exploit the Ising spin-spin interaction (∝ Z ⊗ Z) in order to realize an RZZ phase operation. But for
pedagogical purpose it is more convenient to regard the qubits as dots that can be charges with Q = 0, 1 particles,
such that the interaction is ∝ Q⊗Q. With such interaction we can construct a CZ operation. Then we can exploit
the similarity transformation R−1ZR = X in order to get CX as follows:

CX = R−1 CZR = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X (11.30)

where the rotations are performed on the controlled qubit (see figure). Here R is -90deg rotation around Y.

====== [11.6] CNOT-related operations
Having the ability to realize single-qubit operations, and the CNOT gate, we can construct all other possible gates
and circuits. It is amusing to see how SWAP gate can be realized by combining 3 CNOT gates, as illustrated is
the following diagram:

y

x
x

x+y x+yy

x 2x+y 2x+y

3x+2y
x

y

The controlled-not gate has misc generalizations. There are two aspects: (i) how to form controlled-rotations
instead of control-not; (ii) how to have more then one control bit. The way to form a controlled RY or controlled
RZ rotation is to write the rotation, call it W , as a sequence of two half-rotations, namely, W = V V . We use
the notation V̄ = V † = V −1 for the inverse rotation. We note that for either RY or RZ we have the identity
XVX = V̄ . Then we can use the following circuit (see figure below for its illustration):

CW = (CX V̄ CX) V (11.31)
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where V operates on the controlled qubit, and the CX performs on it a controlled-not. Note that if we want to get
CRX, we can use the identity CRX = RZ(−π/2) CRY RZ(π/2), where the RZ rotations operate on the controlled
qubit. The way to have two control bits labelled as ”1” and ”2” is to write the desired rotation as R =WW , and
then to use the following circuit (see figure below for its illustration):

CCR = CW2 7→0 CX2 7→1 CW̄1 7→0 CX2 7→1 CW1 7→0 (11.32)

where the notation Ci 7→j means that qubit i controls the operation on qubit j.

V V W W WRW

The CCX operation, where we have two qubit that control NOT operation, is known as Toffoli gate. The NOT
operation is performed only if both control bits are turned on:

TT T TH

T

H

T

T

The realization of the Toffoli gate opens the way to the quantum realization of an AND operation. Namely, by
setting y = 0 at the input, the output would be y = x1 ∧ x2. For generalization of the Toffoli gate to the case
where the x register is of arbitrary size see p.184 of Nielsen and Chuang.

====== [11.7] Quantum Simulations
We have motivated quantum computation by considering the RSA decryption problem. We shall come back to
that in the subsequent sections, providing details on the Hadamard transform, on the quantum Fourier transform,
and on the required controlled computation of the f(x) function.

But quantum computation can be used also for the purpose of quantum simulations. Clearly, if we have a large
N -spin system, it is not feasible to perform a classical simulation with 2N × 2N matrices, while it might be feasible
to perform a simulation with an N qubit register. If we consider spin 1/2 system, then each qubit can represent a
spin. Evolution that is generated by, say, Sx ⊗ Sx interaction can be realized using RXX gates. The Hamiltonian
might be a sum of several such terms, and therefore the use of the Trotter formula is required: each dt time step
of the simulation is composed of a sequence of infinitesimal unitary operations that correspond to the terms in the
Hamiltonian.

Slightly less natural is to perform simulation of a 2N site system, where each site is labelled by an N digit binary
number x. The operation of a potential V (x) can be simulated using controlled-phase operations. Note: if we
apply a phase gate on a single qubit, say x0, then all the sites that have x0 = 1 are affected. If we want to
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change the phase of, say, x = · · · 001, we need a controlled operation that performs the phase operation only if
all the other bits are 0. Similar treatment is required in order to induce hopping. Flipping one bit in x, say x0,
means simultaneous transitions within any pair of sites whose x differ by digit x0. If we want to induce transition
between, say, only the first two sites (· · · 000 and · · · 001) we have to use a controlled operation on the x0 bit,
namely, it is “rotated” only if all the other bits equal 0. Accordingly, with controlled operation we can induce
any transition between two sites whose x differs by a single binary digit. In order to induce transitions between
sites whose x differ by more than one digit, we have to perform Gray-sequence of exchanges before the controlled
operation, and after that reverse this sequence. For Hamiltonian of the type H = T (p) + V (x) we might use the
identity T (p) = F †T (x)F , where F is the quantum Fourier transform operation (see below). Other trick can be
used for e.g. simulating the effect of T (p) = cos(p).

