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Purely electric spin pumping in one-dimension
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We show theoretically that a simple one dimensional system (such as metallic wire) can display

quantum spin pumping possibly without pushing any charge. It is achieved by applying two slowly

varying orthogonal gate electric fields on different sections of the wire, thereby generating local spin-

orbit (Rashba) terms such that unitary transformations at different places do not commute. This

construction is a unique manifestation of a spin-orbit observable effect in purely one dimensional

systems with potentials respecting time-reversal symmetry.

A standard way of achieving charge transfer across a conducting system is to apply two gate voltages and change

them adiabatically and periodically: Under certain conditions, a charge is transferred across the system during each

period. This is referred to as quantum (charge) pumping [1, 2, 3, 4, 5]. In recent years, the concept of pumping with

regard to spin polarization has become a focus of attention. One option to get a polarized current is to introduce a

Zeeman splitting term [6], or employing ferromagnetic leads[7]. In some cases it costs a great deal of dissipated energy

and besides, time reversal invariance is broken. That motivates the quest for achieving spin pumping without the

application of magnetic fields [8, 9, 10, 11] (see also Ref.[12] where spin filtering is discussed). It is naturally expected

that pertinent experiments are rather difficult to carry out, and hence, an obvious desirable property required from a

model describing spin pumping is that it should be simple and experimentally feasible.

In the present work we show that spin pumping can be achieved in a simple one dimensional device (wire), by

exploiting the spin-orbit (SO) interaction of the electron with electric fields applied on two different sections of the

wire (referred below as Rashba barriers). The model is characterized by the following attractive properties: (1) It is

purely one dimensional; (2) It enables pure spin (without charge) pumping; (3) The expressions obtained are simple,

given in analytic form; (4) It serves as a pedagogical manifestation of the basic concepts of generalized forces and

generalized charges; (5) It demonstrates that spin pumping is one of the few manifestations of observable SO effects

in purely one-dimensional systems.

Outline. – The order of presentation is as follows: First we derive an expression for the scattering matrix of a

single Rashba barrier, and then recall a composition rule for computing the S matrix for scattering off two successive

barriers. Once the S matrix of the whole device is obtained, the formalism of Refs. [2, 3] (see also [14]) is employed in

order to analyze the pumping process. As a by-product an expression for the pumped spin polarization (~P ) is derived,

that can be regarded as an SU(2) extension of the Brouwer formula for the pumped charge (Q), and is somewhat

simpler than the one suggested in Ref. [9]. The conclusion includes a short summary and discussion.
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FIG. 1: The pumping device (schematic). Electrons move on a one-dimensional wire along the x direction between two

reservoirs. Two capacitors C1 and C2 apply perpendicular electric fields E1 = (0, E1, 0) and E2 = (0, 0, E2) whose strength is

controlled and varied periodically by an external circuit.

Modeling. – The arena of our discussion is that of non-interacting electrons confined in a straight one-dimensional

wire (along x) possibly experiencing a scattering potential V (x), and subject to a perpendicular electric field E(x, t).

The Pauli Hamiltonian is

H =
1

2m

p2 −
e

4m
2
(E × p − p × E) · σ + V (x) (1)

where m and e are the mass and the charge of the electron, and c = ~ = 1 units are used. Concretely, we have in mind

a simple and experimentally feasible example where the wire passes through a couple of plate capacitors C1 and C2

with different orientations, as is schematically displayed in Fig. 1. The fields E1(x) = (0, E1, 0) and E2(x) = (0, 0, E2)

are well concentrated at x < 0 and x > 0 segments of the wire and are assumed to be non overlapping.

Since the electric field is perpendicular to the wire, its only effect is to generate an SO interaction of strength

αi(x) = eEi(x)/2m with i = 1, 2 corresponding to the left and right Rashba barriers. The dimensionless parameters

that characterize this interaction are

θi = 2

∫ ∞

−∞

αi(x
′)dx′ i=1,2 (2)

The time dependence of θ1 and θ2 is assumed to be periodic and very smooth, justifying the use of the adiabatic

approximation. Practically then, the time is used as a parameter that will be employed at a later stage when the spin

pumping is discussed (hence it will not be specified before that). Our first goal is to find the S matrix for scattering

through the system depicted in the above figure. The strategy would be to write down the Pauli equation and solve

the scattering problem separately for each barrier thereby obtaining the corresponding S matrices S(1) and S(2) and

then combine them to obtain the total S matrix.

