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A circulating current can be induced in the Fermi sea by displacing a scatterer or more generally by
integrating a quantum pump into a closed circuit. The induced current may have either the same or the opposite
sense with respect to the “pushing” direction of the pump. We work out explicit expressions for the associated
geometric conductance using the Kubo-Dirac monopole picture and illuminate the connection with the theory
of adiabatic passage in multiple path geometry.
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I. INTRODUCTION

The question “how much charge is transported due to an
adiabatic translation of a scatterer” has been raised in the
context of an open geometry in Ref. 1. The scatterer is a
potential barrier whose location x=X1 and transmission gX
=g�X2� at the Fermi energy are determined by gate con-
trolled parameters X1 and X2. For the single mode “wire”
in Fig. 1�a�, using the Buttiker-Thomas-Pretre �BPT�
formalism,2,3 one obtains the following result:

Q = �1 − gX�
e

�
kF�X1, �1�

where kF= �2mEF�1/2 is the Fermi momentum and �X1 is the
translation distance of the scatterer. Reference 1 has referred
to this transport mechanism as “snow plow” and pointed out
that it should be regarded as the prototype example for quan-
tum pumping: a full pumping cycle �Fig. 2�a�� would consist
of translating the scatterer to the right, shrinking its “size,”
pulling it back to the left, and restoring its original size.

Quantum stirring4,5 is the operation of inducing a dc cir-
culating by means of ac periodic driving. This is naturally
achieved by integrating a quantum pump in a closed
circuit.6–8 In particular Refs. 4 and 5 have considered the
same adiabatic snow plow mechanism as described above
and obtained for the model system in Fig. 1�b� the following
result:

Q = � �1 − gX�gV

gX + gV − 2gXgV
� e

�
kF�X1, �2�

where gV is the transmission of the ring segment that does
not include the moving scatterer, as defined by its Landauer
conductance if it was connected to reservoirs.

Equation �2� is “classical” in the Boltzmann sense be-
cause in its derivation the interference within the ring is ig-
nored. The purpose of the present study is to derive quantum
results for the stirring in a low-dimensional device, where
quantum mechanics has the most dramatic consequences. In
particular we would like to illuminate the possibility of hav-
ing a counterstirring effect: by “pushing” the particles �say�
anticlockwise, one can induce a circulating current in the
counterintuitive �clockwise� direction.

II. OUTLINE

As a preliminary stage we provide a simple pedagogical
explanation of the counterstirring effect by regarding the
“pushing stage” of the pumping cycle as an adiabatic passage
in multiple path geometry.9 For the actual analysis in the
general case we use the Kubo-Dirac monopole picture of
Ref. 10. Within this framework the pumped charge Q is de-
termined by the flux of a B�X� field which is identified as the
Berry-Kubo curvature.11–13 We study both analytically and
numerically how this field looks like. The results are illus-
trated in Figs. 2–4. Summing the contributions of all the
occupied levels we get expressions for the geometric conduc-
tance G. Integrating over a full pumping cycle we get results
for Q.

We derive practical estimates for the stirring which is in-
duced due to the translation of either small �gX�1� or a large
�gX�1� scatterer, including the possibility of having gX
�gV. The dependence of Q on the size of the scatterer is
plotted in Fig. 5, where it is contrasted with the classical
expectation and compared with the analytical approxima-
tions. In Sec. XIII we refer to the experimental measurement
aspect.

III. COUNTERSTIRRING EFFECT

The essence of the counterstirring effect can be under-
stood without the Kubo-Dirac monopole picture by adopting
the “splitting ratio” concept of Ref. 9. Referring to Fig. 1�b�
the translation of the scatterer to the right is effectively like
lowering the potential floor in the left bond and raising the
potential floor in the right bond. This induces an adiabatic
passage of a particle from the right to the left. The particle
has two possible ways to make the passage: either via the V

X1

X2

X1

X2

(a) (b) S

FIG. 1. �Color online� In the case of an open geometry the
pumping device is connected between two unbiased reservoirs
�panel �a��, while in the present study it is integrated into a ring
�panel �b��. The induced current is measured through a section in-
dicated by a dashed line. See the text for further details.
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barrier �coupling W12
V � or via the X barrier �coupling W12

X �.
The splitting ratio determines the fraction of the current that
goes via the V barrier,

��X2� =
W12

V

W12
V + W12

X =
�gV

�gV � �gX

, �3�

where the last equality is based on the analysis in Ref. 6. If
W12 were the classical rate of the transition, we would have
0���1 and the current would flow in accordance with our
classical intuition. However W12

V and W12
X are real amplitudes

that might have opposite signs if an odd level crosses an
even level. Consequently if 	W12

X 	� 	W12
V 	 we get ��0 which

implies that a circulating current is induced in the counterin-
tuitive �clockwise� direction. This does not come in any con-
tradiction with the observation that the net transport �sum-
ming over both barriers� is still from right to left.