====== [11.8] The Hadamard Transform
In the following we discuss the Hadamard and the Fourier transforms. These are unitary operations that are defined
on the multi-qubit x register. A given basis state |x0, x1, x3, ...〉 can be regarded as the binary representation of
an integer number:

x =

nc−1∑
r=0

xr2
r (11.33)

We distinguish between the algebraic multiplication for which we use the notation xx′, and the scalar product for
which we use the notation x · x′,

x · x′ =
∑
r

xrx
′
r (11.34)

xx′ =
∑
r,s

xrx
′
s2

r+s

So far we have defined the single qubit Hadamard gate. If we have an multi-qubit register it is natural to define

UHadamard = H ⊗H ⊗H ⊗ · · · (11.35)

The operation of a single-qubit Hadamard gate can be written as

|x1〉
H−→ 1√

2
(|0〉+ (−1)x1 |1〉) =

1√
2

∑
k1=0,1

(−1)k1x1 |k1〉 (11.36)

If we have a multi-qubit register we simply have to perform (in parallel) an elementary Hadamard transform on
each qubit:

|x0, x1, ..., xr, ...〉
H−→

∏
r

1√
2
(|0〉+ (−1)xr |1〉) =

1√
2nc

∏
r

 ∑
kr=0,1

(−1)krxr |kr〉

 (11.37)

=
1√
Nc

∑
k0,k1,...

(−1)k0x0+k1x1+... |k0, k1, ..., kr, ...〉 =
1√
Nc

∑
k

(−1)k·x |k〉
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The Hadmard transform is useful in order to prepare a ”democratic” superposition state as follows:

|0, 0, ..., 0〉 H−→ 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ ...⊗ 1√

2
(|0〉+ |1〉) 7→ 1√

Nc



1
1
.
.
.
1

 (11.38)

To operate with a unitary operator on this state is like making parallel computation on all the possible x basis
states.

====== [11.9] The quantum Fourier transform
The definitions of the Hadamard transform and the quantum Fourier transform are very similar in style:

UHadamard|x〉 =
1√
Nc

∑
k

(−1)k·x|k〉 (11.39)

UFourier|x〉 =
1√
Nc

∑
k

e−i 2π
Nc

kx|k〉 (11.40)

Let us write the definition of the quantum Fourier transform using different style so as to see that it is indeed a
Fourier transform operation in the conventional sense. First we notice that its matrix representation is

〈x′|UFourier|x〉 =
1√
Nc

e−i 2π
Nc

x′x (11.41)

If we operate with it on the state |ψ〉 =
∑

x ψx|x〉 we get |φ〉 =
∑

x φx|x〉, where the column vector φx is obtained
from ψx by a multiplication with the matrix that represents UFourier. Changing the name of the dummy index
form x to k we get the relation

φk =
1√
Nc

Nc−1∑
x=0

e−i 2π
Nc

kxψx (11.42)

This is indeed the conventional definition of



ψ0

ψ1

ψ2

.

.

.
ψNc−1


FT−→



φ0

φ1

φ2

.

.

.
φNc−1


(11.43)

The number of memory bits which are required to store these vectors in a classical register is of order N ∼ 2n. The
number of operations which is involved in the calculation of a Fourier transform seems to be of order N2. In fact



65

there is an efficient “Fast Fourier Transform” (FFT) algorithm that reduces the number of required operations to
N logN = n2n. But this is still an exponentially large number in n. In contrast to that a quantum computer can
store these vectors in n qubit register. Furthermore, the ”quantum” FT algorithm can perform the calculation
with only n2 logn log logn operations. We shall not review here how the Quantum Fourier transform is realized.
This can be found in the textbooks. As far as this presentation is concerned the Fourier transform can be regarded
as a complicated variation of the Hadamard transform.

