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Coherent transport through a quantum shuttle

Geva Arwas, Dotan Davidovich, Doron Cohen
Department of Physics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

A shuttle site that crosses through a band of network levels induces currents. If the process is
re-cycled this can be regarded as “pumping” or “stirring”. We show that the analysis reduces to
that of calculating time dependent probabilities, as in the stochastic formulation, but with splitting
(branching) ratios that are not bounded within [0, 1]. Our approach allows to address the adiabatic
regime, as well as the Slow and Fast non-adiabatic regimes, on equal footing. We emphasize as-
pects that go beyond the familiar picture of sequential Landau-Zener crossings, taking into account
Wigner-type multilevel mixing due to the crossing shuttle.

Transport in quantum networks is a theme that
emerges in diverse contexts, including quantum Hall ef-
fect [1], Josephson arrays [2], quantum computation mod-
els [3], quantum internet [4], and even in connection
with photosynthesis [5]. For some specific models there
are calculations of the induced currents in the adiabatic
regime [6–10] for both open and closed systems, so called
“quantum pumping” [11–18] and “quantum stirring” [19–
23] respectively. In the latter context most publications
focus on 2-level [24, 25] and 3-level dynamics, while the
larger perspective is rather abstract, notably the “Dirac
monopoles picture” [9, 19, 21, 22]. This should be con-
trasted with the analysis of stochastic stirring where the
theory is quite mature [26–29].

Considering (e.g.) the unidirectional rotation of a
molecular rotor [27], it is possibly allowed to be satisfied
with a stochastic picture [26] that relates the currents, via
a “decomposition formula”, to rates of change of occupa-
tion probabilities. Once we turn (e.g.) to the analysis of
pericyclic reactions [30] this is no longer possible. In the
latter case the method of calculating electronic quantum
fluxes had assumed that the latter can be deduced from
the continuity equation. Such procedure is obviously not
applicable for (say) a ring-shaped molecule: due to the
multiple path geometry there is no obvious relation be-
tween currents and time variation of probabilities.

In this work we would like to analyze the following
prototype problem. Consider a network that consists of
N interconnected sites, with on-site energies Ei, and cou-
plings Cij . Additionally there is a shuttle (i = 0), where
the on-site energy E0 = u(t) is varied monotonically from
u = −∞ to u = ∞. Accordingly the Hamiltoinan is

H =
N
∑

i=0

|i〉Ei〈i|+
∑

i6=j

|i〉Cij〈j|, E0=u(t), Ci0=Ci (1)

Our interest is in the induced current I(t) that flows
through a tagged connecting bond Ca. In the adiabatic
limit this current is determined by the so-called geomet-
ric conductance G as follows:

I = Gu̇, G = 2Im

[

〈 ∂

∂φ
Ψ
∣

∣

∣

∂

∂u
Ψ
〉

]

φ=0

(2)
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FIG. 1: Upper panel: an initially loaded shuttle is crossing
a band that contains N = 500 levels. The occupation prob-
abilities of the shuttle (p) and of the levels (qn) are imaged
as a function of time. The vertical axis is the energy, and
the horizontal axis is u(t). We assume star geometry with
level spacing ∆=1, and identical couplings cn=3. The dashed
line illustrates the energy of the lowest adiabatic level. Lower
panel: plot of qn vs n in several cases. Green line with mark-
ers - the adiabatic scenario of the upper panel at u = 60.
Cyan solid line - after decay from a standing shuttle (u̇=0).
Red dashed line - after decay from a fast shuttle (u̇=5000).

