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Classical and quantum pumping in closed systems
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Pumping of charge (Q) in a closed ring geometry is not quantized even in the strict adiabatic
limit. The deviation form exact quantization can be related to the Thouless conductance. We use
the Kubo formalism as a starting point for the calculation of both the dissipative and the adiabatic
contributions to Q. As an application we bring examples for classical dissipative pumping, classical
adiabatic pumping, and in particular we make an explicit calculation for quantum pumping in case
of the simplest pumping device, which is a 3 site lattice model. We make a connection with the
popular S matrix formalism which has been used to calculate pumping in open systems.

Pumping of charge in mesoscopic [3] and molecular size
devices is regarded as a major issue in the realization of
future ”quantum circuits” or ”quantum gates”, possibly
for the purpose of ”quantum computing”. Of particu-
lar interest is the possibility to realize a pumping cy-
cle that transfers exactly one unit of charge per cycle
[4, 5, 6, 7]. In open systems this ”quantization” holds
only approximately. But it has been argued [6] that the
deviation from quantization is due to ”dissipative” effect,
and that exact quantization would hold in the strict adi-
abatic limit, if the system were closed. In this Letter
we would like to show that the correct picture is quite
different. In particular we would like to make a proper
distinction between ”dissipative” and ”adiabatic” contri-
butions to the pumping, and to calculate the deviation
from exact quantization in the latter case. As a starting
point we adopt the traditional Kubo formula [8], but we
also point out the relation to the ”adiabatic” [9, 10] and
to the ”S-matrix” [11] formulations. The present formu-
lation of the pumping problem has few advantages: It
is not restricted to the adiabatic regime; It give a ”level
by level” understanding of the pumping process; It al-
lows the consideration of any type of occupation (not
necessarily Fermi occupation); It allows future incorpo-
ration of external environmental influences such as that
of noise; It regards the ”voltage” over the pump as ”elec-
tro motive force”, rather than adopting the conceptually
complicated view [12] of having a ”chemical potential dif-
ference”. Finally, on the practical level, we give a solu-
tion for the pumping in a 3 site lattice model. This is
definitely the simplest pump circuit possible, and we be-
lieve that it can be realized as a molecular size device. It
also can be regarded as an approximation for the closed
geometry version of the two delta potential pump [7].

The structure of this Letter is as follows: We show
how to get from the Kubo formalism an expression for
the pumped charge Q, and explain the distinction be-
tween ”dissipative” and the ”adiabatic” contributions.
Then we give illuminating examples for classical dissipa-
tive pumping and for classical adiabatic pumping. Next
we discuss the case of quantum pumping, where the cy-
cle is around a chain of degeneracies. We show that this
can be understood as a special case of ”adiabatic trans-
fer” scheme. In order to get a quantitative estimate for
the pumped charge we consider a 3 site lattice model.

We get expressions for Q, and express them in terms of
the Thouless conductance. We conclude by a short dis-
cussion of the relation between the Kubo formalism, the
adiabatic formalism, and the S-matrix formalism.

Consider a system that has a ring geometry (Fig.1a).
The Hamiltonian is H(x1(t), x2(t), x3(t)), where x1 and
x2 are parameters that control the shape of the ring,
or the height of some barriers, while x3=Φ=h̄φ is the
magnetic flux. We use units such that the elementary
charge is unity. The ”generalized forces” are convention-
ally defined as F k ≡ −∂H/∂xk. In particular 〈F 3〉 is the
current I through the ring (see remark [18]). Consider
for a moment the time independent Hamiltonian H(x),
with x = const, and assume that the system is prepared
in a stationary state (either pure or mixed). The expec-
tation value 〈F k〉 of a generalized force is known as the
”conservative force” or (in case of k=3) as the ”persistent
current”. The ”fluctuations” of the generalized forces are
conventionally characterized by the real functions:

Cij(τ) = 〈 1

2
(F i(τ)F j(0) + F j(0)F i(τ))〉 (1)

Kij(τ) =
i

h̄
〈[F i(τ), F j(0)]〉 (2)