====== [11.10] Note on analog or optical computation
A few words are in order here regarding quantum computation versus classical analog computation. In an analog
computer every analog ”bit” can have a voltage within some range, so ideally each analog bit can store infinite
amount of information. This is of course not the case in practice because the noise in the circuit defines some
effective finite resolution. Consequently the performance is not better compared with a digital computers. In
this context the analog resolution is a determining factor in the definition of the memory size. Closely related is
optical computation. This can be regarded as a special type of analog computation. Optical Fourier Transform
of a ”mask” can be obtained on a ”screen” that is placed in the focal plane of a lens. The FT is done in one shot.
However, also here we have the same issue: Each pixel of the mask and each pixel of the screen is a hardware
element. Therefore we still need an exponentially large hardware just to store the vectors. At best the complexity
of FT with optical computer is of order 2n.

====== [11.11] The UM operation
The CNOT/Toffoli architecture can be generalized so as to realize any operation of the type y = f(x1, x2, ...), as
an x-controlled operation, where y is a single qubit. More generally we have

x = (x0, x1, x2...xnc−1) (11.44)
y = (y0, y1, y2, ...yn−1) (11.45)

and we would like to realize a unitary controlled operation

U =
∑
x

|x〉〈x| ⊗ U (x) ≡ P (0) ⊗ U (0) + P (1) ⊗ U (1) + P (2) ⊗ U (2) + ... (11.46)

This is formally like a measurement of the x register by the y register. Note that x is a constant of motion, and
that U has a block diagonal form:

〈x′, y′|U |x, y〉 = δx′,xU
(x)
y′,y =


U (0)

U (1)

U (2)

...

 (11.47)

Of particular interest is the realization of a unitray operation that maps y = 1 to y = f(x). Let us look on

U
(x)
M

∣∣∣y〉 =
∣∣∣Mxy mod (N)

〉
(11.48)

If M is co-prime to N , then U is merely a permutation matrix, and therefore it is unitary. The way to realize this
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operation is implied by the formula

Mx = M
∑

s xs2s =
∏
s

(
M2s

)xs
=

nc−1∏
s=0

Mxs
s (11.49)

which requires nc stages of processing. The circuit is illustrated in the figure below. In the s stage we have to
perform a controlled multiplication of y by Ms ≡M2s mod (N).

x1
x2

M1 M2M0

x0

xM  yy=1
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Fundamentals

[12] The uncertainty principle
Light version of this lecture in Hebrew is availble in the course site. Full version of this lecture is available in
arXiv:quant-ph/0605180, which includes discussion regarding the notion of quantum state, the basic postulates of
the theory, and the representation using a probability matrix.

====== [12.1] The two slit experiment
If we have a beam of electrons, that have been prepared with a well defined velocity, and we direct it to a screen
through two slits, then we get an interference pattern from which we can determine the ”de-Broglie wavelength”
of the electrons. I will assume that the student is familiar with the discussion of this experiment from introduc-
tory courses. The bottom line is that the individual electrons behave like wave and can be characterized by a
wavefunction ψ(x). This by itself does not mean that our world in not classical. We still can speculate that ψ(x)
has a classical interpenetration. Maybe our modeling of the system is not detailed enough. Maybe the two slits,
if they are both open, deform the space in a special way that makes the electrons likely to move only in specific
directions? Maybe, if we had better experimental control, we could predict with certainty where each electron will
hit the screen.

The modern interpenetration of the two slit experiment is not classical. The so called ”quantum picture” is that
the electron can be at the same time at two different places: it goes via both slits and interferes with itself. This
sounds strange. Whether the quantum interpenetration is correct we cannot establish: maybe in the future we
will have a different theory. What we can establish is that a classical interpretation of reality is not possible. This
statement is based on a different type of an experiment that we discuss below.