IV. MODEL HAMILTONIAN

Our model is a one-dimensional �1D� coherent ring with a
fixed scatterer and a controlled scatterer. The fixed scatterer
is some potential barrier V�x� and the controlled scatterer is
modeled as a delta function whose position and transmission
are determined by the control parameters X1 and X2. The
one-particle Hamiltonian is

H =
1

2m
p̂2 + V�x̂� + X2�t�	�x̂ − X1�t�� , �4�

with periodic boundary conditions over x� �−L /2,L /2� so
as to have a ring geometry. Below we further assume that

both bonds are of similar length �L−X1�X1�L /2�. The cur-
rent is measured through a section x=x0= +0 at the fixed
barrier, and accordingly

X2

X1

X2

X1

X1

X2

X1

X2

X2

g = gX V

X3

X2

X1

X

X

X

(c)

(d)

(b)

(f)

(e)

(a)

X XX

FIG. 2. �Color online� �a� Three representative pumping cycles.
Several sets of Dirac monopoles may have nonzero weight depend-
ing on the occupation. Panel �b� is for single level occupation where
two sets have nonzero weight, while either �c� or �d� are for zero-
temperature Fermi occupation. Filled �hollow� circles indicate in
�off�-plane monopoles. Panels �e� and �f� give a detailed illustration
of the associated B field, as implied by the numerical findings of
Figs. 3 and 4. The X1 tick marks in �e� are half de Broglie spaced,
while the horizontal blue lines are paths for which numerical results
are presented in Figs. 3 and 4.
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FIG. 3. �Color online� The conductance G=G31 of Eq. �10� is
numerically calculated for a ring of length L=151.43 with V�x�
=U	�x�, where U�10. We consider single level occupation n
=138. At this energy gV=0.06. The upper �lower� panel is for trans-
lation of a very small �large� scatterer with gX=0.98 �gX=8

10−8� corresponding to the lower �upper� horizontal blue paths
that are indicated in Fig. 2�e� �same X1 axis�.
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FIG. 4. �Color online� Additional plots of the conductance G as
calculated in the previous figure. The upper �lower� panel is for
translation of a scatterer with gX=0.20 �gX=0.03� corresponding to
the horizontal blue paths in Fig. 2�e� that go below �above� the
gX=gV axis. Note that the large peaks are positive �negative� while
the small positive peaks switch sign only when the scatterer is low-
ered further. This indicates that the field lines bend in the X3 direc-
tion, as illustrated in Fig. 2�f�.
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I =
e

2m
�p̂	�x̂ − x0� + 	�x̂ − x0�p̂� . �5�

We also define generalized forces which are associated
with the control parameters

F1 = − ��H/�X1� = X2	��x̂ − X1� , �6�

F2 = − ��H/�X2� = − 	�x̂ − X1� . �7�

For practical use it is more convenient to describe the fixed
scatterer by its scattering matrix, which can be written as

SV = ei�V
− i�1 − gVei�V �gV

�gV − i�1 − gVe−i�V
� . �8�

We study the case when the model parameters are such that
the transmission of the fixed scatterer is small �gV�1�, the
Fermi momentum is large �kFL
1�, and the controlled scat-
terer is translated a distance �X1 that equals several Fermi
wavelengths.

V. KUBO-DIRAC PICTURE

If we were changing the flux X3�� through the ring, the
induced current would be given by the Ohm law I= 
I�=
−G33X3, where G33 is the Ohmic conductance and −X3 is the
electromotive force. Similarly for a variation of the param-

eter X1, the current is I=−G31Ẋ1, where G31 is called the
geometric conductance. For two parameters driving one can
write

Q =� Idt = − �
cycle

G · dX =� B · ds , �9�

where G= �G31,G32�, X= �X1 ,X2�, and ds= �dX2 ,−dX1�. For a
particle that evolves adiabatically in the level n we have
G31=B2 and G32=−B1 where

Bj
�n� = �

m��n�

2 Im�Inm�Fmn
j

�Em − En�2 . �10�

In fact, �B1 ,B2� are elements of the Kubo-Berry
curvature11–13 which one can regard as a fictitious magnetic

field B� = �B1 ,B2 ,B3� in an embedding space X= �X1 ,X2 ,X3�.
From the requirement of having well-defined Berry phase it

follows that the sources of B� �X�, which are located at points
of degeneracy, are quantized, the so-called “Dirac mono-
poles.”

