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Quantum stirring of particlesin closed devices

Gilad Rosenberg and Doron Cohen
Department of Physics, Ben-Gurion University, Beer-SH&4/405, Israel

Abstract. We study the quantum analog of stirring of water inside a @ipgia spoon. This can be regarded
as a prototype example for quantum pumping in closed devidd® current in the device is induced by
translating a scatterer. Its calculation is done using thbedkformula approach. The transported charge is
expressed as a line integral that encircles chains of Diracapoles. For simple systems the results turn
out to be counter intuitive: e.g. as we move a small scattéoeward” the current is induced “backwards”.
One should realize that the route towards quantum-cldssiceespondence has to do with “quantum chaos”
considerations, and hence assumes greater complexityeafevice. We also point out the relation to the
familiar S matrix formalism which is used to analyze quantum pumpinggan geometries.

1. Introduction

Consider a closed ring that contains particles (Fig.1la)suA®e that one wants to create a
current in this ring. If the particles are charged then ong twado it is by creating an electro
motive force (EMF). This can be induced by varying an AhakeBohm flux®, such that by
Faraday’s law EM= —®. But there is another way to create a current that does nohiav
EMF, and hence does not assume charged particles. The ittealiange in time the scalar
potential V(r; Xi(t), X2(t)). Herer is the coordinate of a representative particle in the ring,
while X; andX; are some control parameters. By making a cycle in ¥jeX,) space we can
push non-zero net charggthrough the system. Thus an “AC driving” gives rise to a “DC”
component in the current. This is known in the literatureqsathtum pumping”.

Fig.1. Models for the analysis of quantum stirring. (a) Upper paAedcatterer (big black dot) is translated inside a
Sinai billiard. A chaotic trajectory of a representativetjzde in this billiard is illustrated. (b) Lower panels: Neork
models for quantum stirring. The scatterer (big black detyanslated along one of the bonds. The vertical dotted
line is the section through which the current is measuredmHeft to right: chaotic network; double barrier model;
triple barrier model.
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Fig.2. (a) Left panel: A schematic representation of the networkehoT he vertical dotted line is the section through
which the current is measured. The moving scatterer isételicby its transmissiogy, while X; is its displacement
along the bond. (b) Right panel: The corresponding open gagrnwhere the left and right leads are connected to
reservoirs with the same chemical potentials.

In this paper we would like to consider a prototype pumpingbfem, which we call
“quantum stirring”. It is the simplest scheme to create aanirwith a non-vanishing DC
component. Referring to Fig.2 we defiXg as the location of a scatterer, whie is its
“size”. By “size” we mean either the cross section or the otiter codficient. One can
regard the scatterer as a “piston” or as a “spoon” with whicis ipossible to “push” the
particles. A prototype example for a pumping cycle is ilfagtd in Fig.3. During the main
stage of the cycle the scatterer is translated to the rigtstarctceA X;. Consequently a charge
Qs transported. In the second stage the size of the scaitetewered”, and it is displaced
back to its original location, where its original “size” isstored. By repeating this cycle many
times we can create a current with a DC component.

In the following analysis we assume that the system consisien-interacting spinless
particles. All the particles have (formally) chargesven if they are not actually charged. We
assume that there is no magnetic field in the system. Stilthtvsake of a later mathematical
formulation, it is convenient to introduce a third parametge = ®, where® is an Aharonv-
Bohm flux. The pumping cycle in th&(, X,, X3) space is illustrated in Fig.3.
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Fig.3. A prototype example for a pumping cycle. During the main stafithe cycle the scatterer is translated to the
right a distance\X;. Consequently a chardeis transported. (a) Left panel: The pumping cycle in ther2efisional
(X1, X2) plane. (b) Right panel: The same pumping cycle in the thieedsional K;, X2, X3) space, wherez = ©

is the Aharonov Bohm flux via the ring.
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X, ds

Fig.4. (a) Left panel: The calculation of the char@eis a line integral ovef that can be regarded as a calculation
of the flux of B via a two dimensional curvedsis a normal vector to the pumping cycle. The black dot in
the middle symbolizes the presence of “magnetic chargethvig characterized by a density(X1, X2). In the
guantum mechanical analysis this should be understoodeagethsity of “Dirac chains”. (b) Right panel: In the
embedding X1, X2, X3) space the magnetic charge is organized as vertical chatgids. Each chain consists of
“Dirac monopoles” which are located Xtpoints where an occupied level has a degeneracy with a nésarly The
ellipse represents a possible pumping cycle that may @eaither one or many chains.

1.1. Linear response theory and the Dirac chains picture

We are going to analyze the stirring problem within the freuok of linear response theory.
If we have EMF then we expect to getin the DC limit Ohm law= —G®, while if we change
slowly eitherX; or X, we expect to getin the DC limif = ~G!X; or I = —G2X; respectively.
So in general we can write

Q=@ Idt=- Sﬁ(eldxl +G2dX,) = 9§B .ds= ffo-(Xl, X2)d X dXo 1)

In the second expression we define the normal vatser (dXz, —dX;) and use the notations
B1 = —G? andB, = G!. See Fig.4a for an illustration. The third expression isaoted via
the two dimensional version of the divergence theorem. IfegardB as a fictitious magnetic
field, theno is the two dimensional density of magnetic charge.

