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Abstract
We consider driven systems where the driving induces jumps in energy space:
(1) particles pulsed by a step potential; (2) particles in a box with a moving wall;
(3) particles in a ring driven by an electro-motive-force. In all these cases, the
route towards quantum-classical correspondence is highly non-trivial. Some
insight is gained by observing that the dynamics in energy space, where n is the
level index, is essentially the same as that of Bloch electrons in a tight binding
model, where n is the site index. The mean level spacing is like a constant
electric field and the driving induces long range hopping ∝1/(n − m) .

PACS numbers: 03.65.−w, 03.65.Sq, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider a system which is described by a Hamiltonian H(X(t)), where the parameter X(t)

is time dependent. For such a system the energy E is not a constant of the motion. Rather, the
driving induces spreading in energy space. Assuming that the system is prepared at t = 0 in a
microcanonical state, one wonders how the energy distribution ρt (E) looks like at a later time.
In particular, one may wonder whether the quantum ρt (E) is similar to the corresponding
classical distribution. In the ‘quantum chaos’ literature it is customary to distinguish between
a classical time scale τcl and a quantum breaktime t∗. The latter goes to infinity in the ‘h̄ → 0’
limit. A prototype model is the ‘quantum kicked rotator’ [1] where the energy spreading is
diffusive up to t∗, while for larger times one observes saturation due to a dynamical localization
effect.

In this work, we analyse much simpler systems where the breaktime t∗, if exists, is much
larger than any physically relevant time scale. In fact, one may assume that the time t of
the evolution is comparable with the classical (short) time scale. In such circumstances, one
naively would expect quantum to classical correspondence (QCC). But in fact the theory is
much more complicated [2]. One has to distinguish between

• detailed QCC and
• restricted QCC.
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Figure 1. (a) Left panel: picture of the potential. Before t = 0 the potential is zero (dashed line).
After t = 0 the potential is the step function (solid line). (b) Right panel: phase space picture.
Before t = 0 there is no potential and the momentum is constant (dashed line). The piece of the
distribution that has passed x = 0 after t = 0 is boosted with δEcl = −Vstep.
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Figure 2. (a) Left panel: potential well. The right wall is moving with a constant velocity Vwall.
(b) Right panel: phase space picture. If the wall were not moving, the distribution would evolve
along the dashed line. If Vwall is non-zero, an energy jump δEcl = −2mvEVwall is associated with
the collision, and one obtains the distribution which is illustrated by the solid line.

Detailed QCC means that all the moments r = 1, 2, 3, . . . of the quantum mechanical
distribution ρt (E) are similar to the classical result, while restricted QCC refers only to
the r = 1, 2 moments. It turns out that the latter are very robust, while the higher moments
(r > 2) might be much larger in the quantum case. Our first challenge would be to find and
to analyse the worst case for QCC, for which all the r > 2 moments are classically finite
but quantum mechanically divergent. We would like to see whether in such circumstances
restricted QCC for r = 1, 2 survives.

For completeness of this introduction, we summarize in appendix A the reason for the
robustness of restricted QCC. Our interest in QCC is motivated by the wish to develop a better
understanding of driven systems. We would like to explore examples where QCC is far from
obvious even for short times. In what follows, we address four problems that in first sight look
unrelated:

(1) Particles that are pulsed by a step potential (figure 1).
(2) Particles in a box with a moving wall (figure 2).
(3) Particles in an electro-motive-force (EMF) driven ring (figure 3).
(4) Wavepacket dynamics of Bloch electrons in a constant electric field.

In fact, we are going to see that problems (1)–(3) share a common feature: in the classical
description the energy absorption is associated with abrupt jumps in phase space. These jumps
are reflected in the quantum dynamics as a strong diffraction effect. This diffraction, which
takes place in energy space, is the worst case for Bohr’s QCC. It turns out that problem (1) can
be solved exactly, while problems (2) and (3) reduce essentially to problem (4). Namely, the
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Figure 3. (a) Left panel: ring with EMF. (b) Right panel: phase space picture. Without the EMF
the momentum is a constant of the motion (dashed line). Else an energy jump δEcl = eVEMF is
associated with each crossing of the EMF step. The emerging phase space distribution is illustrated
by the solid line.

dynamics in energy space, where n is the level index, is essentially the same as that of Bloch
electrons in a tight binding model, where n is the site index. The mean level spacing is like
a constant electric field and the driving induces long range hopping ∝1/(n − m). This tight
binding problem has an exact solution. The objectives of the present work are as follows:

• To highlight the route towards QCC in the case of diffractive energy spreading.
• To provide solutions and numerical demonstrations to the prototype problems.
• To shed new light of the EMF-driven ring problem.
• To illuminate the limitations of linear response theory in the mesoscopic context.