Note that both functions have a well defined classical
limit. Their Fourier transform will be denoted by C̃ij(ω)

and K̃ij(ω) respectively.
Our interest in the following is in a driving cycle, where

x = x(t) forms a loop in the 3 dimensional parameter
space. In linear response theory [8] the non-conservative
contribution to 〈F k〉 is related to x(t) by a causal re-
sponse kernel αij(t − t′). The Kubo expression for this
response kernel is αij(τ) = Θ(τ) Kij(τ). Its Fourier
transform is the generalized susceptibility χij(ω). From
here we can derive the expression 〈F k〉 = −∑j Gkj ẋj ,

where Gkj is the generalized conductance matrix:

Gij = lim
ω→0

Im[χij(ω)]

ω
=

∫ ∞

0

Kij(τ)τdτ (3)

Following Berry and Robbins [10] we split the conduc-
tance matrix into symmetric and anti-symmetric parts.
Namely Gij = η

ij +Bij . The antisymmetric part B can

be regarded as a vector ~B = (B23,B31,B12), and the
expression for the current can be written in an abstract
way as 〈F 〉 = −η · ẋ − B ∧ ẋ.
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The rate of dissipation, which is defined as the rate
in which energy is absorbed into the system, is given by
Ẇ = −〈F 〉·ẋ =

∑

kj η
ij ẋiẋj . Only the symmetric part of

Gij is responsible for dissipation of energy. The adiabatic
regime is defined by the condition |ẋ| ≪ ∆2/h̄σ, where
∆ is the typical level spacing, and σ is the root mean
square value of the matrix element (∂H/∂x)nm between
neighboring levels. In the adiabatic regime η

ij vanishes
because of the discreteness of the energy spectrum [10].
But outside of the adiabatic regime the levels acquires an
effective width Γ/∆ = ((h̄σ/∆2)V )2/3 > 1 and therefore

the smoothed version of K̃ij(ω) should be considered.
Consequently one can obtain the fluctuation-dissipation
(FD) relation: η

ij ∼ C̃ij(ω = 0). The formulation of the
exact FD relation depends on the assumptions regarding
the occupation f(En) of the energy levels. See [13, 14].
Commonly one assumes a zero temperature Fermi occu-
pation, but this is not essential for the following anal-
ysis. In order to derive the above expression for Γ we
have used the result of [13] (Sec.17) for the ”core width”
at the breaktime t = tprt of perturbation theory. Note
that in the semiclassical limit (small h̄) the adiabaticity
condition always breaks down.

The antisymmetric part B of Gij does not have to
vanish in the adiabatic limit. It can be obtained from the
adiabatic equation by looking for a first-order stationary-
like solution [4, 5, 10], but we prefer to regard it as a term
in the (full) Kubo expression Eq.(3). In [9, 10] it has been
demonstrated that it can be written as

Bij = −2h̄
∑

n

f(En) Im

〈

∂

∂xi
n(x)

∣

∣

∣

∣

∂

∂xj
n(x)

〉

= 2h̄
∑

m 6=n

f(En)
Im
[(

∂H
∂xi

)

nm

(

∂H
∂xj

)

mn

]

(Em − En)2
(4)

Note that the ”vertical” component of ~B vanishes in the
”horizontal” x3=0 plane due to time reversal symmetry.

Disregarding a possible persistent current contribution
(that does not exist in the case of a planar Φ=0 cycle),
the expression for the pumped charge is:

Q =

∮

Idt = −
[
∮

η · dx +

∮

B ∧ dx

]

k=3

(5)

If we neglect the first term, which is associated with the
dissipation effect, and average the second (”adiabatic”)
term over the flux, then we get

Q|adiabatic = − 1

2πh̄

∫∫

B · ~dx ∧ ~dx = integer (6)

The integration should be taken over a cylinder of ver-
tical height 2πh̄, and whose basis is determined by
the projection of the pumping cycle onto the (x1, x2)
plane. The last equality is argued as follows: The flux
(1/h̄)

∫∫

B · dx ∧ dx through a surface that is enclosed by
a cycle is the Berry phase [9]. The result should be in-
dependent of the surface. Therefore the flux through a

closed surface should equal 2π×integer. Integrating over
a cylinder, as in Eq.(6), is effectively like integrating over
a closed surface (because of the 2π periodicity in the ver-
tical direction). This means that the flux averaged Q of
Eq.(6) has to be an integer.