====== [12.2] Is the world classical? (EPR, Bell)
We would like to examine whether the world we live in is “classical” or not. The notion of classical world includes
mainly two ingredients: (i) realism (ii) determinism. By realism we means that any quantity that can be measured
is well defined even if we do not measure it in practice. By determinism we mean that the result of a measurement
is determined in a definite way by the state of the system and by the measurement setup. We shall see later that
quantum mechanics is not classical in both respects: In the case of spin 1/2 we cannot associate a definite value
of σ̂y for a spin which has been polarized in the σ̂x direction. Moreover, if we measure the σ̂y of a σ̂x polarized
spin, we get with equal probability ±1 as the result.

In this section we would like to assume that our world is ”classical”. Also we would like to assume that interactions
cannot travel faster than light. In some textbooks the latter is called ”locality of the interactions” or ”causality”. It
has been found by Bell that the two assumptions lead to an inequality that can be tested experimentally. It turns
out from actual experiments that Bell’s inequality are violated. This means that our world is either non-classical
or else we have to assume that interactions can travel faster than light.

If the world is classical it follows that for any set of initial conditions a given measurement would yield a definite
result. Whether or not we know how to predict or calculate the outcome of a possible measurement is not
assumed. To be specific let us consider a particle of zero spin, which disintegrates into two particles going in
opposite directions, each with spin 1/2. Let us assume that each spin is described by a set of state variables.

state of particle A = xA1 , x
A
2 , ... (12.1)

state of particle B = xB1 , x
B
2 , ...

http://arxiv.org/abs/quant-ph/0605180
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The number of state variables might be very big, but it is assumed to be a finite set. Possibly we are not aware
or not able to measure some of these “hidden” variables.

Since we possibly do not have total control over the disintegration, the emerging state of the two particles is
described by a joint probability function ρ

(
xA1 , ..., x

B
1 , ...

)
. We assume that the particles do not affect each other

after the disintegration (“causality” assumption). We measure the spin of each of the particles using a Stern-
Gerlach apparatus. The measurement can yield either 1 or −1. For the first particle the measurement outcome
will be denoted as a, and for the second particle it will be denoted as b. It is assumed that the outcomes a and b
are determined in a deterministic fashion. Namely, given the state variables of the particle and the orientation θ
of the apparatus we have

a = f(θA, x
A
1 , x

A
2 , ...) = ±1 (12.2)

b = f(θB, x
B
1 , x

B
2 , ...) = ±1

where the function f() is possibly very complicated. If we put the Stern-Gerlach machine in a different orientation
then we will get different results:

a′ = f
(
θ′A, x

A
1 , x

A
2 , ...

)
= ±1 (12.3)

b′ = f
(
θ′B, x

B
1 , x

B
2 , ...

)
= ±1

We have the following innocent identity:

ab+ ab′ + a′b− a′b′ = ±2 (12.4)

The proof is as follows: if b = b′ the sum is ±2a, while if b = −b′ the sum is ±2a′. Though this identity looks
innocent, it is completely non trivial. It assumes both ”reality” and ”causality”. The realism is reflected by the
assumption that both a and a′ have definite values, as implied by the function f(), even if we do not measure
them. In the classical context it is not an issue whether there is a practical possibility to measure both a and a′

at a single run of the experiment. As for the causality: it is reflected by assuming that a depends on θA but not
on the distant setup parameter θB.

Let us assume that we have conducted this experiment many times. Since we have a joint probability distribution
ρ, we can calculate average values, for instance:

〈ab〉 =
ˆ
ρ
(
xA1 , ..., x

B
1 , ...

)
f
(
θA, x

A
1 , ...

)
f
(
θB, x

B
1 , ...