The paper is structured accordingly.
A few words are in order regarding the literature. The quantum treatment of the ‘moving

wall’ problem has started with [3, 4] that were aimed in finding the steady-state solutions for
an expanding well. The interest in this model has further evolved within the study of the Fermi
acceleration problem [5] where the wall is oscillating. Recently, the non-trivial features of
the parametric [6] and of the time-dependent wavepacket dynamics [7] were illuminated. In
the latter publication, a satisfactory mathematical treatment of the non-stationary dynamics
has not been introduced. Also the problem of Bloch electrons in a constant electric field has
a long history. The concept of a Stark ladder was introduced by Wannier [8] to describe the
energy spectrum of a periodic system in an electric field. Since that time it has become the
subject of controversy [9–19]. Eventually, it has been realized that the electric field localizes
the motion of the electrons and induces a periodic oscillatory motion.

2. Energy jumps in phase space

If a Gaussian wavepacket is moving in a smooth potential, then its Wigner function evolves in
a smooth manner which favours detailed QCC. But we would like to consider the ‘worst case’
for QCC. Let us assume that the particle is prepared with some initial momentum p. This
means in practice a very extended wavepacket with a very small dispersion in momentum.
We turn on at t = 0 a step of height Vstep. After a short time t, we observe that the classical
phase space distribution is torn into three pieces (see figure 1): phase space points that remain
on the left side of the step; phase space points that have crossed the step from left to right and
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phase space points that were all the time in the right side of the step. The jump in the kinetic
energy of those points that have crossed the step is

δEcl = −Vstep. (1)

Classically we have in phase space points that move with the original kinetic energy, and
another set of points that have gone through an abrupt change of kinetic energy. Thus,
the energy distribution consists of two delta peaks. We would like to know what is the
corresponding energy distribution in the quantum mechanical case.

A similar phase space picture emerges in the analysis of the ‘moving wall’ problem. As
illustrated in figure 2, we have a particle of mass m and energy E bouncing back and forth
inside a one-dimensional box. One wall of the box is displaced with a velocity Vwall, which
is assumed to be much smaller compared with the velocity vE = (2E/m)1/2 of the bouncing
particle. Consider an initial microcanonical distribution. After a short time t, some of the
phase space points collide with the wall which is moving with velocity Vwall. Consequently,
their velocity undergoes a change v �→ −v + 2Vwall, and accordingly the energy jump is

δEcl = −2mvEVwall. (2)

Thus, after a short time the energy distribution consists of two delta peaks: one corresponds to
those phase space points that did not collide with the moving wall and the other corresponds
to those phase space points that did collide with the moving wall. We ask what is the
corresponding quantum result. Namely, how the probability is distributed among the energy
levels in the quantum mechanical case. It is implicit that we are going to work in the adiabatic
(wall location dependent) basis, else the question is mathematically ill defined.

Possibly the most interesting and experimentally relevant model is that of a one-
dimensional EMF-driven ring (figure 3). The classical analysis for this problem is very
simple: each time that the particle crosses the EMF step its energy changes by

δEcl = eVEMF. (3)

So also here we have energy jumps. Surprisingly, this problem is interesting even if we do not
add a scatterer.

3. Beyond the Fermi golden rule, the semiclassical regime

Both in the case of the ‘moving wall’ and in the case of the driven ring we have after a short
time a finite probability to find the system with a different energy. So, we may say that there
is some finite probability to make a transition

E �−→ E + δEcl. (4)

Going to the quantum mechanical problem, we may wonder whether or how we get from
the Schrödinger equation such transitions. We are used to the Fermi golden rule picture of
transitions

E �−→ E + ‘h̄ω’ (5)

where ω is the frequency of the driving. But here we do not have periodic (‘ac’) driving but
rather linear (‘dc’) driving. Moreover, δEcl is an h̄-independent quantity. It turns out that
indeed there exists a regime where the dynamics is classical like (figure 4). This semiclassical
regime is defined by the obvious condition

δEcl � � (6)
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Figure 4. (a) Left panel: the energy levels of a one-dimensional box as a function of its width L(t).
For the purpose of comparison with other figures L(t) is decreasing as we go to the right (the box
becomes smaller) so the levels are going up. The solid line illustrates adiabatic dynamics, while the
‘jumps’ illustrate semiclassical dynamics. (b) Right panel: the energy levels of a one-dimensional
ring as a function of the Aharonov–Bohm flux. The solid line illustrates diabatic dynamics, while
the ‘jumps’ illustrate semiclassical dynamics. The dashed line illustrates adiabatic dynamics.

where � is the level spacing. In the case of the ‘moving wall’ problem this condition can be
written as

Vwall � h̄

mL
(7)

where L is the size of the box. It is easily verified that this condition is just the opposite of the
adiabatic condition. The case of the EMF-driven ring is somewhat richer. The condition that
defines the semiclassical regime becomes

VEMF � h̄vE

L
(8)

where L is the length of the ring. It is easily verified that this condition is just the opposite
of the diabaticity condition. The diabatic regime is defined as that where transitions between
energy levels of a ‘free’ ring can be neglected. If there is a small scatterer inside the ring, a
stronger condition than diabaticity is required in order to maintain adiabaticity:

VEMF � (1 − g)
h̄vE

L
(9)

where g ∼ 1 is the transmission of the scatterer. The adiabatic regime is defined as that where
transitions between the actual energy levels of the ring can be neglected. This is the regime
where the Landau–Zener mechanism of transitions at avoided crossings [20, 21] becomes
significant. The three regimes in the EMF-driven ring problem are illustrated in the diagram
of figure 5.