It turns out that in the strict adiabatic limit the vector fié is related to the theory of
Berry phaselll[12]. The formulation of this relation is addals. Assume that the system is
adiabatically cycled in theXy, X, X3) space. In such case the Berry phase can be calculated as
a line integral over a “vector potential” (also called “1ifigf) A. This can be converted by the
Stokes theorem into a surface integral over a “magnetic’fi@ldo called “2 form”)B. The
B field is defined as the “rotor” oA. It is a divergence-less field but it can have singularities
which are known as “Dirac monopoles”. These monopoles aratéal atX points where an
occupied energy level has a degeneracy with a nearby levetaige ofd — @ + (27h/€)
gauge invariance the Dirac monopoles form vertical chasrilestrated in Fig.4b. Hence we
have a distribution of what we call “Dirac chain§’l [3, 4], whiis characterized by a density
O'(XJ_, Xz).
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1.2. Background and objectives

Most of the literature about quantum pumping deals with thenogeometry of Fig.2b. The
most popular approach is ttf&scattering formalism which leads to the Bittiker, Pe&nd
Thomas (BPT) formulall5.16] for the generalized conductaGce The BPT formula, is
essentially a generalization of the Landauer formula. &vimus publicationd[7,/4] we have
demonstrated that the BPT formula can be regarded as a klmdiaf the Kubo formula.
Our Kubo formula approach to pumpirid [3, 8] leads to “leveldyel” understanding of the
pumping process, and allows to incorporate easily nonbati@and environmentakiects.
In the strict adiabatic limit it reduces in a transparent wathe theory of adiabatic transport
[} [10], also known as “geometric magnetidm [2]. On the otfeerd, in the non-adiabatic(!)
“DC limit” of an open geometry it reduces to tt& matrix picture, hence resolving some
puzzles that had emerged in older publications.

The question “how much charge is pushed by translating éesedthas been addressed
in Ref.[11] in the case of an open geometry using the BPT ftamWe have addressed the
corresponding problem of quantum stirring in closed geoyneta previous short publication
[L2], but the connection with the Dirac chains picture hassh®en illuminated. Furthermore,
in [L2] only the quantum chaos limit was considered.

In the present publication we put an emphasis on clarifyihg toute towards
quantum-classical correspondence (QCC). We shall segtiaatum mechanicaliects are
pronounced irsimplesystems. As the system becomes more chaotic QCC emerges. The
Dirac chains picture leads to new insights regarding théertawards QCC. These insights
are easily missed if we stick to the formal Green functiowalation of our earlier work[12].
From the above it should be clear that the main objectiveseptesent study are:

¢ Derivation of a classical formula fa@ (assuming a stochastic picture).

e Derivation of a quantum result f@ using the Dirac chains picture.

e Exposing some counter-intuitive results fQiin the case of the simplest models.
¢ llluminating the route towards QCC as we go from “simple” thaotic” systems.

We note that in[[12] we have presented the classical fornaul®fwithout the derivation.

1.3. Physical motivation and experimental feasibility

In the previous section we have explained the theoreticdivatmns for dealing with the
stirring problem. In the present section we would like tdffier discuss the practicality of this
line of study, and the feasibility of actual experiments.

It is quite clear that the main focus of today’s experimest®mn opendevices (with
leads), whereas our interest isdloseddevices. Our believe is thatvireless” mesoscopic
or molecular size devices are going to be important builditacks of future “quantum
electronics”. This is of course a vision that people may doutowever, on the scientific
side our task is to analyze its feasibility.

It is possible to fabricate closed mesoscopic rings, anddasure the persistent or the
induced currents. Experiments with closed devices hava pegormed already 10 years
ago. As an example we mention Ref][13] where a large arrayjngbrhas been fabricated.
The current measurement has been achieved by couplingrtfe t a highly sensitive
electromagnetic superconducting micro-resonator.

The conceptually simplest way to drive a current is by indgan electro motive force
(EMF). In the setup of Ref.[13] the EMF has been induced by methat spirals on top of
the array. In our view an attractive alternative option vablg to induce currents by changing
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gate voltages so as to induce stirring. The advantage ofspdssibility for the purpose of
integrating wireless devices in future quantum electr®isaqyuite obvious: It is much easier
to control gate voltages than fluxes of magnetic field.

As far aselectronic devicesre concerned there is no question about the feasibility
of realizing quantum stirring by manipulating gate voltagand measuring the electrical
currents. But we would like to argue that such possibilitypen also in case ofeutral atoms
It is well known that “billiards” that confine cold atoms cae bealized and manipulated
[14,[15]. Furthermore, there is no question regarding ttesibdity of creating a “moving”
optical barrier so as to create a stirrinieet. There are variety of techniques to measure the
induced neutral currents. For example one can exploit thapl2o efect at the perpendicular
direction, which is known as the rotational frequency S[ii].

There is one more issue which might be of relevance in caseadtmal experiment. The
Kubo formalism assumes that the system settles into a sttath; whereas the preparation
in case of an actual experiment is not very well controllece Wéuld like to argue that the
results of the linear response analysis are quite robugs.i§$ue is discussed in section 4 of
Ref.[11]: What we get foQ in the Kubo analysis is not merely a formal result, but ratner
prediction that has an actual physical significance.

1.4. Outline

In the first part of this paper we review the result @in the case of an open system using
the BPT formula. Then we present two equivalent derivatafrtee correspondinglassical
result in the case of a closed geometry. We use the term fcéd’ss the Boltzmann sense.
This means that interference within the ring is neglectddlenthe reflection by the scatterers
(“cross section”) is calculated quantum mechanically. fits¢ derivation is based on a direct
solution of a master equation, while the second is a strimghérd application of the Kubo
formula. The classical calculation implies an expressimntifie densityo(Xy, Xo) of the
monopoles. The BPT formula implieg X3, X;) that can be regarded as a special case of this
calculation.