Before we discuss the quantum mechanical pumping,
it is instructive to bring two simple examples for classical

pumping. In the following we consider one particle (r) in
a two dimensional ring as in Fig.1a.

The first example is for classical dissipative pumping.
The conductance G = G33 can be calculated for this sys-
tem [14] leading to a mesoscopic variation of the Drude

formula. The current is I = −G × Φ̇, where −Φ̇ is the
electro-motive-force. Consider now the following pump-
ing cycle: Change the flux from Φ1 to Φ2, hence pumping
charge Q = −G(1)× (Φ2−Φ1). Change the conductance
from G(1) to G(2) by modifying the shape of the ring.
Change the flux from Φ2 back to Φ1, hence pumping
charge Q(2) = −G(2)× (Φ1 −Φ2). Consequently the net
pumping is Q = (G(2) − G(1)) × (Φ2 − Φ1).

The second example is for classical adiabatic pump-
ing. The idea is to trap the particle inside the ring by
a potential well Utrap(r1−x1(t), r2−x2(t)). Then make a
translation of the trap along a circle of radius R, namely
x(t) = (R cos(Ωt), R sin(Ωt), Φ=const). It is a-priori
clear that in this example the pumped charge per cy-

cle is Q = 1, irrespective of Φ. Therefore the ~B field
must be

~B = − (x1, x2, 0)

2π(x2
1 + x2

2)
(7)

This can be verified by calculation via Eq.(4). The sin-
gularity along the x3 axis is not of quantum mechanical
origin: It is not due to degeneracies, but rather due to
the diverging current operator (∂H/∂x3 ∝ 1/

√

x2
1 + x2

2).
We turn now to the quantum mechanical case. Con-

sider an adiabatic cycle that involves a particular en-
ergy level n. This level is assumed to have a degeneracy

point at (x
(0)
1 , x

(0)
2 , Φ(0)). It follows that in fact there

is a vertical ”chain” of degeneracy points that are lo-

cated at (x
(0)
1 , x

(0)
2 , Φ(0) + 2πh̄ × integer). These degen-

eracy points are important for the geometrical under-
standing of the B field, as implied by Eq.(4). Every de-
generacy point is like a monopole charge. The total flux
that emerges from each monopole must be 2πh̄×integer
for a reason that was explained after Eq.(6). Thus the
monopoles are quantized in units of h̄/2.

The B field which is created (so to say) by a vertical
chain of monopoles may have a different “near field” and
“far field” behavior, which we discuss below. (Later we
further explain that ”near field” means regions in x space,
in the vicinity of degeneracy points, where gT ≫ 1, while
”far field” means regions where gT ≪ 1). The far field
regions exist if the chains are well isolated. The far field
region of a given chain is obtained by regarding the chain
as a smooth line. This leads qualitatively to the same
field as in Eq.(7). Consequently, for a ”large radius”
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pumping cycle in the Φ = 0 plane, we get |Q| ≈ 1. In the
following we are interested in the deviation from ”exact”
quantization: If φ(0) = 0 we expect to have |Q| ≥ 1, while
if φ(0) = π we expect |Q| ≤ 1. Only for the φ averaged
Q of Eq.(6) we get exact quantization.

The deviation from |Q| ≈ 1 is extremely large if we con-
sider a tight pumping cycle around a φ(0) = 0 degeneracy.
After linear transformation of the shape parameters, the
energy splitting ∆ = En −Em of the energy level n from
its neighboring (nearly degenerated) level m can be writ-

ten as ∆ = ((x1−x
(0)
1 )2 + (x2−x

(0)
2 )2 + c2(φ−φ(0))2)1/2

where c is a constant. The monopole field is accordingly

~B = ± c

2

(x1−x
(0)
1 , x2−x

(0)
2 , x3−x

(0)
3 )

((x1−x
(0)
1 )2 + (x2−x

(0)
2 )2 + ( c

h̄ )2(x3−x
(0)
3 )2)3/2

(8)

where the prefactor is determined by the requirement
of having a single (h̄/2) monopole charge. Assuming a
pumping cycle of radius R in the Φ = 0 plane we get
from the second term of Eq.(5) that the pumped charge
is Q = ∓π

√
gT , where gT = (∂2∆/∂φ2)/∆ = c2/R2

is a practical definition for the Thouless conductance in
this context. It is used here simply as a measure for the
sensitivity of an energy level to the magnetic flux Φ.