Scattering from a single Rashba barrier. – The electric field E1(x) in the left barrier is constant deep inside

the capacitor and decays as a third power (in distance) outside it. For definiteness let us assume that the capacitor

C1 is centered at x = −L/2 and that L is sufficiently large so that E1(x) is non-negligible only within −L < x < 0.

The Pauli Hamiltonian Eq.(1) for the left barrier can be cast into the following form

H1 =
1

2m

[p− α1(x)σz ]
2 + v1(x) (3)
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where p is the momentum conjugate to x. The scalar potential v1(x) = V1(x) − α1(x)
2/2m is non-vanishing within

the interval −L < x < 0. The later time dependent analysis assumes that it is not changing in time. This assumption

is legitimate for realistic circumstances where the α2 correction is small [13]. Thus, we may start from the stationary

Schrödinger equation for scattering at energy ε through the first barrier, H1ψ1(x) = εψ1(x), where ψ1(x) is a two

component spinor.

For the Hamiltonian Eq.(3), the spin projection along the z direction is a ‘good quantum number’. A particle

with spin up (an eigenstate of σz with eigenvalue +1) experiences a “vector potential” A(x) = +α1(x) that can be

gauged away, leading to an A(x) independent reflection amplitude r, while the transmission amplitude t is multiplied

by a phase factor eiθ1/2. A particle with spin “down” would experience a “vector potential” A(x) = −α1(x) and

therefore would gain upon transmission an opposite phase e−iθ1/2. The scattering of spin “up” and scattering of spin

“down” involve different topological phases, turning the effect of SO interaction to be distinct from that of U(1) vector

potential. In general the scattered particle may have any spin direction (a superposition of “up” and “down”). Thus,

due to SO interaction, different phases are accumulated by the up/down amplitudes of ψ(x), implying that the spin

direction is SU(2) rotated, the rotation angle being θ1. From the above analysis it follows that the scattering matrix

of the first barrier has the form

S
(1)
ab =



















r 0 te−iθ1/2 0

0 r 0 te+iθ1/2

te+iθ1/2 0 r 0

0 te−iθ1/2 0 r



















(4)

where the channel index is a = 1 ↑, 1 ↓, 2 ↑, 2 ↓. The reflection amplitude r and the transmission amplitude t are

determined by the potential v1(x). A more compact way to write this S matrix is,

S(1) =





R1 T ′
1

T1 R1



 =





r1 tU−1
1

tU1 r1



 , (5)

where 1 is the 2× 2 identity matrix and U1 is an SU(2) rotation matrix defined via Eq. (4) (see also Eq. (7) below).

Within the geometry of Fig. 1, the Hamiltonian for the second system is,

H2 =
1

2m

[p+ α2(x)σy ]2 + v2(x). (6)

Assuming (just for convenience) that the second barrier has the same reflection and transmission amplitudes (r and

t), its S matrix has an identical structure as S(1) albeit with different spin rotation matrix U2 6= U1. Inspecting the

kinetic terms of H1 and H2 (see Eqs. (3) and (6)), it is clear that the corresponding spin rotation matrices are,

U1 = e+iθ1σz/2, U2 = e−iθ2σy/2. (7)

It is important to notice that [U1, U2] 6= 0. This non-commutativity of the SU(2) rotations is crucial for the

operation of the pumping device, as discussed below.
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Scattering from two Rashba barriers. – It is now possible to construct the S = S(1) ∗ S(2) matrix of the

whole device by adding the two (non-overlaping) barriers in a series, employing the following prescription [15] for

calculating the transmission and reflection amplitudes:

T = T2(1 −R
′

1R2)
−1T1,

T ′ = T
′

1(1 −R2R
′

1)
−1T

′

2,

R = R1 + T
′

1(1 −R2R
′

1)
−1R2T1,

R′ = R
′

2 + T2(1 −R
′

1R2)
−1R

′

1T
′

2. (8)

In the absence of SO the transmission and reflection amplitudes due to the total potential v1(x)+v2(x) are

τ =
t2

1 − r2
, ρ = r

(

1 +
t2

1 − r2

)

. (9)

In the presence of SO, Eqs. (8) imply,

S =





R T ′

T R′



 =





ρ1 τU−1
1 U−1

2

τU2U1 ρ1



 , (10)

where U1 and U2 are defined in Eq. (7).

