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Multiple path transport in quantum networks
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Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract. We find an exact expression for the current (I) that flows via a
tagged bond from a site (“dot”) whose potential (u) is varied in time. We show
that the analysis reduces to that of calculating time dependent probabilities, as
in the stochastic formulation, but with splitting (branching) ratios that are not
bounded within [0, 1]. Accordingly our result can be regarded as a multiple-
path version of the continuity equation. It generalizes results that have been
obtained from adiabatic transport theory in the context of quantum “pumping”
and “stirring”. Our approach allows to address the adiabatic regime, as well as
the Slow and Fast non-adiabatic regimes, on equal footing. We emphasize aspects
that go beyond the familiar picture of sequential Landau-Zener crossings, taking
into account Wigner-type mixing of the energy levels.

1. Introduction

Transport in quantum networks is a theme that emerges in diverse contexts, including
quantum Hall effect [1], Josephson arrays [2], quantum computation models [3],
quantum internet [4], and even in connection with photosynthesis [5]. For some
specific models there are calculations of the induced currents in the adiabatic regime
[6, 7, 8, 9, 10] for both open and closed systems, so called “quantum pumping”
[11, 12, 13, 14, 15, 16, 17, 18] and “quantum stirring” [19, 20, 21, 22, 23] respectively.
In the latter context most publications focus on 2-level [24, 25] and 3-level dynamics,
while the larger perspective is rather abstract, notably the “Dirac monopoles picture”
[9, 19, 21, 22]. This should be contrasted with the analysis of stochastic stirring where
the theory is quite mature [26, 27, 28, 29].

In this work we would like to analyze the following prototype problem. Consider
a network as illustrated in Fig. 1. It consists of N interconnected sites, with on-
site energies Ei, and couplings Cij . Additionally there is a site (i = 0) that we
call “dot”, where the potential energy E0 = u(t) is varied according to some time-
dependent protocol. For illustration purpose we assume that the on-site potential is
swept monotonically from u = −∞ to u = ∞. The Hamiltonian is

H =

N
∑

i=0

|i〉Ei〈i| +
∑

i6=j

|i〉Cij〈j| (1)

E0=u(t), Ci0=Ci (2)

Our interest is in the induced current I(t) that flows through a tagged bond 0 ❀ a that
connects the dot (i = 0) with some other network site (i = a). This bond is reflected
in the Hamiltonian by the presence of a coupling constant Ca0 = Ca.

http://arxiv.org/abs/1210.7051v2
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Figure 1. Two-site, three-site, and 1+N site models for transport. A particle
is initially positioned at the “dot” site |0〉, The dot has a potential energy u that
can be controlled externally. As u is varied, say from −∞ to +∞, currents are
induced in the bonds of the network. Our objective is to calculate the current
that flows from the dot to the network via a tagged bond. The vertical dotted
line indicates a section through which the current of interest is flowing.

In order to have a well-posed problem we assume that there is no magnetic field:
accordingly all the couplings can be gauged as real numbers; and there are no persistent
currents in the network. In the adiabatic limit [6, 7, 8, 9, 10, 19, 20, 21, 22, 23] the
current I(t) is proportional at any moment to u̇, and can be calculated as follows:

I = Gu̇, G = 2Im

[

〈 ∂

∂φ
Ψ
∣

∣

∣

∂

∂u
Ψ
〉

]

φ=0

(3)

Here φ is a test flux through the bond of interest, namely Ca 7→ Cae
iφ, and Ψ is the

wave-function of the adiabatic eigenstate. The coefficient G is known as the Geometric

Conductance, or as the Berry-Kubo curvature. In [23] the interested reader can find
how this formula is used in order to determine the current in the two-site and three-site
models that are illustrated in Fig. 1.

The adiabatic transport formula Eq. (3) is not transparent: it requires some
effort to get a heuristic understanding of its outcome. Furthermore it does not apply
to non-adiabatic circumstances. We therefore look for a different way of calculation.
Evidently for a two-site model, as illustrated in Fig. 1, we can simply use the continuity
equation:

I =
∂

∂t
[q1] , q1 = |〈1|Ψ(t)〉|2 (4)

where q1 is the occupation probability of the i = 1 site. Clearly, this formula holds
irrespective of whether the sweep process is adiabatic or not. Hence the problem of
calculating currents trivially reduces to the calculation of a time-dependent occupation
probability.