)
(12.5)

Thus we get that the following inequality should hold:

∣∣〈ab〉+ 〈ab′〉+ 〈a′b〉 − 〈a′b′〉∣∣ ≤ 2 (12.6)

This is called Bell’s inequality (in fact it is a variation of the original version). Let us see whether it is consistent
with quantum mechanics. We assume that all the pairs are generated in a singlet (zero angular momentum) state.
It is not difficult to calculate the expectation values. The result is

〈ab〉 = − cos(θA − θB) ≡ C(θA − θB) (12.7)
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we have for example

C(0o) = −1, C(45o) = − 1√
2
, C(90o) = 0, C(180o) = +1. (12.8)

If the world were classical the Bell’s inequality would imply

|C(θA − θB) + C(θA − θ′B) + C(θ′A − θB)− C(θ′A − θ′B)| ≤ 2 (12.9)

Let us take θA = 0o and θB = 45o and θ′A = 90o and θ′B = −45o. Assuming that quantum mechanics holds we get

∣∣∣∣(− 1√
2

)
+

(
− 1√

2

)
+

(
− 1√

2

)
−
(
+

1√
2

)∣∣∣∣ = 2
√
2 > 2 (12.10)

It turns out, on the basis of celebrated experiments that Nature has chosen to violate Bell’s inequality. Furthermore
it seems that the results of the experiments are consistent with the predictions of quantum mechanics. Assuming
that we do not want to admit that interactions can travel faster than light it follows that our world is not classical.

In order to generalize the Bell inequality for other systems, it is worth noting that it is a variation of 〈F 〉 <
√
〈F 2〉.

Above F = (ab+ ab′ + a′b− a′b′). The issue is that
〈
F 2

〉
cl

provides a lower bound, while
〈
F 2

〉
qm

is larger.

====== [12.3] Optional tests of realism
Mermin and Greenberger-Horne-Zeilinger have proposed optional tests for realism. The idea is to show that the
feasibility of preparing some quantum states cannot be explained within the framework of a classical theory. We
provide below two simple examples. The spin 1/2 mathematics that is required to understand these examples will
be discussed in later lecture. What we need below is merely the following identities that express polarizations in
the X and Y directions as a superposition of polarizations in the Z direction:

|x〉 =
1√
2
(|z〉+ |z̄〉) (12.11)

|x̄〉 =
1√
2
(|z〉 − |z̄〉) (12.12)

|y〉 =
1√
2
(|z〉+ i|z̄〉) (12.13)

|ȳ〉 =
1√
2
(|z〉 − i|z̄〉) (12.14)

We use the notations |z〉 and |z̄〉 for denoting ”spin up” and ”spin down” in Z polarization measurement, and
similar convection for polarization measurement in the other optional directions X and Y.

Three spin example.– Consider 3 spins that are prepared in the following superposition state:

|ψ〉 =
1√
2
(| ↑↑↑〉 − | ↓↓↓〉) ≡ 1√

2
(|zzz〉 − |z̄z̄z̄〉) (12.15)

If we measure the polarization of 3 spins we get a = ±1 and b = ±1 and c = ±1, and the product would be
C = abc = ±1. If the the measurement is in the ZZZ basis the result might be either CZZZ = +1 or CZZZ = −1
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with equal probabilities. But optionally we can perform an XXX measurement or XYY, or YXY, or YYX
measurement. If for example we perform XYY measurement it is useful to write the state in the XYY basis:

|ψ〉 =
1

2
(|x̄yȳ〉+ |x̄ȳy〉+ |xȳȳ〉+ |xyy〉) (12.16)

We see that the product of polarization is always CXY Y = +1. Similarly one can show that CY XY = +1 and
CY Y X = +1. If the world were classical we could predict the result of an XXX measurement:

CXXX = axbxcx = ax bx cx a
2
y b

2
y c

2
y = CXY Y CY XY CY Y X = 1 (12.17)

But quantum theory predicts a contradicting result. To see what is the expected result we write the state in the
XXX basis:

|ψ〉 =
1

2
(|x̄xx〉+ |xx̄x〉+ |xxx̄〉+ |x̄x̄x̄〉) (12.18)

We see that the product of polarization is always CXXX = −1. Thus, the experimental feasibility of preparing
such quantum state contradicts classical realism.