In the second part of this paper we turn to the quantum mechbanalysis. As a
preliminary stage we discuss the general conditions fomigea degeneracy poirX in the
case of a one dimensional ring. Then we review how the pumpartjeQ can be estimated
by calculating a line integral that encircles “Dirac chdinghus we realize that we have to
figure out what' the distribution(Xy, Xz) of these chains looks like. Specifically, we consider
the model systems that are illustrated in Fig.1, and schieatigtin Fig.2. The simplest is a
ring where bothg; andgp are modeled as delta barriers. The resulias quite remote from
the classical expectation. Consequently we try to figurendatt happens to(Xy, X;) as the
system becomes more complex: First we add a second fixeaghamd finally we consider
what happens in the case of a “chaotic” barrier which is medlaking random matrix theory.
We make it clear that the route to the classical limit is irgiely related to so called “quantum
chaos” considerations.
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2. Pushing particlesin an open geometry

Let us consider the model of Fig.2b, where we have a scattétkin a single mode wire
which is connected to two reservoirs with the same chemiocéémgial. In this section
we assume non-interacting spinless electrons and zercetatope Fermi occupation. The
scatterer is described by

V(r; X, Xg) = X25(I' — X]_) (2)
Hence, for some fixed values ¥f andX; its transmission is

21-1
m

go(X2) = [1 + (%Xz) } 3)
wherem is the mass of the particle akd is the Fermi momentum. From now on we work
with units such that = 1. TheS matrix of the scattering region can be written in the general
form

. H — ia —i}
soer(VIZ9T VEET (@)
\VOe?  iyl-ge

wherey is the total phase shifty is the reflection phase shift, agd= e®/h represents the
flux which we assume to be zero. In the setup of Fig. 2b the feofthe right lead id. 4 — X3
and the length of the left lead iss + X;. Hence

g = )]
y = k(lLa+Lg)- arctar(%xz) (6)
a = ki(La-Lg)—2kX; (7)

Now that we know the dependence of Beatrix on the parameterX{, X,), the calculation
of G is quite straightforward. We use the BPT formula

; e oS .
- i
G itrace( Preas 7x S ) (8)
whereP,,, projects on the channels of the lead where the current isune@dsAs indicated in

Fig.2b the currentis measured via a section which is looatatie right lead. Using the BPT
formula we get

Gl = —(1-go) ng ©)
2 _ e
G = -0 e (10)

wherev; is the Fermi velocity corresponding t@. The result forG! is our main interest.

It has been discussed in REf[11], where the term “snow plbas been coined in order
to describe its physical interpretation. Namely, for zexmperature Fermi occupation the
density of electrons in the wire Ig/7. Therefore the number of electrons that are pushed
by the scatterer isIN = (k-/7) x dX;. If the transmission of the scatterer is not zero, some
of the electrons pass through it and consequently we haveuttipig dN by the reflection
probability 1- go.
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3. Stirring of particlesin a closed geometry

Let us consider the model of Fig.2a, where the system is dlos@&/e assume that the
transmission of the ring without the moving scattereg‘lib while the transmission of the
scatterer itselfigyp. In the following two subsections we shall present two amialerivations

of the “classical” result fofG. We use the term “classical” in the Boltzmann sense. Namely,
we regard the scattering from eitf@’ or go as a stochastic process. Thus interference within
the arms of the ring is not taken into account. For sake of @iapn with the BPT-based
result we still assume zero temperature Fermi occupatidnlgvin later sections we shall
allow any arbitrary occupation). Within this framework witain:

(1-go)gs e
Qo + g]_ Zgog]_ 4
(1- gi')go e
G = - cl _ cl (12)
Qo+ 0f — 20007 | 4hve

We note that the amount of charge which is pushed by tranglatiscatterer a distanae;
can also be written a5]112]

1- QOH gr } e
—Kk- x AX 13
% =g —k 1 (13)
wheregr is the overall transmission of the ring (including the maystatterer) if it were
opened:

ol 52
or % g

As expected the charg@ which is transported as a result of Apdisplacement dependsin a
monotonic way on the reflection ciieient 1- go. It monotonically increases from zero, and
attains half of its maximal value fap = gg'. A plot of Q versus the “size” of the scatterer is
presented in Fig. 5 for three representative vaIuegﬁ'oWe also ploQ againstX,, assuming
that the scatterer is modeled as a delta function.

Q=-G'AX; =

(14)
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Fig.5. Plots ofQ as a function of the “size” of the scatterer. We use arbittaniys such tha@ = 1 in the maximum.

(a) Left panel:Q is plotted against the reflection dtieient (1- go) for of' = 0.1, for g = 0.5, and forg§' = 0.9.
The dotted lines highlight tha for gp = gg' is half its maximum value. Note that the BPT based resultesponds

to gf{' =0.5. (b) Right panel: Here&) is plotted againsiX; assuming that the scatterer is a delta function, and
settingm/(h2ke) = 1.
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It is important to realize that the result for apen geometris formally a special case
corresponding t@i' = 1/2. This value ofgg' means that memory is completely lost once a
particle is scattered by the “surroundings”. Namelgﬁif: 1/2 then after a collision a particle
has equal probability to go in either direction, and any iinfation about its initial direction
is lost. This observation generalizes our discussion in[Eéfregarding the relation between
the Kubo and the Landauer conductance.