Our main interest is in the non-trivial semiclassical regime as defined by equation (6). In
order to reconcile our semiclassical intuition with the quantum Fermi Golden rule picture, we
have to assume that the quantum dynamics self-generates a frequency ‘h̄ω’ = δEcl. Indeed,
it has been argued in [7] that the non-perturbative mixing of levels on the small energy scales
generate this frequency, while the re-normalized transitions on the large (coarse grained)
energy scales are FGR like. However, an actual mathematical analysis of the dynamics has
not been introduced and was left as an open problem. In section 7 we shall argue that these
FGR-like energy jumps can be reinterpreted as unidirectional Bloch oscillations (figure 6).
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Figure 5. The three regimes in the EMF-driven ring problem. See the text.

a

Figure 6. The unidirectional oscillations of Bloch electrons with ∝1/(n − m) hopping: as the
wavepaket slides to the right it shrinks, while being re-injected on the left, where it re-emerges.
This should be contrasted with conventional bi-directional oscillations of Bloch electrons with
nearest neighbour hopping.

4. Particle pulsed by a step

The simplest example for a semiclassical energy jump is provided by the ‘step problem’. The
time-dependent Hamiltonian is

H = p2

2m
+

{
0 t < 0
Vstep t � 0.

(10)

For this Hamiltonian ‘energy space’ is in fact ‘momentum space’, so it is more natural to refer
to ‘momentum jumps’. Obviously, we can translate any small change in momentum to energy
units via δE = vEδp, where vE = (2E/m)1/2 is the velocity of the particle in the energy range
of interest.

The phase space dynamics after kicking an initial momentum state p0 at t = 0 is illustrated
in figure 1(b). It is clear that the emerging momentum distribution is

ρt (p) =
[

1 − vEt

L

]
δ(p − p0) +

vEt

L
δ(p − (p0 + δpcl)) (11)

where δpcl = −Vstep/vE and L is the spatial extent of the wavepacket. From here on we set
L = 1 as implied by the standard density normalization of the momentum state eip0x . It is
implicit in the following analysis that we assume a very extended wavepacket (vEt � L).
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Figure 7. (a) Left panel: the classical energy distribution, equation (11), some time after a step
potential is turned on. In this illustration Vstep > 0. (b) Right panel: the corresponding quantum
mechanical energy distribution calculated with equation (13).

The emerging momentum distribution can be characterized by its moments with respect to
p = p0. Namely,

〈(p − p0)
r〉 = δpr

cl × vEt r = 1, 2, 3, 4, . . .. (12)

All the moments are finite and grow linearly with time. Below we are going to derive the
quantum result. Omitting the trivial δ(p − p0) term, and the back-reflection term, the final
result for the forward scattering is

ρt (p) = |〈p|U |p0〉|2 = δp2
cl

(p − p0)2
v2

Et2 sin c2

[
1

2
(p − (p0 + δpcl)) vEt

]
(13)

for which

〈(p − p0)
r〉 =




δpcl × vEt − sin(δpclvEt) for r = 1

δp2
cl × vEt for r = 2

∞ for r > 2.

(14)

Let us compare the energy distribution in the classical and quantum-mechanical cases
(figure 7). As the time t becomes much larger than h̄/Vstep, the semiclassical peak is resolved.
But we never get detailed QCC, because all the high (r > 2) moments of the distribution
diverge.

It should be appreciated that the power law tails that we get here for the energy distribution
are the ‘worst case’ that can be expected. They emerge because the phase space distribution
is torn in the momentum direction. In space representation this reflects a discontinuity in the
derivative of the wavefunction. This explains why the tails go like 1/p4. We are going to
encounter the same type of power law tails also in the other examples.

4.1. Derivation of the quantum result

The rest of this section is devoted for the derivation of the quantum result and can be skipped in
first reading. The momentum states are denoted as |p〉. In order to simplify the calculation we
approximate the dispersion relation, within the energy window of interest, as linear E = vEk.
This implies that back-reflection is neglected. Once the step is turned on, |p〉 are no longer
the stationary states. The new stationary states are

|k〉 �−→ �(−x) eikx + �(x) ei(k+u)x (15)
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where we use the notation u = δpcl. Note that these form a complete orthonormal set in the
sense 〈k1|k2〉 = 2πδ(k1 − k2). The transformation matrix from the old to the new basis is

〈p|k〉 =
∫ 0

−∞
e−i(p−k)x dx +

∫ ∞

0
e−i(p−k−u)x dx (16)

= πδ(p − k) +
i

p − k
+ πδ(p − k − u) − i

p − k − u
. (17)

Before we go on with the calculation we note that the following elementary integral can be
found in any mathematical handbook:∫ ∞

−∞

dk

2π

1

(k − p2)(k − p1)
eikt = i

2(p2 − p1)
(eip2t − eip1t ) p2 �= p1, t > 0.