Two spin example.– Consider 2 spins that are prepared in the following superposition state:

|ψ〉 =
1√
3
(|zz̄〉+ |z̄z〉 − |z̄z̄〉) (12.19)

=
1√
6
(|zx〉 − |zx̄〉+ 2|z̄x̄〉) (12.20)

=
1√
6
(|xz〉 − |x̄z〉+ 2|x̄z̄〉) (12.21)

=
1√
12

(|xx〉+ |xx̄〉+ |x̄x〉 − 3|x̄x̄〉) (12.22)

Above we wrote the state in the optional bases ZZ and ZX and XZ and XX. By inspection we see the following:
(1) The ZZ measurement result |zz〉 is impossible.
(2) The ZX measurement result |z̄x〉 is impossible.
(3) The XZ measurement result |xz̄〉 is impossible.
(4) All XX measurement results are possible with finite probability.

We now realize that in a classical reality observation (4) is in contradiction with observations (1-3). The argument
is as follow: in each run of the experiment the state a⃗ = (ax, az) of the first particle is determined by some set of
hidden variables. The same applies with regard to the b⃗ = (bx, bz) of the second particle. We can define a joint
probability function f

(
a⃗, b⃗

)
that gives the probabilities to have any of the 4× 4 possibilities (irrespective of what

we measure in practice). It is useful to draw a 4 × 4 truth table and to indicate all the possibilities that are not
compatible with (1-3). Then it turns out that the remaining possibilities are all characterized by having ax = −1
or bx = −1. This means that in a classical reality the probability to measure |xx〉 is zero. This contradicts the
quantum prediction (4). Thus, the experimental feasibility of preparing such quantum state contradicts classical
realism.
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====== [12.4] The singlet state and the Pauli principle
ניסוח זה .down ספין עם והשני up ספין עם להתישב יכול שאחד כיוון אורביטל אותו את לאכלס יכולים אלקטרונים שני
שני של הקוונטי שהמצב משתמע לכאורה רצינית. יותר הבהרה דורש הרעיון מתמטית מבחינה אלמנטריים. לימוד בספרי מקובל

הוא האלקטרונים

|ψ〉 = | ↑↓〉 (12.23)

הטענות שתי למעשה אפס. הוא הכולל הספין לכאורה כן וכמו פאולי, של "האיסור את מקיימים לכאורה האלקטרונים זה במצב
סופית הסתברות היתה אז X, ציר בכיוון הספינים שני את מודדים והיו כזה, מצב היה שאם נראה הבאה בהרצאה נכונות. אינן
אינו מייצג שהוא הכולל והספין פאולי, של האיסור את מקיים אינו לעיל שהוגדר המצב שלמעשה כך כיוון. באותו אותם למצוא
כאן יש "בעיה". אותה את יש ולכולם | ↓↑〉, | ↑→〉, | →←〉 כגון אחרים היפותתיים צרופים על לחשוב גם אפשר לכאורה אפס.
אחד איכלוס" "מצב רק למעשה מוגדרת. סימטריה אין האלה שלמצבים בעוד זהים, חלקיקים הם האלקטרונים "אסתטי": עניין גם

בחשבון: בא שהוא

|singlet〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) (12.24)

את מקיים הזה שהמצב גם מכאן מדידה. כיוון בכל אפס הוא האלקטרונים שני של הכולל הספין כזה במצב "סינגלט". נקרא זה מצב
שאר בכל ויחיד: אחד הוא הסינגלט שמצב להדגיש יש כיוון. באותו ספינים עם האלקטרונים את למצוא ניתן לא פאולי: של האיסור
ביחס אנטי-סימטרי הוא מוגדרת: סימטריה יש הזה למצב בנוסף, מאפס. שונה כולל ספין עם האלקטרונים את למצוא אפשר המצבים
סימטרית": "אנטי תהיה הפרמיונים של הגל שפונקצית דורשים הקוונטית המכניקה של המסורתי בפורמאליזם החלקיקים. להחלפת