The classical expression f@ implies the following result for the density(Xy, X2),
which is illustrated in Fig.6.

dB; _ em  2(1-gf)f (ixz)
dX nh? [1 R ((hzlkpxz)z ~ 1) gilr h2ke

o(Xy, Xo) = (15)
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Fig.6. The classically deduced densityas a function ofX, for gg' =0.1, for gg' =05, and forgg' =0.9. We use
arbitrary units foro, and sem/(h?k:) = 1. The dotted vertical lines correspond to the medavalues which are
determined by the equatiap(X?) = gg'.

In the following sections we give two optional derivatiorfstioe classical result. The
first derivation is based on a physically appealing mastelagon approach, in the spirit
of the Boltzmann equation. The second derivation is a ditiigvard application of the
Kubo formula. The calculation is done f&* and can be easily modified in order to @&t
The advantage of the Kubo formula approach is that it can Inergéized to the quantum
mechanical case, and it allows the incorporation of nomdzatic and environmentaffects.

4, Classical derivation using a master equation

We consider a ring with two scatterers: a moving scattgsehose velocity isX, and a fixed
scatterem;. A collision of a particle with the moving scatterer impligat its velocity is
changed — v+2X, where the sign depends on whether the collision is fromitte or from
the left. The associated change in the kinetic ener@yss E + 2mvX + O(X?) respectively.
There are two regionx(< 0 andx > 0) on the two sides of thgy scatterer. Accordingly we
have four distribution functions that satisfy the follogibalance equations:

O 1oVl ol VI + (1~ 89) 6 Vie o (16)

ag;f —[psV]+ a1 [pV] + (- a1) [p3V] an
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ag—f = —[p=VI+ go[pV] + (1 - Go) [p= V] (18)
6:(9)_; = ~lpvI+ et vl + (1= 91) [pZ Ve amux (19)

The zero order solution iX is to have all the four distribution functions equal to some
arbitrary functionf(E). In the presence of driving, assuming that the system hachesl
a steady state, we still have to satisfy the d«ree equations, leading to

Py = Gl +(1-g)py (20)
p” = Gy +(1-g)pt (21)
Substitution into the two other equations leads after liize#ion to
: 1-g )8f(E)
~(E) — p= (E) = -2mvX 22
p2(E) = p=(E) oo | 2ok (22
and for the current we get
_ o (Tdp, L o (Tdp_ L
= SR —pev= [ Pauer —pt e (23)
(e _(1-gog ) ]af(E)
= -X = mv dE 24
fo [77(90"‘91_29091 0E (24)

With the assumption of zero temperature Fermi occupatisgies the cited result fas?.

5. Classical derivation using the Kubo formula

The generalized fluctuation-dissipation version of the &tdrmula (see Ref.[4] and further
references therein) relates the generalized conductartbe tthe cross correlation function
of the currentl and the generalized for¢€ = —9H /oX. If X is the displacement; of the
scatterer then

OH

F=——g = X0 (X=Xq) (25)
0Xq

X

For the sake of comparison with previous results we assume teenperature Fermi
occupation. Then the Kubo formula takes the form

G-q(E) [ o=

Ve (QF) (26)

whereg(E) = L/(nhve) is the density of states. This density of states is propoatito the
total “volume” of the network which i$.. In the second expression we got rid of the time by
introducing the notation

Q=f0 I(r)dr (27)

It should be clear that both the generalized fofcand the transported char@eare functions
in phase space, and that) stands for phase space average over position and velooity: F
we already have an explicit expression EG.(25). Now we havigtire out what i.

On the ring there are two scatterers, and one poiatxg where the current is measured.
Hence the ring is divided into 3 segments. In addition, themetwo possible directions
of motion (clockwise, anticlockwise). Hence the phase spadlivided into 6 regions. It
is obvious that the outcome from HQI27) depends merely oichwiegion the classical
trajectory had started its journey in. In fact we need to @mrsonly the 4 regions where
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the particle starts in the vicinity of the moving scatteetse# vanishes. So we have the-*
region between the moving scatterer agdand the “—" region on the other side between the
two scatterers. Accordingly the four possible outcomemfemn.[2T) are:

L 1

O = e[2(1— gr)] (28)
C [

9 = e[2(1— ) 1} (29)
S = O 6% o, GGtk

o [1 -(1-g)(1-g0) 1-(1-90)(1-go)| " go+01-go01 QY (30)

— 01— 0o+ %091 ~

@ go + g1 — Qo1 Q 1)
The derivation of the above expressions is as follows. lingkest if the particle starts in
the “ + ” region, because then we can regard the two scatterers asfi@otive scatterer
gr. Assume that at timé = O the particle approack = X, from the left. The charge that
goes through the section after a round trip is suppressedfagter (Zyr — 1) due to the
scattering (we sum the clockwise and the anticlockwiserdmrttons). Thus we find that the
total charge that goes through the section due to multigleatéons is a geometric sum that
leads to Eq[(28). If we start in the+ " region in the opposite direction, then we have the
same sequence but with the opposite sign and without thedirst Hence we get EQ.(R9).
Next assume that at= 0 the particle starts in the= " region, and approachegp from the
left. Then we can have at a later time a positive pulse of ctrr€he probability for that is
the geometric summation ovgs((1 — go)(1 — g1))™**. Otherwise, we get a negative pulse
of current, with a complementary probability that can bearelgd as a geometric summation
overgi((1 — do)(1 — g1))™*(1 — go). Thus the total current through the section, taking into
account all subsequent multiple reflections (rounds) ismly EqI[3D). A similar calculation
leads to Eq[{31).