We note that the result on the RHS if finite for p2 = p1 while in fact it should diverge. This
suggests that there is a missing delta term C eip2t δ(p2 − p1) where C is a constant. In order
to find this constant we have regularized this Fourier integral:

lim
δ→0

∫ ∞

−∞

dk

2π

k − p2

(k − p2)2 + δ2

k − p1

(k − p1)2 + δ2
eikt

= i

2(p2 − p1)
(eip2t − eip1t ) +

π

2
eip2t δ(p2 − p1) t > 0.

With the above we can calculate the matrix elements of the evolution operator:

〈p|U |p0〉 =
∑

k

e−iEkt 〈p|k〉〈k|p0〉 = 1

2π

∫ ∞

−∞
e−ivEkt 〈p|k〉 〈k|p0〉 dk

= πδ(p − p0)(e
ivEpt + eivE(p+u)t ) +

iu

(p − p0)(p − p0 − u)
(eivE(p0+u)t − eivEpt ).

(18)

We have 〈p|U(t = 0)|p0〉 = 2πδ(p − p0) as required. The interesting part of this expression
is the second terms which is non-vanishing for p �= p0. Taking its absolute value and squaring
we get after some algebra equation (13).

5. Particle in a box with a moving wall

5.1. The Schrödinger equation

We consider a particle in an infinite well. The left wall is assumed to be fixed at x = x0, while
the right wall at x = X(t) is moving with constant velocity Ẋ = Vwall. The size of the box is
L(t) = X(t) − x0. Classically, the dynamics is very simple: each time that the particle hits
the moving wall its energy jumps by δEcl = 2mvVwall. In the quantum mechanical case, we
work in the adiabatic basis. The adiabatic energy levels and the eigenstates for a given value
of L are

En = 1

2m

(
πh̄

L
n

)2

(19)

�(n)(x) = (−1)n

√
2

L
sin

(πn

L
x
)

(20)
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We use the standard prescription in order to write the Schrödinger equation in the adiabatic
basis. Using the notations of [22], the equation is written as

dan

dt
= − i

h̄
Enan + iẊ

∑
m

Anmam (21)

where

Anm = i

〈
�(n)

∣∣∣ ∂

∂X
�(m)

〉
. (22)

Hence, the Schrödinger equation for the problem in the adiabatic basis is [3, 6]
dan

dt
= − i

h̄
Enan − Vwall

L

∑
m(�=n)

2nm

n2 − m2
am (23)

5.2. The generated dynamics

Let us assume that the initial preparation is an(0) = δnm. The mean level spacing for the 1D
box is � = πh̄vE/L. If δEcl � � one finds out, by inspection of equation (23), that the
dynamics is adiabatic, meaning that an(t) ∼ δnm. On the other hand, if δEcl � �, one expects
to find a semiclassical transition E �→ E + δEcl.

How can we explain the E �→ E + δEcl transition from quantum-mechanical point of
view? For this purpose we can adopt the core-tail picture of [23]: the ‘core’ consists of the
levels that are mixed non-perturbatively; the ‘tail’ is formed by first-order transitions from the
core. Originally this picture has been applied to analyse the energy spreading in ‘quantum
chaos’ driven systems. Here, the (non-chaotic) moving wall problem allows a much simpler
application [7]. The analysis is carried out in two steps which are summarized below.

The first step in the ‘core-tail’ picture is to analyse the parametric evolution which is
associated with equation (23). This means to solve equation (23) without the first term on
the RHS. (This is the so-called sudden limit). Obviously, the resultant ãn(t) is a function
of δX = Vwallt , while Vwall by itself makes no difference. The solution depends only on
the endpoints x(0) and x(t). By careful inspection of equation (23), one observes that a
level is mixed with the nearby level whenever the wall is displaced a distance λE/2, where
λE = 2πh̄/(mvE) is the de Broglie wavelength. The time scale which is associated with this
effect is obviously

τqm = λE/2

Vwall
. (24)

The second step is to analyse the actual time evolution. This means to take into account the
effect of the first term on the RHS of equation (23) and to understand how the resultant an(t)

differs from ãn(t). One observes that the ‘parametric’ mixing of nearby levels modulates the
transition amplitude. The modulation frequency is

‘ω’ = 2π

τqm
. (25)

Once combined with the FGR equation (25) it leads to the anticipated semiclassical result
equation (5). It is not difficult to argue that the period of this semiclassical transition is

τcl = 2L

vE
(26)

which is the time to make one round between the walls of the well. Since we are dealing with
a simple 1D system this coincides with the Heisenberg time:

tH = 2πh̄

�
= τcl. (27)
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(a) (b)

Figure 8. Density plots of the probability distribution as a function of time for the moving wall
problem. (a) Left panel: adiabatic regime. The probability stays at the same level. In order to
clarify the connection with figure 4(a) we have added an E axis. The constant energy dashed lines
are for guiding the eye. The populated adiabatic level goes up in energy which implies that the
particle is steadily increasing its energy. (b) Right panel: semiclassical regime. The probability
jumps in energy space. Note that with respect to the E axis we have the steps of figure 4(a). The
parameters of these simulations were L = m = h̄ = 1 and Vwall = 0.1π for (a) and Vwall = 5π

for (b). Note that for n = 50 the classical period is τcl = 0.0127. The vertical dashed lines indicate
two representative times t = τcl and t = 1.5τcl.