פאולי". של האיסור "עקרון של המתמטי הניסוח למעשה זה

הספין שבו מצב למצוא נרצה חצי. ספין יש אחד שלכל חלקיקים שני של מערכת נתונה מתמטית. מבחינה הזה הרעיון את נחדד
| ↑〉, | ↓〉 הסימון במקום |z〉, |z̄〉 בסימון להשתמש נוח להלן .)100% )בהסתברות ודאי באופן S = 0 הוא המערכת של הכולל
בכיוון הקיטוב את מודדים שאנו נניח בכך להיווכח כדי אפס. כולל זויתי בתנע מאופין אינו זה מצב |zz̄〉 במצב תחילה נתבונן

ונקבל: כזו למדידה שמתאים בבסיס המצב את נרשום אופקי.

|zz̄〉 =
1

2
(|xx〉 − |xx̄〉+ |x̄x〉 − |x̄x̄〉) (12.25)

הסתברות יש אופקית במדידה אחרות, במילים .-1 ספין למדוד 25% והסתברות 1 כולל ספין למדוד 25% של הסתברות ש רואים אנו
מדידה בכל אפס כולל ספין מתקבל שבו המערכת של אחד מצב רק יש למעשה כיוון. באותו הספינים שני את למצוא 50% של

שמתקיים לב נשים קודם. שהגדרנו הסינגלט מצב זה - אפשרית

|singlet〉 =
1√
2
(|zz̄〉 − |z̄z〉) =

1√
2
(|xx̄〉 − |x̄x〉) =

1√
2

(
|θθ̄〉 − |θ̄θ〉

)
(12.26)

ההצבות באמצעות בקלות להוכיח אפשר האחרון השיוויון את

|θ〉 = cos θ
2
|z〉+ sin θ

2
|z̄〉 (12.27)

|θ̄〉 = sin θ
2
|z〉 − cos θ

2
|z̄〉 (12.28)

בהסתברות אפס כולל ספין מתקבל אחר, מדידה כיוון בכל וגם אופקי, בכיוון במדידה גם סינגלט, שבמצב היא התחתונה השורה
.100% של
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====== [12.5] Correlations of entangled spins
לשני אפס ספין בעל חלקיק של בהתפרקות להתקבל למשל יכול כזה מצב סינגלט. במצב שלהם שהספינים חלקיקים לשני נתייחס
להיות חייב שהמצב כך - אפס עדיין יהיה ההתפרקות לאחר הכולל הספין הזויתי התנע שימור חוק בגלל חצי. ספין בעלי חלקיקים
השני אז up הוא מהספינים אחד אם אז האופקי הקיטוב את מודדים אם החלקיקים. בין קורלציה יש כזה במצב סינגלט. מצב
של הקיטוב ואת אנכי, בכיוון הראשון הספין של הקיטוב את מודדים שאנו נניח יותר. כללי למקרה עתה נתיחס .down להיות חייב

הבאה: בצורה המדידה תוצאות את נסמן θ בכיוון השני הספין

a = ±1 (12.29)

b = ±1 (12.30)

שמתקיים להשתכנע קל .c = ab המכפלה באמצעות התוצאות שתי בין הקורלציה את נאפיין

Probability(c = −1) =

∣∣∣∣cos
(
θ

2

)∣∣∣∣2 (12.31)

Probability(c = +1) =

∣∣∣∣sin(
θ

2

)∣∣∣∣2 (12.32)

הקורלציה את מקבלים אנו מכאן

C(θ) = 〈c〉 = 〈ab〉 = − cos(θ) (12.33)

מעניינות: זוויות עבור שקיבלנו התוצאה את נבדוק
.b = −1 בוודאות אז a = 1 שאם היא הדבר משמעות .〈ab〉 = −1 כי נקבל θ = 0 עבור
.b = 1 בוודאות אז a = 1 שאם היא הדבר משמעות .〈ab〉 = +1 כי נקבל θ = π עבור

.b = −1 או b = 1 לקבל שווה סיכוי יש אז a = 1 שאם היא הדבר משמעות .〈ab〉 = 0 כי נקבל θ = π/2 עבור
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