What we want to do in the following is to ”interpolate”
between the ”near field” result, which is Q = O(

√
gT ),

and the ”far field” result, which is Q = O(1). For this
purpose it is convenient to consider a particular model
that can be solved exactly. We consider a ring with two
barriers. The model is illustrated in Fig.2. A version of
this model, where the two barriers are modeled as ”delta
functions”, has been analyzed in [7] in case of open ge-
ometry. Below we are going to analyze a different version
of the two barrier model, that allows an exact solution
for closed geometry.

We can classify the eigenstates of the closed ring into
two categories: wire states, and dot states (Fig.2a). The
latter are those states that are localized in the ”dot re-
gion” in the limit of infinitely high barriers. In case of
zero temperature Fermi occupation we define EF as the
energy of the last occupied wire level in the limit of in-
finitely high barriers. The two ”shape” parameters are
the the bias x1, and the dot potential x2. The bias deter-
mines whether the dot tends to exchange particles via the
left or via the right barrier. The dot potential is loosely
defined as the energy of the dot level (Fig.2a). A model
specific definition of these parameters in the context of
the 3-site lattice Hamiltonian will be given later.

The pumping cycle is assumed to be in the Φ = 0 plane,

so there is no issue of ”conservative” persistent current

contribution. We start with a positive bias (x1 > 0)
and lower the dot potential from a large x2 > EF value
to a small x2 < EF value. As a result, one electron is
transfered via the left barrier into the dot region. Then
we invert the bias (x1 < 0) and raise back x2. As a
result the electron is transfered back into the wire via the
right barrier. A closer look at the above scenario (Fig.2b)
reveals the following: As we lower the dot potential across

a wire level, an electron is adiabatically transfered once
from left to right and then from right to left. As long as
the bias is positive (x1 > 0) the net charge being pumped
is very small (|Q| ≪ 1). Only the lowest wire level that
participate in the pumping cycle carries Q = O(1) net
charge: It takes an electron from the left side, and after
the bias reversal it emits it into the right side. Thus
the pumping process in this model can be regarded as
a particular example [5] of an adiabatic transfer scheme:
The electrons are adiabatically transfered from state to
state, one by one, as in ”musical chair game”.

For a single occupied level the net Q is the sum of
charge transfer events that take place in few avoided
crossings. For many particle occupation the total Q is
the sum over the net Qs which are carried by individual
levels. For a dense zero temperature Fermi occupation
the summation over all the net Qs is a telescopic sum,
leaving non-canceling contributions only from the first
and the last adiabatic crossings. The latter involve the
last occupied level at the Fermi energy.

In order to get a quantitative estimate for the Q in a
given avoided crossing, we consider the simplest version
of the ”two barrier model” that still contains all the es-
sential ingredients: This is a three site lattice system.
The middle site supports a single ”dot state”, while the
two other sites support two ”wire states”. The Hamilto-
nian is

H 7→
(

0 c1 eiφ

c1 u c2

e−iφ c2 0

)

(9)

The three parameters are the bias x1 = c1 − c2, the
dot potential x2 = u, and the flux x3 = Φ = h̄φ.
For presentation purpose we assume that 0 < c1, c2 ≪ 1.
The eigenstates are En. Disregarding the coupling be-
tween the ”wires” and the ”dot” we have two wire states
with E = ±1, and a dot state with E = u. Taking
into account the wire-dot coupling we find that there
are two vertical chains of degeneracies. The u ≈ −1
chain is (0,−1+c2