The ratio τcl/τqm determines the number of nearby level transitions per period. Obviously,
the semiclassical condition equation (7) requires this ratio to be much larger than unity. The
disadvantage of the above heuristic picture is that it does not lead to a satisfactory quantitative
results. Therefore, in later sections we discuss an optional route of analysis via a reduction to
a tight binding model.

5.3. Numerical simulation

The solution of equation (23) becomes very simple if we make the approximation L(t) ≈ L0.
This holds as long as the wall displacement is small. We have verified that the associated
numerical error is very small. Using units such that L0 = m = h̄ = 1 we define a diagonal
matrix E = diag{π2n2/2} and a non-diagonal matrix, W = {−i2αnm/(n2 − m2)} with zeros
along the diagonal, and where α = Vwall/L. The evolution matrix in the adiabatic basis is
obtained by exponentiation:

U (t) = exp[−it (E + W )]. (28)

Figure 8 illustrates the time dependence of probability distribution |an(t)|2 for a particle
initially prepared at n0 = 50. Figure 8(a) displays the solution in the adiabatic regime: the
particle stays at the same level. Figure 8(b) displays the solution in the semiclassical regime: at
each moment the particle partially stays at the same energy and partially makes classical-like
transition to the next energy strip. Figure 9 highlights the energy splitting of the wavepacket
during the transition.

If we want to avoid the L(t) ≈ L0 approximation, the price is a time-dependent E and
W matrices. Then the calculation should be done in small dt time steps:

U (t) =
t∏

t ′=dt

exp[−i dt W (t ′)] exp[−i dt E(t ′)]. (29)
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Figure 9. Plots of the probability distribution |an|2 at the two representative times that were
indicated by the vertical dashed lines in the previous figure. In the classical limit, the energy
distribution consists of delta peaks instead of broadened peaks, in complete analogy with figure 7.

The state of the system is described by a truncated column vector a = {an} of length N.
Optionally, it is possible to represent the state of the system in the Fourier-transformed basis.
The elements Ak of the Fourier-transformed vector are labelled by k = (2π/N)ñ, where
ñ mod(N) is an integer. The practical implementation of equation (29) is greatly simplified if
W nm is a function of the difference n − m. In such a case W is transformed into a diagonal
matrix W̃ . Consequently, one can use the standard fast Fourier transform (FFT) algorithm in
order to propagate a given state vector. Namely,

a(t) =
t∏

t ′=dt

FFT−1 exp[−idt W̃ (t ′)]FFT exp[−idt E(t ′)]a(0) (30)

where both E and W̃ are diagonal. In the moving wall problem W nm is mainly proportional
to 1/(n − m), so the FFT method is applicable if we restrict the energy range of interest. In
the next section, we shall consider the EMF-driven ring problem, leading to a very similar
evolution equation, where the FFT method is strictly applicable.

6. Particle in an EMF-driven ring

6.1. The Schrödinger equation

We consider a 1D ring driven by an EMF (figure 3). The EMF is induced by a time-dependent
flux which is described by the vector potential

A(x, t) = �(t)δ(x − x0). (31)

This means that the electric field is

E(x) = VEMFδ(x − x0) (32)

where VEMF = −�̇ = const. The Hamiltonian that generates the dynamics is

H(�(t)) = 1

2m

(
p̂ − e

c
A(x̂, t)

)2
(33)

with periodic boundary conditions over x. The length of the ring is L.
Classically, the dynamics is very simple: each time that the particle crosses x = x0 its

energy jumps by δEcl = eVEMF. In the quantum mechanical case, it is convenient to work in
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the so-called diabatic basis. The diabatic energy levels for a given value of � are

En = 1

2m

(
2πh̄

L

)2 (
n − �

�0

)2

(34)

where �0 = 2πh̄c/e, see figure 4. The Schrödinger equation that describes the time evolution
in the diabatic basis is found using the same procedure as in the case of the moving wall. We
have to find Anm as defined in equation (22) where now X = �. The only extra difficulty is
in finding the eigenstates �(n) of equation (33) because A(x) depends on x. The calculation
becomes much simpler if we realize that they are related by a gauge transformation to the
eigenstates �̃(n) of a much simpler Hamiltonian:

H̃ = 1

2m

(
p − e�

cL

)2

. (35)

Namely,

�(n)(x) = exp
( ie

h̄c

(x)

)
�̃(n)(x) (36)

= exp
( ie

h̄c

(x)

)
× 1√

L
exp

(
i
2πn

L
x

)
(37)

= 1√
L

exp

(
i
2π

L

(
�

�0
+ n

)
x

)
(38)

where in the last line we set x0 = 0 and the gauge function is


(x) = �

L
x. (39)

Using the above result we get

Anm = − i

�0

1

n − m
(40)

and accordingly

dan

dt
= − i

h̄
Enan +

VEMF

�0

∑
m(�=n)

1

n − m
am. (41)