Since there are only four possible valuesdbthe calculation of the phase space average
becomes trivial:

1 L1 .1 IR -
(QT)—Z Ir?'dr]Q+ o0 j;?'dr]Q+ * o0 f_?‘fdr]Q * 30 f_?‘fdr]Q
The integral ovefF is taken either within the % ” or within the “ — " region. It is trivially
related to the momentum impact and yields the result
f?'dr = Fmv2 (32)
+

Putting everything together we get the desired resulGforWith some minor modifications
we can calculat&? using the same procedure.

6. The quantum mechanical picture

The Kubo formula holds also in the quantum mechanical casen®v. and# are operators,

so it is more convenient to express the Kubo formula usinig thatrix elements. After some
algebra one obtains the result:
G 2hIm[Z nm] Fmn

mn) (Em— En)? + (T/2)

For more details see Réfl[4] and further references theheithe above formula it is assumed
that only one energy levehy is occupied. If we have zero temperature Fermi occupattiem

(33)
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we have to sum over all the occupied levels. The Kubo forrndariporates a parameter
that reflects either the non-adiabaticity of the drivingeavironmentally induced “memory
loss” due to decoherence. For a strictly isolated systerhdrstrict adiabatic limit we have
I' = 0. Then we identifyG as an element of Berry’s field, as explained in the introduction.
The dfect ofT" on B will be discussed below.

We would like to see how the classical result can emerge iredonit from the above
quantum expression. It turns out that this does not requiketailed calculation. We can use
some topological properties & in order to figure out the answer! The main observations
that we further explain below are:

(1) TheB is divergence-less with the exception of Dirac monopoles
(2) The monopoles are arrangedirspace as vertical chains

(3) The far field ofB is like a two-dimensional electrostatic problem
(4) Only non-compensated chains give net contribution

As long as the occupied levaldoes not have a degeneracy with a nearby IeBak finite
and divergence-less. Only at degeneracies can it becomelainit can be argued that these
singularities must have their charge quantized in units/@felse the Berry phase would be ill
defined. We have defines = ®@ as the Aharonov-Bohm flux through the ring. This means
that if we changeXs by 2rh/e then by gauge invariance we have another degeneracy. This
means that the Dirac monopoles are arranged as verticalgtemd that the average charge
per unit length ise/(4r). Thus the far field of a Dirac chain is as in a two dimensional
electrostatic problem. If we calculate the line integralEsf.(1) then we get, within the
framework of the far field approximatio = 1. Thus we conclude that if we have several
Dirac chains of the same “sign”, th&psimply counts how many are encircled.

We have to notice that if we have Fermi occupation, thenniéiecontribution comes
only from degeneracies of the last occupied level with thet €inoccupied level. This is what
we meant above (item 4) by “non-compensated”. In order tadawosunderstanding of the
“compensation” issue let us discuss with some more detdits Wappens if two neighboring
levelsn andm are occupied. With the level we associate a fiel®™, while with m we
associate a field®™. In generalB™ = —B™, If we are near a degeneracy than we may
say thatB™ emerges from a Dirac chain which is associated with layalhile B™ emerges
from a Dirac chain which is associated with lewel By inspection of EqI{33), taking into
account that Iml'nr] = —Im[Z ], we realize that the two Dirac chains have opposite charge.
Their corresponding fields do not cancel each other, butata field is no longer singular,
implying that thenetcharge is zero.

In the quantum stirring problem we shall see that e distance between non-
compensated chains is simply half the De-Broglie wavelengt = 2r/ke. From this it
follows that the amount of charge which is pushed by a vemg#ascatterer is

Q=~e = e; X AXy (34)

What happens if the cycle is not in the “far field” but rathesg@s through the distribution
of the monopoles? To be more specific let us consider whatemeQ if we displace the
scatterer a distana®X;. What is the dependence &@? Do we get the classical result as in
Fig.5? Obviously, in order to get the classical result trsgritiutiono(Xy, X2) should be in
accordance with EQ.{LL5). Strictly speaking this@tthe case because we have a discrete set
of monopoles rather than a smooth distribution of “magnettiarge”. Still we can hope that

o (X1, X2) would be classical-like upon course graining. We discusthér this issue in the
next paragraphs.
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If we make a pumping cycle in the vicinity of a monopole theis tbvious that the result
would be very diferent from the classical prediction. What we expect to géténquantum
mechanical case is illustrated in the upper panel of Figat. a~cycle that goes very close
to a monopole the charge can be huge. In reality it is veffycdit to satisfy the adiabatic
condition near a degeneracy, or else there are always emvaotal éects. Either way, once
we have a finitd", the result that we get fdD is smoothed.

If the pumping cycle passes through a distribution of manyopoles then what we
expect to get (as we deform or shift the cycle) are huge flticiugas illustrated in the lower
panel of Fig.7. Again, theffect of either non-adiabaticity or environmentdieets is to
smooth away these fluctuations. The interested reader ahadime further discussion of this
point including a numerical example in[12].

Q

X1

Fig.7. Several pumping cycles are indicated in the left panelss ilnplicit that each segment is closed as in Fig.3.
The black points represent degeneracies. For each pumyitegyane can calculate@. The qualitative expectation
for the outcome is illustrated in the right panels. In theampustration we assume that the pumping cycle encircles
only one degeneracy, while in the lower illustration we assthat it encircleN degeneracies. In a later section we

display numerical results that support the illustratedeetgtions.