Gauge considerations. – In one dimension, any U(1) gauge potential can be transformed away from the

Schrödinger equation. Is it true also for the SO interaction? Let us introduce the transformation

ψ(x) = EXP

[

i

∫ x

−∞

dx′A(x′)

]

Ψ(x) ≡ U(x)Ψ(x) (11)

where A(x) = [α × σ]x = (0,−α2, α1) · σ. The EXP stands for x ordered exponentiation which is analogous to time

ordered exponentiation. The result of the exponentiation is an SU(2) rotation matrix U(x). It is not difficult to verify

that Ψ(x) satisfies the time independent equation H0Ψ(x) = εΨ(x) where H0 is obtained from Eq.(3) or Eq.(6) after

removing the α(x)σ term. Hence, for a general barrier (not necessarily double barrier) the S matrix still has the

structure as in Eq.(5) / Eq.(10) with the appropriate rotation matrix.

Encouraged by the above observation one may be tempted to conclude that the SO term can be transformed away

also in the time dependent pumping formulation. But this is wrong. In the U(1) (charge pumping) formalism the

gauge function is Λ(x) =
∫ x

A(x′)dx′ and the time dependence results in an additional term −dΛ/dt (electro motive

force) that can be absorbed into the definition of the scalar potential V (x). In the SU(2) (spin pumping) scheme the

analogous transformation leads to a spin dependent term, and hence the SO nature of the interaction still manifests

itself. Therefore in a time dependent pumping problem it is impossible to transform away the SO interaction.

The operation of the pumping device. – We now consider the situation displayed in Fig. 1 where the SO

dimensionless parameters θ1(t) and θ2(t) of Eq.(2) are controlled by slowly varying the fields inside the capacitors

with a common period 2π/ω. The adiabatic picture implies that the driving frequency ω is very small compared with
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other frequency scales of the system. Our goal is to study the pumped charge and the pumped spin polarization

during a single period. The generalized conductance is defined as in [14] via the relation:

dQa = −
∑

i=1,2

Ga,i(θ) dθi (12)

where dQa is the charge which is pushed into channel a and i = 1, 2 specifies the control parameter θi(t). If only

one control parameter is being manipulated (call it θ), and the practical interest is only (say) in the left lead, then

one can use the simpler notations dQ↑ = −G↑dθ and dQ↓ = −G↓dθ. Accordingly the net charge which is pushed into

the specified lead is dQ = −(G↑ +G↓)dθ while the net spin polarization is dPz = −(G↑ −G↓)dθ. In what follows

we explain how dPx and dPy can be calculated as well, and show that our pump can generate net spin polarization

current while the net charge current is zero at any moment.

Calculation of G. – The generalized conductance can be calculated using the Buttiker-Thomas-Pretre formula

[2, 3]. With our notations it reads:

Ga,i(θ) =
1

2πi

[

∂S

∂θi
S†

]

aa

≡ −
1

2π

[

H(i)
]

aa
(13)

If one regards the S(θ) matrices as a group of unitary transformations, then the H(i) are interpreted as their generators.

For the problem under consideration:

H(1) =
1

2





|τ |2σz τρ∗σzU
†
1U

†
2

−τρ∗U2U1σz −|τ |2U2σzU
†
2





H(2) =
1

2





−|τ |2U †
1σyU1 −τρ∗U †

1U
†
2σy

τρ∗σyU2U1 |τ |2σy



 (14)

Form the above expressions it is manifestly clear that the net charge which is pushed out into (say) the left lead is

zero. This is because G↑ +G↓ = 0 for any of the two leads. But what about the spin polarization current? The latter

is determined by G↑ −G↓, and in general it is not zero.

Pumping of spin polarization. – In order to get physical understanding of the spin pumping one should

observe that if the channel basis is changed, then H undergoes a similarity transformation H 7→ T −1HT where T

is the transformation matrix from the old to the new basis. In particular one is interested in block diagonal T s, such

that each of the two 2 × 2 blocks represents an SU(2) rotation of the axes that are attached to the respective lead.