6.2. The generated dynamics

The dynamics of an EMF-driven ring is very similar to the dynamics in the moving wall
problem. This is obvious from the phase space picture and also by the inspection of the
equation for an(t). Also the ‘core-tail’ heuristic picture of section 5.2 is easily adapted. The
parametric scale that signifies mixing of nearby levels is now δX = �0 instead δX = λE/2
leading to the quantum time scale

τqm = �0

VEMF
. (42)

The classical period is

τcl = L

vE
(43)

and the semiclassical condition can be written as τqm � τcl.
Since the energies are time dependent we have to use equation (29) for the calculation

of the time evolutions. Furthermore, W is diagonal in the momentum representation,
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Figure 10. (a) Density plots of the probability distribution as a function of time for the EMF-
driven ring problem. See the caption of figure 8 for presentation details. The parameters are
L = m = h̄ = e = 1 with VEMF = 588 840. Note that for n = 50 the classical period is
τcl = 0.000 21. This is approximately the same as solving the wavepacket dynamics for Bloch
electron in electric field, equation (44), with α = 93 717 and ε = 31 416. (b) Wavepacket
dynamics for Bloch electron in electric field with near-neighbour hopping. The parameters are
m = h̄ = e = 1 with α = 14 139 and ε = 3141.6.
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Figure 11. Plots of the probability distribution |an|2 at representative times (as indicated). The
solid lines are the solution of equation (44) for Bloch electrons, while the dotted lines are the exact
numerical solutions for the EMF-driven ring, taking into account the quadratic (rather than linear)
dependence of the eigenenergies on �.

and therefore we can use the FFT method, equation (30), with W̃ = diag{−α(k − π)},
where k = (2π/N)ñ is defined mod(2π). The results of the simulations are presented in
figures 10(a) and 11. We shall further discuss these results in the next sections.
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7. Bloch electrons in a constant electric field (I)

If we focus our interest in small energy interval, then in both cases (moving wall, driven ring)
the Schrödinger equation in the adiabatic basis is approximately the same as that of an electron
in a tight binding model, where n is re-interpreted as the site index:

dan

dt
= −iEnan + α

∑
m(�=n)

1

n − m
am (44)

with En = εn. We use from here on h̄ = 1 units. The scaled rate of the driving α is re-
interpreted as the hopping amplitude between sites, while the levels spacing ε is re-interpreted
as an electric field. Assuming that the electron is initially at the site n0, we would like to find
out what is the probability distribution

ρt (n) = |an(t)|2. (45)

It is obvious that the adiabatic regime α � ε corresponds to a large electric field that localizes
the electron at its original site. In the other extreme (α � ε), if the effect of ε could have been
ignored, we would observe unbounded Bloch ballistic motion. The effect of finite ε is to turn
this motion into Bloch oscillations. We shall find below that the electron performs periodic
motion which we illustrate in figure 6: while the wavepaket drifts with the electric field to the
right, it shrinks and disappears, and at the same time re-emerges on the left. If we run the
simulation as a movie, it looks as if the motion is from left to right. Still it is bounded in space
due to this ‘re-injection’ mechanism.

First of all we solve the equation for ε = 0. The Hamiltonian is diagonal in the momentum
basis k and therefore the general solution is

an(t) =
∑

k

Ak ei(kn−ωkt) =
∫ 2π

0

dk

2π
Ak ei(kn−ωkt). (46)

The dispersion relation is found by transforming the Hamiltonian to the k basis:

ωk = iα
∑

n(�=m)

e−ik(n−m)

n − m
= α[π − k]. (47)

If we place at t = 0 an electron at site n0, then an = δn,n0 , and hence Ak = e−ikn0 . Then, we
get

an(t) = sin παt

π(αt + n − n0)
. (48)

Turning to the general case with ε �= 0 we substitute an(t) = cn(t) e−iEnt and get the equation

dcn

dt
= α

∑
m(�=n)

ei(n−m)εt

n − m
cm. (49)

This more complicated equation is still diagonal in the k basis:

dCk

dt
= −iωk(t)Ck (50)

where

ωk(t) = α[π − mod(k + εt, 2π)] (51)
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and its solutions is

Ck(t) = Ck(t = 0) exp

[
−i

∫ t

0
ωk(t

′) dt ′
]

=




exp

(
−ikn0 + iα

(
(k − π)t +

εt2

2

))
for ε > 0 and 0 < k < k

exp

(
−ikn0 + iα

(
(k − 3π)t +

εt2

2
+

2π(2π − k)

ε

))
for ε > 0 and k < k < 2π

exp

(
−ikn0 + iα

(
(k − π)t +

εt2

2
+

2πk

ε

))
for ε < 0 and 0 < k < k

exp

(
−ikn0 + iα

(
(k + π)t +

εt2

2

))
for ε < 0 and k < k < 2π

which is valid for 0 < t < 2π/|ε| and should be continued periodically in time. We have used
the notation k = −εt mod(2π). Now we can go back to position representation:

cn(t) =
∫ k(t)

0

dk

2π
Ck eikn +

∫ 2π

k(t)

dk

2π
Ck eikn. (52)

Taking the absolute value and squaring we get the following result for the probability
distributions:

ρt (n) =
(

2
α

ε

)2 sin2
(

1
2εt

(
n − n0 + α

(
t − 2π

|ε|
)))

(n − n0 + αt)2
(
n − n0 + α

(
t − 2π

|ε|
))2 . (53)

The above formula is valid for 0 < t < 2π/|ε| and it should be continued periodically in time.
Figures 6 and 10(a) illustrate the dynamics both schematically and numerically. In the next
section we further discuss the nature of this dynamics.