Here φ is a test flux through the bond of interest, namely
Ca 7→ Cae

iφ, and Ψ is the wave-function of the adia-
batic eigenstate. Specific scenarios to be considered are:
(i) The shuttle is initially filled with a particle that later
is transferred to the network; (ii) One of the levels of the
network is initially filled, and later a current is induced
via the crossing shuttle. The occupation dynamics in the
first scenario is illustrated in Fig.1, which will be further

http://arxiv.org/abs/1210.7051v1


2

discussed later. For a non-interacting many-body occu-
pation, results can be obtained by simple summation.
We shall consider first a Star geometry (inset in Fig.1),

and later a general network geometry. As an appetizer we
refer to a 3 site model (inset in Fig.2). We shall see that
the integrated current through the Ca bond (indicated in
the figure) is Q = |Ca|2/(|Ca|2 + |Cb|2) for C0 = 0, while
Q = Ca/(Ca − Cb) for any C0 6= 0. It is possible to get
|Q| > 1 in the latter case, indicating that a circulation
current is induced in the system. This result has been
derived in the past as an approximation, using either the
“Dirac monopoles picture”, or a two-level calculation. In
the analysis below the Ca are allowed to be large, such
that numerous network levels are mixed during the shut-
tle crossing. We also address the non-adiabatic scenario.
Outline.– We find explicit expression for the cur-

rent I that is induced either in adiabatic or non-adiabatic
shuttling process. We first consider “star geometry” (in-
set in Fig.1) and later a general network. For the anal-
ysis we introduce the splitting ratio phenomenology, and
demonstrate it for a dot-wire “ring geometry” (inset in
Fig.3). We find it essential to distinguish between two
types of processes: adiabatic crossing and adiabatic meta-

morphosis. This distinction is important for the under-
standing of non-adiabatic effects.
Star geometry.– Let us consider the special case

of having sites with energies En = ǫn and connections
Cn0 = cn, while all the other couplings are zero. An
adiabatic eigenstate of the system is represented by [a]:

|Ψ〉 7→ √
p×

(

1,

{

cn
E − ǫn

}

n=1,...,N

)

(3)

Using the notation

g(E; c1, ...cN ) =
∑ |cn|2

E − ǫn
(4)

the adiabatic energy is the solution of the equation
g(E) = E − u. As u is swept from−∞ to +∞, the energy
increases monotonically from ǫn to ǫn+1, where n is the
starting level. The normalization factor p = [1−g′(E)]−1

is the probability to find the particle in the shuttle. For
the following derivation note that 1/p is a quadratic form
in cn. Using Eq.(2) we get after differentiation by parts
that the current through cn is

G =
|cn|2

(E − ǫn)2

(

∂p

∂u

)

− 2p
|cn|2

(E − ǫn)3

(

∂E

∂u

)

=
∂

∂u

[(

1

2

∂(1/p)

∂cn
cn

)

p

]

=
∂

∂u
[qn] (5)

where qn = |Ψn|2 are identifies as the probabilities to
find the particle in n = 1...N .
Multiple path geometry.– Needless to say that we

do not really need Eq.(2) in order to get the expression
for G in the case of a star graph. We could simply deduce

Eq.(5) from conservation of probability, i.e. from the con-
tinuity equation I = q̇n. This is no longer the case if we
have a multiple path geometry: probability conservation
alone cannot tell us how the current is split between the
different paths. Furthermore, we would like to go beyond
the adiabatic transport formalism, and obtain a formula
that applies also in non-adibatic circumstances.
Splitting ratio approach.– Let us first see what is

the expression for G in the case of a general network. It
is natural to switch from the Ei basis to an ǫn basis that
diagonalize the network Hamiltonian in the absence of
the shuttle. Consequently getting a star geometry with
cn =

∑

b〈n|b〉Cb. Our interest is in the current through
a tagged bond Ca. We define the “splitting ratio” of the
current that flows in the nth levels as

λn[splitting] =
〈n|a〉Ca

cn
=

〈n|a〉Ca
∑

b〈n|b〉Cb
(6)

A straightforward generalization of the derivation that
leads to Eq.(5) implies that the current through Ca is

I =
∂

∂t

[

∑

n

λnqn

]

(7)

The physical simplicity of Eq. (7) suggests that it
can be derived without assuming adiabaticity, where
qn(t) = |Ψn(t)|2 is obtained from the solution of the
time dependent Schrodinger equation. Indeed this is the
case. We just have to remember that quite generally
I = CaIm[Ψa(t)