VI. X SPACE

Due to the gauge symmetry ���+2�� /e the Dirac
monopoles are arranged as vertical chains �see Fig. 2�f�� ��
=e=1�. Due to the time-reversal invariance of our H�X1 ,X2�
it follows that a Dirac chain is either a duplication of in-
plane monopole at X3=0 or off-plane monopole at X3=�.
Let us find an explicit formula for the �X1 ,X2� locations of
these vertical chains. The equation for the adiabatic energies
En�X� is of the form cos�kL+��=�g cos���, where g is the

total transmission of the ring and � is the total phase shifts of
the scatterers �the fixed scatterers plus the moving scatterer�.
If X2 is such that gX�E ;X2�=gV�E� we can always find X1
such that the total transmission would be g=1, which is the
necessary condition for having a degeneracy. Together with
the equation kEL+��E�=r� with r=integer this defines a set
of energies Er= �kr�2 /2m and associated values X2

r for which
the n=r level has degeneracy with the n=r+1 level provided
X1 is adjusted. To be more precise r=even are in-plane ��
=0� degeneracies, while r=odd are off-plane ��=�� degen-
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FIG. 5. �Color online� Numerical calculation of Q for zero-
temperature Fermi occupation: all the levels are occupied up to n
=137 �upper panel� and up to n=138 �lower regular and zoomed
panels�. The model parameters are the same as in Fig. 3. The inte-
gration was carried out along segments similar to the paths shown
in Fig. 2�e� where gX varies between gX=8.30
10−5 and gX

=0.45. For the sake of comparison we display both the analytical
classical �Eq. �2�� and quantum results �Eqs. �20� and �25��. The
value of X2 for which gX=gV is indicated by a vertical line.
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eracies. The X1 locations of these degeneracies are half de
Broglie wavelength apart �see Fig. 3�,

X1
r =

�V

2kr +
L

2
+ 
�1

2
� + integer��

kr , �11�

where the �1/2� shift applies to in-plane degeneracies. The
arrangement of the degeneracies in X space is illustrated in
Fig. 2. For each �X1

r ,X2
r� we have a vertical Dirac chain

whose monopoles are formally like sources for the B field.

VII. FERMI OCCUPATION

If we have many-body system of N=�nfn particles, then
B=�nfnB�n�. At finite temperature each occupied level �ex-
cept n=1� contributes two sets of �X1

r ,X2
r� chains, namely, r

=n and r=n−1, which are associated with the En=En�1 de-
generacies. By inspection of Eq. �10�, taking into account
that Inm is antisymmetric, one observes that the net contri-
bution of the rth set of Dirac chains is fr− fr+1. In particular
for zero-temperature Fermi occupation, the net contributions
come from only one set of chains which is associated with
the degeneracies of the last occupied level with the first non-
occupied level �Figs. 2�b�–2�d��.

VIII. CLASSICAL LIMIT

At finite temperatures we can define the smeared prob-
ability distribution of the Dirac monopoles with respect to X2
as follows:

f�X2� = �
r

�fr − fr+1�	�X2 − X2
r� . �12�

Disregarding fluctuations Eq. �9� implies a monotonic depen-
dence of Q on X2 in qualitative agreement with Eq. �2�. If the
expression in the square brackets of Eq. �2� was equal to
�0

X2f�X��dX�, it would imply a quantitative agreement as
well. In order to have this quantitative agreement we have to
further assume that the distribution f�X2� is determined by
some chaotic dynamics in the scattering region which would
imply erratic dependence of the S matrix on the energy E
�see Ref. 4 for further discussion�.

IX. QUANTUM LIMIT

Our interest below is in the opposite limit of zero tem-
perature where f�X2� becomes a step function. Obviously in
this limit a steplike behavior of Q versus X2 would be a
crude approximation. By inspection of Eq. �10� it follows
that the result for G�G31=B2 is very well approximated by

G�X1,X2� =
2 Im�In,n+1�Fn+1,n

1

�En+1 − En�2 , �13�

where n is the last occupied level. This observation as well
as the associated analytical results which are based on it have
been verified against the exact numerical results of Figs. 3
and 4. Below we derive explicit expressions for G vs X1 for
both small and large values of X2. Our results for Q are
plotted in Fig. 5. Note that the dependence on X1 has � /kF

periodicity due to the X space arrangement of the monopoles,
and accordingly the integration gives Q�ekF�X1 /�, with a
prefactor that we would like to estimate.