8. Bloch electrons in a constant electric field (II)

In order to appreciate the significance of the ∝1/(n − m) hopping we again solve the
problem of Bloch electrons in a constant electric field, but this time with the ‘conventional’
nearest neighbour hopping:

dan

dt
= −iEnan +

α

2
[an+1 − an−1] (54)

with En = εn. The initial preparation at t = 0 is an = δn,n0 . We substitute an = e−iEnt cn and
get

dcn

dt
= α

2
(e−iεt cn+1 − eiεt cn−1). (55)

This equation becomes diagonal in the k basis:

dCk

dt
= −iωk(t)Ck (56)

where

ωk(t) = α sin(εt + k). (57)

Its solutions is

Ck(t) = Ck(t = 0) × exp

[
−i

∫ t

0
ωk(t

′) dt ′
]

. (58)
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Solving the above integral and making the inverse Fourier transform we obtain

cn(t) = Jn−n0

(
2α

ε
sin

(
1

2
εt

))
(59)

where J ( ) is the Bessel function of the first kind. Taking the absolute value and squaring we
get the probability distribution:

ρt (n) =
∣∣∣∣Jn−n0

(
2α

ε
sin

(
1

2
εt

))∣∣∣∣
2

. (60)

Figure 10(b) illustrates the dynamics. As in the previous problems we can distinguish between
two time scales. One is related to the diagonal part of the Hamiltonian, and the other one to
the hopping term. Keeping the same notation as in previous sections these are

τcl = 2π/ε (61)

τqm = 1/α. (62)

The nature of the dynamics in the case of ∝1/(n − m) hopping and in the case of near-
neighbour hopping is quite different, as it can be appreciated by comparing figures 10(a) and
(b). This is related to the additional symmetries in the latter case. In order to explain this point
let us use the notation U (α, ε) that emphasizes that the evolution depends on two parameters,
the first one is associated with the kinetic term W = w(p̂) and the other one with the potential
term E = ε(x̂). For clarity we use x̂ for the position coordinate and p̂ for the quasi-momentum.
In both cases, we have the anti-unitary symmetry (x, p) �→ (x,−p) that maps E to E and W
to −W . Consequently, U (α; ε) is mapped to U (α;−ε). This implies that the spreading does
not depend on the direction of the electric field. This is a peculiarity of tight binding models.
The conventional time reversal symmetry, for which the kinetic term W is left invariant, is
(x, p) �→ (x, π − p). This symmetry characterizes the near-neighbour hopping, but not the
∝1/(n − m) hopping. This symmetry implies that the spreading looks the same if we reverse
the signs of both α and ε, which is like reversing the time. If we combine the two symmetries
we deduce that the dynamics, in the case of the near-neighbour hopping, should be indifferent
to the sign of α. Note that the combined symmetry that leads to this conclusion is the unitary
mapping (x, p) �→ (x, p + π). Thus, in both cases (∝1/(n − m) hopping and near-neighbour
hopping) we have generalized Bloch oscillations, but in the former case they are unidirectional
(figure 6), while in the latter case they are bi-directional.

9. Discussion

Within Linear response theory (LRT) the energy absorption of a quantum system is determined
by the correlation function of the perturbation term. In general, one can argue that there is
a very good QCC for the correlation functions, and hence one expects restricted QCC in the
energy absorption process. The persistence of restricted QCC in the t → ∞ limit requires the
additional assumption of having a coarse-grained Markovian-like behaviour for long times.
Depending on the context one should further assume that the environment supplies both weak
decoherence effect that makes the break time t∗ irrelevant and a weak relaxation effect so as
to achieve a steady state. Then it is possible to use the same argumentation as in the derivation
of the central limit theorem in order to argue that all the higher moments become Gaussian
like.

Thus, the common perception is that the leading result for the response of a driven system
should be the same classically and quantum mechanically. For example, such is the case if one
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calculates the conductance of a diffusive ring [24]: the leading order result is just the Drude
expressions, and on top there are weak localization corrections.

The above reasoning illuminates that the long time response is based on the short time
analysis. Moreover, one realizes that the second moment of the evolving energy distribution
has a special significance. Still, all the above observations are within a very restrictive
framework of assumptions. In practice, it is of much interest to explore the limitations of LRT
and to obtain a more general theory for response.