Coming back to the quantum-classical correspondence (Q€30g, we realize that
at best QCC can be satisfied in a statistical sense. So we asthevithe coarse grained
o (X1, X2) agrees with the classical expectation EG.(15). The ansvivch we give in the
following sections, is that QCC is not realized in the cassiwiple non-chaotic models. In
the “simple” cases we get a non-classie@X;, X,) and hence a tlierent dependence §fon
Xa.
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7. The degeneraciesin X space

We can use the scattering approach in order to find the en&rgiglof a ring. In this approach

the ring is opened at some arbitrary point and $heatrix of the open segment is specified.
It is more convenient to use the row-swapped matrix, suchtbligatransmission amplitudes

are along the diagonal:

. ) ej¢ i1 _ i
S(E, xlv XZ) = el)’ (l \/l/ngem | i-/gegli (35)

The periodic boundary conditions imply the following sesutquation

det@&(E; X1, X2) - 1) = 0 (36)
Using
detG- 1) = det®) — tracef) + 1 (37)
det®) = (¢7)? (38)
trace®) = 2ge” cose (39)
we get
cos/(E)) = Vo(E) cosg) (40)

In order to find the eigen-energies we plot both sides as aiuimof E. The left hand side
oscillates betweer1 and+1, while the right hand side may have a smaller amplitudes It i
not difficult to realize that the only way to have two eigen-energi@saide is to get

¢ 0 mod(2r) ¢ = mmod(2r)
{g = 1 } or {g = 1 } (42)

7 neverﬂ- 7’ = nodd7r
wheren is either even or odd integer that can be exploited (if we kesgk overy) as a level
counter.

Both g andy depend on[; Xy, X;). Since we wang to be maximal the condition for
having a degeneracy involves 4 rather than 3 equations agevgoing to see below. An
immediate conclusion is that we have two types of Dirac chatihose that have monopoles
in the plane of the pumping cycl&{ = ® = 0), and the others that have monopoléstioe
plane of the pumping cycle.

In our model system we have two scatterers. One is the moeatteser and the other is
the rest of the network. The two are connected by arms ofttelngt- X; andLg + X;. The
constantd 4 andLg can be absorbed into the definition of the surrounding nédwé&ach
scatterer is fully characterized by the set of paramdigrsi, ai, ¢;}. Note that we do not
absorbX; into the definition ofxg. After some algebra we find the following expressions for
the transmission cdiécient and for the total phase shift:

g = Jog1 (42)
2~0o— 01+ 0001 + 2+/(1 - 9o)(1 — 91) COSfyo + y1 + @0 + a1 — 2Ke X1)
Y = Yot7i (43)

whereke is the wavenumber that corresponds to the enBrgijhus the conditions for having
a degeneracy take the form
Xz = integer flux X3 = half integer flux

Jo(X2) = 01 Jo(X2) = 1 (44)
o+ a1 — 2kEX1 =7 mOd(ZT) o+ a1 — 2kEX1 =0 mOd(ZT)

Y0+ Y1 = Neyed® Y0 + Y1 = NoggT
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We have highlighted the dependence on the parameterX4, Xs). There is of course also
an implicit dependence ¢§;, i, @i} on the energ¥. The conditions that are listed above are
very intuitive: The system should have time reversal symmméahe barriers should “balance”
each other; The phases which are associated with the refischould lead to destructive
interference; And the total phase shift should respect ¢éhimgdic boundary conditions.
From Eq.{4%c) we see that in general #edistance between degeneracies that belong

to the same level is roughly half the De-Broglie wavelengthtated previously. The question
that we would like to address is how these degeneracies strébdied with respect ti;.

8. Quantum stirring in simplerings

We would like to find the distribution of degeneracies withpect taX, in the simplest model:

a ring with two delta scatterers (see Fig.1). The arms thahect the two scatterers are of
lengthLa + X; andLg — X;. For theS matrix that represents the fixed scatterer (including the
arms) we have

-1

m 2
q(E) = 1+(%v)} (45)
y(E) = kE(LA+LB)—arctar(%Xz) (46)
a1(E) = ke(La—Le) (47)

Since the dependence gf andg; on the barrier “size” has the same functional form, the
condition Eql[4¥c) implieX; = V irrespective ofE. Thus we get that all the degeneracies
are concentrated at the sag This is clearly very dierent from the classically expected
distribution.

In Fig.8 we display an example. The degeneracies that aceiagsd with the first 7
levels are indicated. Filled circles stand §oe 0 degeneracies, while hollow circles stand for
¢ = m degeneracies. Only the last (7th) level contributes nangEnsated monopoles. The
X3 distance between the non-compensated monopoles is rougifilpe-Broglie wavelength.

In Fig.9 we show what happens to the degeneracies if we addomnddixed scatterer.
We have chosen an additional scatterer that can be treategersurbation. The calculation
was done using perturbation theory. We shall not presentd#tails of this lengthy
calculation here. For larger perturbations (not presgmtechad to solve the secular equation
numerically. This was done using affieient algorithm[[1B]. In any case, the purpose of Fig.9
is merely to demonstrate that once the symmetry of the sydmoken the degeneracies
spread out in the; direction.
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1275.5f
1275}
I N
X 12725 ~(@0COSES-O-GOOEW | x
1274}
0 2 4 6 8 10 0 2 4 6 8 10
X 1 )(1

Fig.8. The degeneracies in the double delta model of Fig.1. Wé& et 10.23 andLg = 0, so thatX; measures
the distance from the fixed scatterer. The “size” of the fixelfadscatterer i¥ = 127456. We use units such that
m = h = 1. We assume that only the lower 7 levels are occupied. Tleelfdircles are degeneracies on the flux
zero plane and the empty circles are degeneracies on the filane. The left graph shows the actual arrangement
in the (X1, X2) plane. Namely, all the degeneracies are on theXine V. In the right graph the degeneracies were
displaced for the sake of clarity. Only the 7th occupied lleeatributes non-compensated monopoles.