One observes that by an appropriate choice of axes, a given lead-related 2 × 2 block of a given H matrix can be

transformed into the canonical form

Hlead 7−→
1

2
|τ |2σZ (15)

where Z is the new z axis. This means that the net spin polarization which is pushed into a lead is

dPZ = |τ |2
dθ

2π
(16)
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where θ is either θ1 or θ2. It should be appreciated that the direction (Z) of the spin polarization current depends on

whether θ1 or θ2 is being changed, and it is not the same for the left and for the right lead. Specifically, if θ1 is being

varied, then the spin polarization of the current in the left lead is in the z direction, while in the right lead it is in

the xy plane, with an angle θ1 relative to the y direction.

Example. – As an example one can consider the following prototype pumping cycle

(θ1, θ2) = (0, 0) 7→ (π, 0) 7→ (π, π) 7→ (0, π) 7→ ... (17)

During the 1st and the 3rd stages of the cycle the spin polarization which is pushed into the left lead is ±|τ |2/2 in

the z direction, while during the 2nd and 4th stages it is +|τ |2/2 in the y direction. Thus we generate per cycle net

spin polarization |τ |2 in the y direction, while at any moment the net pumped charge is zero.

SU(2) extension of the Brouwer formula. – For a general pumping cycle the net pumping is given by a line

integral over the conductance. Following Brouwer, one can replace this line integral by an area integral using Stokes

theorem. Namely,

Qa =

∮

G ∧ dθ =

∫∫

Caadθ1dθ2 (18)

where θ = (θ1, θ2), and G = (Ga,1, Ga,2). In the above expression we have introduced the “rotor” Caa of G. This

rotor can be regarded as a diagonal element of the matrix C = −(1/2π)[∂1H2 − ∂2H1], hence

C =
1

π
ℑ

[(

∂S

∂θ2

) (

∂S†

∂θ1

)]

=
1

2πi
[H2,H1] (19)

Note that if one change the channel basis, then C undergoes a similarity transformation. Calculating C for our model

system one observes that the derivatives bring down σyσz = iσx and each σx is rotated by the corresponding SU(2)

rotation matrix, by angles −θ1 around z for U1 and θ2 around y for U2, leading to

C =
i

4π
|τ |2





U †
1σyσzU1 0

0 U2σyσzU
†
2



 (20)

= −
1

4π
|τ |2





cos θ1σx + sin θ1σy 0

0 cos θ2σx − sin θ2σz





One can re-write the expressions for the pumped charge and the pumped spin polarization in a Brouwer-like style:

Qlead =

∫∫

trace(C1lead)dθ1dθ2 (21)

~Plead =

∫∫

trace(C~σlead)dθ1dθ2 (22)

The matrix 1lead is a projector on (say) the left lead, which means in practical terms that one can keep only the upper

right 2 × 2 block of C, and sum only over the channels of the left lead. For the model system under consideration

we manifestly have zero trace and hence the Brouwer formula gives Qlead = 0. This is to be expected when the effect
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of spin orbit appears as a pure gauge: it affects the wave function merely through an SU(2) phase factor. On the

other hand, spin pumping is not zero because C is multiplied by spin matrices before being traced, and one can get

a non-zero spin polarization ~P .

It might be useful to notice that the integral over C, which is Eq.(22) without the trace, is formally an expression

for the spin polarization matrix, rather than for the spin polarization vector:

ρlead =

∫∫

Cleaddθ1dθ2 (23)

Here Clead is the relevant 2 × 2 block that corresponds to the lead under consideration.

Discussion. – On the practical level it has been demonstrated in this work that it is possible to polarize a

neutral spin current using a strictly 1D device with no extra magnetic fields. This should be contrasted with more

complicated arrangements that were suggested for this purpose e.g. in Ref.[12]. The scheme that has been considered

in our analysis is based on a pumping (time dependent) paradigm, instead of the conventional transmission filter

paradigm, and at the same time does not involve the use of magnetic fields.

On the mathematical side an extremely simple result for the pumped spin polarization has been obtained, namely

Eq.(16). As demonstrated, it can also be formulated as an SU(2) extension of the Brouwer formula for charge pumping,

noting that the geometric (Kubo) conductance G is formally a 2-form (curvature), while C is a 3-form (scalar).

We have illuminated the gauge consideration in the theory: while in the time-independent setting it is possible to

transform away the SO interaction, in spite of the non-commutativity of the SU(2) gauge transformations, this is no

longer true for the time dependent Hamiltonian that describes the pumping scenario.
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