∗Ψ0(t)], substitute Ψa =
∑

n〈a|n〉ψn,
use the definition Eq.(6) of the splitting ratio, and the
identification q̇n = cnIm[ψ∗

nψ0].
The integrated current.– As the simplest exam-

ple for the application of the splitting ratio approach
we consider a process in which a particle has been
transferred from the shuttle to the wire in the net-
work that is illustrated in the inset of Fig. 3. In this
model the splitting ratio of the even-parity levels is
λn = λ+ = Ca/(Ca + Cb), while for the odd-parity levels
we have λn = λ− = Ca/(Ca − Cb). From Eq.(7) it follows
that the integrated current isQ = average(λn), where the
weighted average is determined by the final occupation of
wire levels. For an adibatic process, in which the particle
ends up at the lower wire level, we get Q = λ1. Unlike the
case of a stochastic transition this value is not bounded
within [0, 1]. rather it may have any value, depending on
the relative sign of the amplitudes Ca and Cb. However, if
the process is not adiabatic, the probability is distributed
over both the odd and the even levels with probabilities
that are proportional to |Ca ± Cb|2 respectively. Then
we get from the weighted average a stochastic-like result,
namely Q = |Ca|2/(|Ca|2 + |Cb|2).
It is also instructive to consider the process in

which a particle that is prepared (say) in an even
wire-level, is adiabatically transferred, due to shut-
tling, into the adjacent odd wire-level. Here the in-
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tegration over Eq. (7) implies Q = λ− − λ+, leading to
Q = 2CaCb/(|Ca|2 − |Cb|2).
The parametric variation of the current.– The

results for the integrated current give the impression that
the size of the coupling cn compared with the levels spac-
ing ∆ is of no importance. But this is a wrong impres-
sion. Once we get deeper into the analysis it becomes
clear that the familiar two level approximation for the
adiabatic current I, requires the coupling cn to be very
small compared with the level spacing ∆. Our interest
below is focused in the case of having a quasi-continuum,
meaning that the cn are larger than ∆, hence many levels
are mixed as the shuttle goes through.

Before discussing the quasi-continuum case it is useful
to discuss what happens with the N = 2 wire system if
the cn are not smaller compared with ∆.

Adiabatic metamorphosis.– The heuristic under-
standing of adiabatic transport is commonly based on the
analysis of “adiabatic crossing”. Below we shall see that
we have to take into account an additional prototype pro-
cess that we call “adiabatic metamorphosis”. The mini-
mal model for its demonstration requires 3 levels.

Consider the dot-wire geometry with N = 2. Assume
that ∆ ≪ Ca, Cb. Clearly during the adiabatic crossing
∆ has no effect, so we can neglect it. The dynamics
is very simple: there is a dark state |D〉 = Cb|1〉 − Ca|2〉
that does not participate in the dynamics. The crossing is
exclusively to |C〉 = Ca|1〉+ Cb|2〉. Using the same pro-
cedure as before, one concludes that the splitting ratio is
Q = |Ca|2/(|Ca|2+ |Cb|2). This looks like a contradiction
to our previous analysis that predicts Q = Ca/(Ca −Cb)
for any c0 6= 0. What is wrong?

After some thought one realizes that there is a
second distinct stage in the dynamics during which
the ground state adiabatically transforms from |C〉 to
|ǫ−〉 = |1〉 − |2〉. The reason for this metamorphosis is as
follows: the sites |1〉 and |2〉 are directly coupled via c0,
but also virtually coupled via CaCb/u. This second-order
coupling via the shuttle is dominating during the adia-
batic crossing, but much later, when u becomes larger
than γ ≡ |CaCb/∆|, the first-order coupling takes over.

At first glance one may argue that the metamorphosis
at such later stage is of no interest: all the probability
transfer happens during the adiabatic crossing; after that
the particle is confined to the wire; and can merely “re-
arrange” itself there. However, this reasoning is mislead-
ing: we have here multiple path geometry, and therefore
we can have flow through the shuttle without any transfer
of probability. In Fig.2 we demonstrate this observation.
If the metamorphosis stage is taken into account, there
is no longer contradiction with the general formula.