1360 ‘
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124 ‘ ‘ ‘ ‘ ‘
% 2 4 6 8 10
X

Fig.9. The degeneracies in the triple delta model of Fig.1. Nantel)e model of Fig.8 we have added a delta barrier
of “size” Vp = 1075, located atx = 7.61. This additional delta barrier can be treated as a smalinbation. As a
result of this perturbation the degeneracies shift andaspoeit in theX; direction. Degeneracies that belong to the
same level are connected by a line. As in the previous figugetbe 7th occupied level contributes non-compensated
monopoles.

The distributiono (X1, X2) in the case of a ring with a single fixed scatterer is very
different from the classical prediction. Consequently &scomes out very dierent from
Eq.[I3) [and see also Fig.6]. The reader might be curiousnmwkhow Q depends on
the “size” (Xz) of the scatterer in the case of Fermi occupation. So we halelatedG
numerically using EQ{33), and integrated over it toQef he numerical results are displayed
in Fig.10. Further analysis of the crossover from “near fietd“far field” cycles will be
published in a separate wolk]17].
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Fig.10. Several pumping routes are displayed in the left panel. &adn ef themQ has been calculated numerically.

The results are displayed in the right panel. Note the ageeemwith the qualitative expectation that has been

expressed in Fig.7. The calculation is done for the doublia deodel of Fig.1 withLa = 100023 andLg = 0. The
“size” of the fixed barrier i3/ = 81056. The energy level involved are= 998 andm = 999. We use units such that
m=h=1.

9. Quantum stirring in chaotic rings

We would like to find the distribution of degeneracies witBgect toX, in case of a chaotic
network (see an example in Fig.1). Let us try to extend theaguh that has been used in the
previous section. A hypothetical illustration@f( E) in the chaotic case is displayed in Fig.11.
The universal conductance fluctuationgpfare characterized by a one parameter probability
distribution P(g1; 91) which we discuss below. This probability distribution éegds on one
parameter, which we choose to be the average transmigsion

1

0.8

0.6

9(E)

0.4

0.2

Fig.11. A hypothetical illustration ofy; (E) in the case of a complex “chaotic” barrier. Such a barrierlwa modeled

as a network (Fig.1a), or it can be characterized using randatrix theory. The smooth curves are the transmission

do(E; X2) of the delta scatterer for 3ftierent values 0Ks.

In order to get a degeneracy, a necessary bufficgnt condition is that the transmission
of the two barriers is equalg(E; X2) = 91(E)). The solution of this equation can be
determined graphically via Fig.11. In fact in most pradtmaplications we can assume that
our interest is restricted to some small energy window shalh the smootte dependence
of go can be neglected. So the equation is in fg€X,) = g1(E). For a givenE we can find
an XgE) such that this equation is satisfied. By playing whwe can satisfy ther related
phase condition for having a degeneracy. But we still hasatsfy also the related phase
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condition, which leads to the quantization of the endfgyence the erratiKéE) is sampled.
Still it is reasonable to assume that the the distributiothef so-obtaine, values is not
affected by this random-like sampling. We therefore concladdallowing relation:

Prof Xz < X7 < Xo + dX| = Protlgo(Xe) < g1 < Go(%e + X)) (48)
This implies a simple relation betweet(Xy, X;) and the probability functio®(g;; g;)
dgo(Xz)

o (X1, X2) = constx

a P(9o(X2)) (49)

Thus the problem of finding(X1, X2) has reduced to the problem of findiR¢g1; g1).

We can now proceed in three direction#t) To determineP() from simple heuristic
quantum chaos consideration®) To determineP() from formal random matrix theory
considerations(C) To use reverse engineering in order to determine whBf)ishat would
give the classical result. It should be clear that univéssehn be expected only @ < 1. In
Fig.12 we make a comparison between the outcomes of theseghocedures fap = 0.001.
In the following paragraph we give the details of the caltata

4

10

—Classical
- = -Heuristic
== RMT

Fig.12. A plot of the distributiorP(gy; g1) according to several fierent expressions. In this calculation we assume
that the average transmissiongs = 0.001, which is represented in the figure by a vertical dasheel liThe
“heuristic” result is based on sampling of the random vadei@h = gin172 wheren is Porter-Thomas distributed.
The “RMT” result is based on E.{F0). The “classical” ressibased on EQ{51).

The heuristic approach is based on the idea that the trasiemivia a chaotic
network depends on the amplitudes of the wavefunctionsettitrance and exit points.
One might expectgy = Qimn., where n has the Porter-Thomas distributioh_[20]
Peoe() = (1/ \/2rm)e™2. This leads to the “heuristic” result in Fig.12. In fact thissult
should not be taken too seriously. The formal RMT calcuta@l] of the probability
distributionP(g1; g1) leads to the following expressions:

PRMT(gl; gl) = {

The smallg; approximation is universal: it merely assumes that theesydtas time reversal
symmetry. It has been confirmed[22] that this universal bigmeholds also for network
systems. But for larger values gf there are deviations that has to do with semiclassical
considerations. It is therefore in the latter region whare might expect quantum-classical
correspondence.