X. MATRIX ELEMENTS

The matrix elements of the current operator I and of the
generalized force F1 are

Inm = i
e

2m
����n���m� − ��n� � ��m�� , �14�

Fmn
1 = − X2����m���n� + ���n���m��

= −
1

2m
���R

�m� � �R
�n� − ��L

�m� � �L
�n�� , �15�

where ��=1 /2���L+��R� is the average derivative on the
left and right sides of the delta barrier, and the second ex-
pression for Fnm

1 was obtained by using the matching condi-
tions across the delta barrier. The wave function is written as
��x�=C sin��+kx�. We found that a very good approxima-
tion for Inm with m=n+1 is

Inm = � ie
vF

L
�gV, �16�

where the + �−� sign is for n=even �odd� and vF=kF /m is
the velocity in the energy range of interest. For the calcula-
tion of Fmn

1 and Em−En we have to distinguish between the
two cases of small/large scatter. This means the small/large
X2 regimes where gX�1 or �1.

XI. TRANSLATING A SMALL SCATTERER

If the controlled scatterer is small, we treat it as a pertur-
bation. For the energy splitting we get

Em − En �
�

L
vF �

2

L
X2 cos�2kFX1� , �17�

where for notational convenience we take X1
r as the new

origin. After some further algebra we get

Fmn
1 = � X2

2kF

L
cos�2kFX1� + X2

�

L2 , �18�

where the � sign is as in Eq. �16�. The conductance can be
written as

G =
e

�
kF�

�=0

�

G� cos��2kFX1� , �19�

where the coefficients of the leading non-negligible terms
�the small parameter being �1−gX� /gX� are

G0 = � 2�gV
 1

kFL
�1 − gX

gX
+

4

�2

1 − gX

gX
� , �20�

G1 =
2

�
�gV
 4

kFL

1 − gX

gX
+ 2�1 − gX

gX
� . �21�

Upon integration we get Q=−eG0 per half Fermi wavelength
displacement of the scatterer.
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XII. TRANSLATING A LARGE SCATTERER

If the controlled scatterer is large, most of the charge
transfer is induced during the avoided crossings �sharp peaks
in Fig. 3, lower panel�. Consequently we use the two level
approximation scheme in Ref. 6 with m=n+1 leading to the
following results:

Em − En =
2

L
vF	R	 , �22�

Fmn
1 = �

2

L
mvF

2 R2

	R	
, �23�

where the � sign is as in Eq. �16� and the dimensionless
distance in X space from the degeneracy point is

R = 
2kF�X1 − X1
r�,

�gV

��X2�
� , �24�

Accordingly the conductance is

G = e
kF

�gV

R2

	R	3
. �25�

Integrating over X1 we get Q=e��X2� per half Fermi wave-
length displacement of the scatterer, as expected from the
splitting ratio argument.

XIII. SUMMARY

The integration of a two-terminal quantum pump in a
closed circuit is not a straightforward procedure. Due to in-
terference the pumped charge Q would not be the same as in
the Landauer/BPT setup, and even the sense of the induced

current might be reversed. The most dramatic consequences
would be observed in low-dimensional devices. For this rea-
son we have analyzed in this paper the prototype problem of
pushing a current by translating a scatterer in a single mode
wire. We have obtained explicit results for the B field, which
determines the geometric conductance G and consequently
the Q of a closed pumping cycle. We also illuminated the
counterstirring effect using the splitting ratio concept of adia-
batic passage in multiple path geometry.

A few words are in order regarding the measurement pro-
cedure and the experimental relevance. It should be clear that
to measure current in a closed circuit requires special
techniques.14–16 These techniques are typically used in order
to measure persistent currents, which are zero-order �conser-
vative� effect, while in the present paper we were discussing
driven currents, which are a first-order �geometric� effect. It
is of course also possible to measure the dissipative conduc-
tance �as in Ref. 14�. During the measurement the coupling
to the system should be small. These are so-called weak mea-
surement conditions. More ambitious would be to measure
the counting statistics, i.e., also the second moment of Q as
discussed in Refs. 9 and 17 which is completely analogous to
the discussion of noise measurements in open systems.18,19

Finally it should be pointed out that the formalism above,
and hence the results, might apply to experiments with su-
perconducting circuits �see Ref. 8�.
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