Adiabatic mixing.– We turn to treat the dot-wire
system for N ≫ 1. For simplicity we focus on some
energy range where the levels form a comb-like spectrum

FIG. 2: Flow of the current from the shuttle to an N = 2
wire through the Ca bond. The parameters are Ca = 19, and
Cb = 15, and C0 = 1. The thickest line is the exact adiabatic
result for G(u). The thinner and the thinnest lines are I/u̇
for u̇ = 2 and for u̇ = 50. The left and right vertical lines in-
dicate the shuttle-wire crossing point, and the metamorphosis
point, with separation γ = 285. During the adiabatic meta-
morphosis a current is flowing through the distant shuttle.

with level spacing ∆, hence from the definition Eq.(4)

g(E) =
( π

2∆

)

[

c2− cot

(

π
E

2∆

)

− c2+ tan

(

π
E

2∆

)]

(8)

where c± = prefactor × (Ca ± Cb) are the couplings to
the even and odd levels respectively. For simplicity of
presentation we absorb the prefactor into the definition
of Ca and Cb [a]. Of interest is the case of having a quasi
continuum, meaning that the couplings cn are larger com-
pared with ∆, hence a two level approximation is out of
the question. We shall see that the role of γ in the N = 2
analysis is taken by γ = sin θ Γ, where

Γ ≡ π
c2+ + c2−

∆
, sin(θ) ≡ c2+ − c2−

c2+ + c2−
, (9)

(here and below we assume starting with even-parity
level). With Eq.(8) the secular equation g(E) = E − u
becomes a quadratic equation for tan(), and can be solved
explicitly. Then it is possible to get an expression for the
shuttle occupation probability:

p(u) = [1− g′(E)]−1 = ∆ · L [u− E; Γ, θ] (10)

where the distorted Lorentzian L [x; Γ; θ] is

1

π

[

1 +
sin θ x

√

x2 + cos2 θ (Γ/2)2

]−1

cos2 θ (Γ/2)

x2 + cos2 θ (Γ/2)2

In the expression above E is the energy in which the
particle has been prepared, and it can be regarded as a
constant. Some further straightforward algebra leads to

G(u) = Ca
∂

∂u

[

p
∑

n

c∗n〈n|a〉
(E − εn)2

]

(11)

=
∂

∂u
Ca

[

c+ sin2(ϕ(u)) + c− cos2(ϕ(u))

c2+ sin2(ϕ(u)) + c2− cos2(ϕ(u))

]

(12)
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FIG. 3: The variation of the occupation probabilities as a
function of u for an adiabatic shuttling process. The particle
initially has been placed at n = 250. The couplings are Ca = 6
and Cb = 4. The red thick line is p. The other solid lines are
q250, and q251. The dashed lines from up to down are q249
and q253 and q247 and q252.
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FIG. 4: Flow of the current from the shuttle to the wire
through the Ca bond, for the same scenario as in Fig.3. The
parameters are indicted in the legend. In the left panel ∆ =
200, hence a two level approximation is satisfactory. In the
right panel ∆ = 1, and consequently the line shape reflects a
multi-level crossing.

where ϕ(u) = (π/2)(E/∆) has a π/2 variation as u is
raised from −∞ to +∞, hence Eq.(12) is a step-like func-
tion that varies from λ+ to λ− as had been anticipated
by inspection of Eq.(7).
The functions p(u) and G(u) are plotted in Fig.3 and

in Fig.4. In the latter we contrast with the cn ≪ ∆ case,
for which the dynamics can be regarded as a sequence of
two-level crossings.
Regimes.– The results for the integrated current give

another wrong impression: it looks as if we are dealing
with two regimes: either the process is adiabatic or non-
adiabatic. A more careful inspection reveals that de-
pending on u̇ we have 3 regimes: Adiabatic, Slow and
Fast. For star geometry with comb-like quasi continuum
of levels, the Slow regime is defined by the condition

c2 < u̇ < Γ2, Γ ≡ 2π
c2

∆
(13)