The theory for the response of closed isolated driven quantized chaotic mesoscopic
systems is far from being trivial, even if the interactions between the particles are neglected.
In the case of a generic quantized chaotic systems two energy scales are involved: the mean
level spacing � ∝ h̄d , where d = 2, 3 is the dimensionality of the system, and the semiclassical
energy scale h̄/τcl. It is implied (see the mini-review of [25]) that there are generically three
regimes depending on the rate Ẋ of the driving:

• The adiabatic (Landau–Zener) regime.
• The Fermi-golden-rule (FGR, Kubo) regime.
• The semiclassical (non-perturbative) regime.

Most of the literature in mesoscopic physics is dedicated to the study of the dynamics in either
the adiabatic or the FGR regimes. The existence of a non-perturbative regime [25, 26] is not
yet fully acknowledged, though it has been established numerically in the RMT context [27].

Driven one-dimensional systems are non-generic because typically the semiclassical
energy scale coincides with the mean level spacing. In other words, the Heisenberg time
tH = 2πh̄/� is the same as the classical time τcl rather than being much larger. Indeed, we
have seen that in the ‘moving wall’ problem we have just two regimes: the adiabatic regime
and the semiclassical regime.

The EMF-driven ring is a prototype problem in mesoscopic physics. It is richer than
the ‘moving wall’ problem because a small scatterer introduces a very small energy scale,
the level splitting, and hence we have three regimes rather than two: adiabatic, diabatic and
semiclassical.

The semiclassical regime in the study of EMF-driven rings has not been explored so
far. One important observation is that contrary to LRT the gauge of the vector potential does
matter. Most of past studies assume that the vector potential is A(x, t) = �(t)/L. It is true
that in LRT the same result for the conductance is obtained with Ã(x, t) = �(t)δ(x − x0). If
we try to go from Ã(x, t) to A(x, t) using a gauge transformation, the ‘price’ is a modified
V (x) that features a linear ramp with a step-like drop at x = x0. This modification of V (x)

can be neglected only in the LRT regime. The semiclassical condition of equation (6) is just
that opposite of this LRT requirement.

The semiclassical dynamics implies diffractive energy spreading. The mixing of levels
in the small energy scales induces jumps in energy space. The realization that this diffractive
energy spreading can be re-interpreted using a tight binding Bloch model follows in spirit the
celebrated reduction [1] of dynamical localization in periodically kicked systems to a tight
binding Anderson problem. An interesting feature is the hopping that goes like ∝1/(n − m).
This hopping leads to a unidirectional rather than bi-directional Bloch oscillations, as implied
by the semiclassical reasoning.
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Appendix. The robustness of restricted QCC

The simplest way to illuminate the robustness of the second moment is by adopting a heuristic
phase space picture language. Given two operators Â = A(x̂, p̂) and B̂ = B(x̂, p̂), with
Wigner–Weyl representation AWW(x, p) and BWW(x, p) we have the exact identity

trace(ÂB̂) =
∫

dx dp

2π
AWW(x, p)BWW(x, p). (A.1)

If we can justify the replacement of AWW(x, p) by A(x, p) and BWW(x, p) by B(x, p) then
we get QCC. The rule of the thumb is that in order to justify such an approximation the
phase space contours of A(x, p) and B(x, p) should be significantly different. Otherwise
the transverse structure of the Wigner–Weyl functions should be taken into account. This
reasoning can be regarded as a phase space version of the stationary phase approximation.

Let Â = [H(x̂, p̂)]r be the rth power of the Hamiltonian H = H(x̂, p̂) and let be
B̂ = ρ(H0(x̂, p̂)) a stationary preparation with the Hamiltonian H0 = H0(x̂, p̂). In such a
case trace(ÂB̂) is the rth moment 〈Hr〉 of the energy. If H = H0 + λV , and λ is not large
enough, then we do not have detailed QCC. This is discussed thoroughly in [28]. But at the
same time, irrespective of λ, restricted QCC is robust. The reason is that for the first two
moments we have the identities

〈H〉 = 〈H0〉 + 〈V̂ 〉 (A.2)

〈H2〉 = 〈
H2

0

〉
+ 2〈H0〉〈V̂ 〉 + 〈V̂ 2〉. (A.3)

Thus the calculation of trace(ÂB̂) with Â = [H(x̂, p̂)]r reduces to the calculation of trace(ÂB̂)

with Â = [V (x̂, p̂)]r . We assume that V and H are not related in any special way. It follows
that we have robust QCC for all the moments of V , and consequently also for the first two
moments of H, irrespective of λ.

In order to generalize the above reasoning to time-dependent Hamiltonians, it is convenient
to adopt the Heisenberg picture. Given that the system is prepared in a stationary state at t = 0,
one can prove that

〈H(t)2〉0 − 〈H(0)2〉0 = 〈(H(t) − H(0))2〉0 (A.4)

where H(t) is the Hamiltonian H(X(t)) in the Heisenberg picture. Such relation cannot be
generalized to higher moments because of lack of commutativity. Using

dH
dt

= ∂H
∂t

= ẊV̂ (t) (A.5)

where V ≡ ∂H/∂X, we can express 〈(H(t) − H(0))r〉0 as an integral over the correlation
functions of the perturbation V (t). The QCC for these correlation functions is robust, and
hence the QCC for the second moment is also robust.
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