1, 2πh̄ × integer) and the u ≈ 1 chain is
(0, +1+c2

1, π + 2πh̄ × integer).
The eigenvalues En are the solutions of a cubic equa-

tion. Rather than writing the (lengthy) analytical ex-
pressions for them we give a numerical example for their
dependence on u in the inset of Fig.3. The eigenstates
are

|n(x)〉 7→ 1√
S

(

c2e
iφ + c1En

1 − E2
n

c1e
−iφ + c2En

)

(10)

where S is the normalization. Note that for E = ±1 we
have S = 2(c1 ± c2)

2, while for E = 0 we have S ≈ 1.
After some algebra we find that the first component of

the ~B field in the Φ = 0 plane is

B1 = −2Im

〈

∂

∂u
n(x)

∣

∣

∣

∣

∂

∂φ
n(x)

〉

= −(c2
1 − c2

2)
1

S2

∂S

∂u
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Which is illustrated in Fig.3. For a pumping cycle around
the u ≈ ∓1 vertical ”chain” the main contribution to Q
comes from crossing the u ≈ ∓1 line. Hence we get

Q = ±c1 ± c2

c1 ∓ c2
= ±

√

1 ± 2gT (11)

where the Thouless conductance in this context is de-
fined as gT = 2c1c2/(c1 ∓ c2)

2. In both cases we have
approximate quantization Q = ±1 + O(gT ) for gT ≪ 1,
while for a tight cycle either Q → ∞ or Q → 0 depend-
ing on which line of degeneracies is being encircled. If
the pumping cycle encircles both ”chains” then we get
Q = 4c1c2/(c2

1 − c2
2). In the latter case Q = O(gT ) for

gT ≪ 1, with no indication for quantization.
For a pumping in a dot-wire system (see illustration

in Fig.1b), in the limit of a very long wire (many sites)
we express the Kubo formula for the conductance matrix
using the S matrix of the dot region. The derivation
assumes “quantum chaos”, and leads to

G3j =
1

2πi
trace

(

P
∂S

∂xj
S†

)

(12)

This is easily identified as the Büttiker-Prétre-Thomas

formula [11], which has been derived for quantum pump-
ing in open systems (Fig.1e). In particular we get
G33 = (1/(2πh̄))trace(PS(1−P )S†), which is just the
Landauer formula [15, 16, 17].

In summary we have shown how the Kubo formalism
can be used in order to derive both classical and quantum
mechanical results for the pumped charge Q in a closed
system. In this formulation the distinction between dissi-
pative and non-dissipative contributions is manifest. The
dissipative contribution to the pumping can be neglected
in the adiabatic regime. However, if the adiabaticity con-
dition is violated it does not mean automatically that we
have a dissipative effect. Classical pumping by transla-
tion is an obvious example. For the derivation of the
dissipative part of the Kubo formula it is essential to
realize that in generic circumstances (unlike the case of
translations) the adiabatic equation does not possess a
stationary solution.
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FIG1. Illustration of a ring system (a). The shape of the ring is controlled by some parameters x1 and x2. The flux through the ring

is x3 = Φ. A system with equivalent topology, and abstraction of the model are presented in (b) and (c). The ”dot” can be represented

by an S matrix that depends on x1 and x2. In (d) also the flux x3 is regarded as a parameter of the dot. If we ”cut” the wire in (d) we

get the open two lead geometry of (e).
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FIG2. Schematic illustration of quantum pumping in a closed wire-dot system. The net charge via the third level (thick solid line on

the right) is vanishingly small: As the dot potential is lowered an electron is taken from the left side (first avoided crossing), and then

emitted back to the left side (second avoided crossing). Assuming that the bias is inverted before the dot potential is raised back, only

the second level carry a net charge Q = O(1).
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FIG3. The first component of the B field for a particle in the middle level of the 3 site lattice model. It is plotted as a function of the

dot potential x2 = u. The other parameters are φ = 0, and c1 = 0.1, while c2 = 0.04 for the thick line and c2 = 0.02 for the thin line. In

the limit c2 → 0, all the charge that is transfered from the left side into the dot during the first avoided crossing, is emitted back into the

left side during the second avoided crossing. Inset: The eigenenergies En(x) for the c2 = 0.04 calculation.