For simplicity we assume here comb-like quasi contin-
uum with identical couplings cn = c. The left inequality
in Eq.(13) means that the adiabatic condition is violated,

while the right inequality implies that a first-order per-
turbative approximation is violated as well. The iden-
tification of this intermediate Slow regime parallels the
notion of Wigner or FGR or Kubo regime in past studies
of time dependent dynamics [19].
Some illustrations for energy spreading are presented

in Fig.1. If c < ∆ the transport of probability from the
shuttle to the wire would be described using a two level
approximation. But the illustration in the upper panel
assumes c > ∆, hence many levels are mixed within a
parametric range Γ. The time during which this mixing
takes place is Γ/u̇. In the opposite limit of Fast shuttling,
which we further discuss below, the decay time of the
probability to the quasi-continuum is 1/Γ.
Non adiabatic spreading.– The calculation of I

in the non-adiabatic regime requires knowledge of qn(t).
For star geometry this calculation is a variant of the
Wigner decay problem, and hence can be solved ana-
lytically: instead of a fixed level that decays into a quasi-
continuum we have a moving shuttle. The usual text-
book procedure is followed [31] leading to the equations
∂tΨ0 = [−iu(t)−(Γ/2)]Ψ0, and ∂tΨn = −iǫnΨn−icnΨ0.
With u(t) = u̇t one obtains the solution

qn(t) =

∣

∣

∣

∣

cn

∫ t

0

dτ exp

(

iǫnτ − i
u̇

2
τ2 − Γ

2
τ

)∣

∣

∣

∣

2

(14)

By inspection one observes that going from the Slow
to the Fast regime, the spreading line shape changes
from Lorentzian-type to Fresnel-type, as illustrated in
the lower panel of Fig.1.
Discussion.– We have found, using elementary con-

siderations, without the need to rely on a complicated
transport formalism, that it is possible to replace Eq.(2)
by the general expression Eq.(7), that holds both in adia-
batic and non-adiabatic circumstances. Hence the prob-
lem of calculating currents is reduced to that of calculat-
ing time dependent probabilities qn(t) as in the stochas-
tic formulation [26]. It is important to realize that the
“splitting ratio” Eq.(6) unlike the stochastic “partition-
ing ratio” is not bounded within [0, 1]. This observation
has implications on the calculation of “counting statis-
tics” and “shot noise” [32, 32].
In the analysis we have emphasized aspects that go be-

yond the familiar two-level approximation phenomenol-
ogy. Whenever we have quasi-continuum the network
levels are scrambled during the shuttling process: this
is what we called “metamorphosis” or “mixing”. This
scrambling is reflected in the time dependence of the in-
duced currents.
Finally, we realize that the non-adiabatic dynamics is

characterized by a stochastic-like result for the integrated
current Q. But the detailed temporal variation of the
current I has different features depending on whether
the shuttling process is Slow or Fast.
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Supplementary material

Eigenstates for star geometry.– For a star geometry we have

H =

















u c∗1 c∗2 . . . c∗N
c1 ǫ1 0 . . . 0

c2 0 ǫ2
. . .

...
...

...
. . .

. . . 0
cN 0 . . . 0 ǫN

















(15)

The eigenstates satisfy the following set of equations:

uΨ0 +

N
∑

n=1

c∗nΨn = EΨ0 (16)

cnΨ0 + ǫnΨn = EΨn, n = 1, 2, ..., N (17)

From Eq.(17) we get

Ψn =
cn

E − ǫn

√
p, p ≡ |Ψ0|2 (18)

Substitution to Eq.(16) gives the secular equation g(E) = E − u, as stated after Eq.(4). From the normalization
condition we get the expression for p, namely

p =

[

1 +

N
∑

n=1

|cn|2
(E − ǫn)2

]−1

= [1− g′(E)]
−1

(19)

Calculations of p for a dot-wire geometry.– The energy levels of the wire that has length L = N + 1, are
ǫn = −2c0 cos(kn), where kn = (π/L)n. The respective couplings to the shuttle are

cn =

[

(

2

L

)1/2

sin(kn)

]