@/7%q) g, forgi < (@)? <1

(401/7%) 913/ 2 for(@)? <o <1 (50)
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The probability distributiorP(gs; g1) that would reproduce the classical result EG.(15)
via Eq.[49) is:
(1-g9)gf

CL(gl gl) (g]_ " g? _ Zglgil)z ( )
with gg' ~ 0.12g;. In order to compare with the RMT result we note that
ey (@) (L-201/08)  forgr < of <1
Pe(91;01) ~ { o gy’ forgd < g; < 1 (52)

We see that in the largp region, where one might expect quantum-classical corredgace,
there is no agreement between() andPgy;(). We suspect thax,;() cannot be trusted there.
Otherwise we have to conclude that EQI(49) fails to take amwount strong correlations in
the arrangement of Dirac monopoles. Either way it seemsRMiE alone is not enough in
order to reproduce the classical result.

10. The emergence of the classical limit

With simple minded RMT reasoning we have failed to get a gtetivie correspondence with
the classical result. We therefore look for @éient way to get an estimate for eitigs or

o (X1, X2) in the case of a chaotic network. One obvious way is to usegbiglt of Refl[2B]
regarding the distribution of degeneracies (diabolic ®inThe perturbation term which is
associated withX, is

OH
W = o 5(X— Xq) (53)
and the density of the degeneracies should be [23]
o(X1, Xo) = gg(E)2 RMS[Frm] RMS[Whm] o« RMS[Whq] (54)

whereg(E) is the density of states. In the first equality it is implitiat the root mean square
(RMS) of near diagonalmatrix elements should be estimated. In fact only RM&[] is
required in order to find thiX, dependence. For a quantum chaos system with time reversal
symmetry the variance of the near diagonal elements eqaHlthle variance of the diagonal
elements[[24], leading to the second expression.

There is a well known semiclassical recipel[25] 26] for cldting the variance of
the near diagonal matrix element®,,». One should find the classical correlation function
C(1) = (W(t)W(0)) — (W)?, and then integrate over If ‘W were the current operator then
(‘W) would be equal to zero, and we could proceed as in section binBiase of Eq[{33)
there is a problem: The sign d#/(t) does not fluctuate, and it is essential to take into account
the distribution of the delay times inside the network. Hfiere there is no obvious relation
to the transmissiong, andg;.

An optional possibility is to try to evaluate RM®,], where Wy, = [parel® iS the
“intensity” of the wavefunction at the location of the seattr. Obviously the result depends
on bothgy andg;, and requires considerations which are at least ficdt as estimating
universal conductance fluctuations. So it seems that wednroul into the same problems as
in the previous section.

Still there is the option to calculat8* = B, from the Green function of the system.
This has been done iil2]: Writing the Green function as a euert trajectories, we have
expresse?! as a double sum over paths. If this double sum is averagedimenergy one
obtains the diagonal approximation, leading to the classesult. At first glance the energy
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averaging is not quite legitimate, because the energy isttagal. But one can justify this
procedure in the case of a “quantum chaos system”. We hatreefuisupported this claim by
the numerical analysis of the chaotic network of Fi@.1 [AM®2E therefore conclude that for a
chaotic network the distribution of degeneracies shoulmhlzecordance with EQ.(L5).

11. Conclusions

As we translate a scatterer of “siz¥5 a distance\X; along a single mode wire, the amount
of charge which is pushed is

Q = r(X)x SkF x AXq (55)

wherek: is the Fermi momentum. If the scatterer is very “largi ( oo) then we expect
to haver(X;) = 1. This expectation is based on the “snow plow” picture thed been
explained in the conclusion of section 2. This result is @sofirmed by the formal BPT
based calculation in the case of @mengeometry. It also can be formally derived foclased
geometry using the “Dirac chains picture”. In the latterectise key observation is that tixe
distance between contributing degeneracies is roughfitiralDe-Broglie wavelength. See
Eq.(33).

Next we ask what happens t¢X;) as X, becomes smaller. In the case of apen
geometry the intuitive naive guess, which is based on thewgrlow” picture, turns out to be
correct. Namelyr (X2) = 1 — go is simply the reflection cdcient: Some of particles are not
“pushed” by the scatterer because of its partial transgarén the case of alosedgeometry
we have shown that thelassicalresult forr(X;) is modified: now it depends also on the
overall transmission of the device. See EQ.(13).

It is important to realize that theassicalresult forr(Xz) is in complete agreement with
the common sense expectation. Namely, we havea (X;) < 1, and the dependence on the
“size” of the scatterer is monotonic. But once we go to thentiua mechanical analysis we
have a surprise. The results that we get are counter-wguifiney are most puzzling (Fig.10)
in the case of the simplest model, in which the ring contaig one fixed delta barrieM).

As we decreas¥; the transported charg@ becomes larger(!). Moreover, on&g becomes
smaller tharV, the codficientr(X;) changes sign. This means that as we push the particles
“forward” the current is induced “backwards”.

The reason for the failure of our intuition is our tendencyegard “adiabatic transport”
as a zero order adiabatic approximation, while in fact itdsda on a first order analysis (for
a detailed discussion see section 4[0fl [17]). As a paramettrel system is changed, the
induced current can be in either direction.

In order to understand the route towards quantum-classicegspondence it is essential
to figure out how the degeneracies spread ouXispace. As the system becomes more
complex, we get for(X;) a result that resembles the classically implied one. Teemblance
is at best only on a coarse grained scale: the quantum resudittong fluctuations. These are
related to universal conductance fluctuations.

We have made an attempt to deduce from RMT consideratioristiaetic” distribution
of the degeneracies, and hence the dependendg{gf on X,. The quantitative results do
not agree. We therefore suspect that RMT consideratiomeadce not enough in order to
establish quantum-classical correspondence. Rather evadel [[12] semiclassical tools in
order to establish this correspondence.
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