(Ca ± Cb) (20)

where the ± reflects the parity of the level. We focus on levels with energy ǫn ∼ E, such that their spacing ∆ can be
regarded as constant. Then it is convenient to absorb the factor [(2/N)1/2 sin(k)] into the definition of Ca and Cb.
The couplings cn = c± to the energy levels in the sum Eq.(4) are distinguished by their odd/even parity, hence after
summation we get two terms:

g(E) =
( π

2∆

)

[

c2− cot

(

π
E

2∆

)

− c2+ tan

(

π
E

2∆

)]

(21)

The secular equation g(E) = E − u becomes a quadratic equation for tan(), and can be solved explicitly.

cot

(

π
E

2∆

)

=
∆

πc2−

[

(E − u)±
√

(E − u)2 +
(πc+c−

∆

)2

]

(22)

where the ± refers to the parity that is alternating for subsequent levels. Then it is possible to get an explicit
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expression for the shuttle occupation probability

p = [1− g′(E)]
−1

=

[

1 +
( π

2∆

)2

[

c2−
sin2

(

π E
2∆

) +
c2+

cos2
(

π E
2∆

)

]]−1

(23)

=

[

1 +
( π

2∆

)2
[

c2−

(

1 + cot2
(

π
E

2∆

))

+ c2+

(

1 + tan2
(

π
E

2∆

))]]−1

(24)

=






1±

(

c2+ − c2−
c2+ + c2−

) (E − u)
[

(E − u)2 +
(πc+c

−

∆

)2
]1/2

(E − u)2 +
(πc+c

−

∆

)2
+
(

2c2
+
c2
−

c2
+
+c2

−

)







−1 (

2c2+c2
−

c2
+
+c2

−

)

(E − u)2 +
(πc+c

−

∆

)2
+
(

2c2
+
c2
−

c2
+
+c2

−

) (25)

≈






1±

(

c2+ − c2−
c2+ + c2−

)

(E − u)
[

(E − u)2 +
(πc+c

−

∆

)2
]1/2







−1 (

2c2+c2
−

c2
+
+c2

−

)

(E − u)2 +
(πc+c

−

∆

)2
(26)

≡ ∆ · L
[

E − u; π
c2+ + c2−

∆
, arcsin

(

±c
2
+ − c2−
c2+ + c2−

)]

(27)

where the distorted Lorentzian is defined as follows:

L [x; Γ; θ] =

[

1 +
sin θ x

[x2 + cos2 θ (Γ/2)2]
1/2

]−1
(

1

π

)

cos2 θ (Γ/2)

x2 + cos2 θ (Γ/2)2
(28)

Note that for θ = 0 (c+ = c−) and for θ = π/2 (c− = 0) it becomes the standard Wigner Lorentzian.

Calculations of G for a dot-wire geometry.– The calculations of G involves similar sums as in the p calculation.

G =
∂

∂u

[

∑

n

qnλn

]

= Ca
∂

∂u

[

p
∑

n

c∗n〈n|a〉
(E − εn)2

]

(29)

= Ca
∂

∂u







c
−

sin2(π E

2∆ )
+ c+

cos2(π E

2∆ )
(

2∆

π

)2
+

c2
−

sin2(π E

2∆ )
+

c2
+

cos2(π E

2∆ )






(30)

leading to Eq.(12).

Calculations of G for a 3 site geometry.– Here we show how to to re-derive the exact result for G(u) in the
case of a 3-site system [19, 23] using the splitting ratio approach. For such system the 2 wire levels ǫ± = ±c0 have
coupling c± = (Ca ± Cb)/

√
2 to the shuttle, and accordingly λ± = Ca/(Ca ± Cb). Using Eq.(7) we get

G =
∂

∂u

[

∑

±

λ±q±

]

=
∂

∂u

[

∑

±

λ±
|c±|2

(E − ǫ±)2
p

]

(31)

=
∂

∂u





(

1 +
∑

±

|c±|2
(E − ǫ±)2

)−1
∑

±

Ca(Ca ± Cb)

2(E − ǫ±)2



 (32)

=
∂

∂u

[

C2
aE

2 + 2c0CaCbE + c20C
2
a

E4 + (C2
a + C2

b − 2c20)E
2 + 2c0CaCbE + c20(c

2
0 + C2

a + C2
b )

]

(33)