Considering a general network, our main observation is that for a multiple-path
geometry the continuity equation can be generalized as follows:

I =
∂

∂t

[

∑

n

λnqn

]

, qn = |〈ǫn|Ψ(t)〉|2 (5)

Here the qn are the occupation probabilities of the network levels |ǫn〉, and the pre-
factors λn are determined by the coupling constants. We refer to λn as the splitting
ratio: it describes the relative contribution of the 0 ❀ n flow to the current in the
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Figure 2. Upper panel: an initially loaded “dot” level is crossing a band that
contains N = 500 network levels. The occupation probabilities of the dot (p)
and of the levels (qn) are imaged as a function of time. The vertical axis is the
energy, and the horizontal axis is u(t). In this specific example the sweep process
is adiabatically slow: As u is increased the dot level gets emptied (color changing
from red to blue), while at the end of the process only the ground level of the
network is occupied (color changing from blue to red). We assume star geometry
with level spacing ∆=1, and identical couplings cn=3. The dashed line illustrates
the energy of the lowest adiabatic level. Lower panel: plot of qn vs n in several
cases. Green line with markers - the adiabatic scenario of the upper panel at
u = 60. Cyan solid line - after decay from a standing level (u̇=0). Red dashed
line - after decay from a moving level (u̇=5000).



Quantum transport 4

tagged bond. Hence, again, the calculation of the current reduces to that of calculating
time-dependent probabilities, as in the stochastic formulation. But we shall see that
the splitting ratios, unlike the branching ratios of the stochastic theory, are not
bounded within [0, 1]. For a non-interacting many-body occupation, results can
be obtained by simple summation, with qn(t) that represent the actual occupations of
the levels.

As already stated, for demonstration purpose, we are going to analyze a sweep

process, in which the on-site potential is varied monotonically from u = −∞ to u = ∞.
We are going to distinguish between two sweep scenarios:

• Injection - the dot is initially filled with a particle that later is transferred to the
network;

• Induction - one of the levels of the network is initially filled, and later a current
is induced via the crossing dot.

The occupation dynamics in the first (Injection) scenario is illustrated in Fig. 2, which
will be further discussed later. In later sections we consider also the second (Induction)
scenario considering “star geometry” and “ring geometry”.

2. Star geometry, adiabatic limit

Let us consider the special geometry of a network that consists of sites En = ǫn, and
connections Cn0 = cn, while all the other couplings are zero, as illustrated in the inset
of Fig. 2. An adiabatic eigenstate |Ψ〉 is represented by a column vector ψn = 〈n|Ψ〉
that satisfies the following set of equations:

uψ0 +

N
∑

n=1

c∗nψn = Eψ0 (6)

cnψ0 + ǫnψn = Eψn, n = 1, 2, ..., N (7)

It follows from Eq. (7) that it can be written as:

|Ψ〉 =
√
p |0〉 +

√
p

N
∑

n=1

cn
E − ǫn

|n〉 (8)

where
√
p is a normalization constant. We define

g(E; c1, ...cN ) =
∑ |cn|2

E − ǫn
(9)

Substitution of the ψn of Eq. (8) into Eq. (6) leads to the secular equation
g(E) = E − u for the adiabatic eigen-energies. We focus our attention on a particular
root E(u). As u is swept from −∞ to +∞, the energy E(u) increases monotonically
from ǫn0

to ǫn0+1, where n0 is the starting level. From Eq. (8) it follows that p is the
probability to find the particle in the dot. It can be written as

p(u) = |ψ0|2 =
[

1− g′(E(u))
]−1

(10)

For the following derivation note that 1/p is a quadratic form in cn, and that the
occupation probabilities of the network levels n = 1, 2, 3... are

qn(u) = |ψn|2 =

∣

∣

∣

∣

cn
E(u)− ǫn

∣

∣

∣

∣

2

p(u) (11)
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Figure 3. The dot-wire ring geometry (left). If the Hamiltonian is written in
the n basis the problem reduces to star geometry. The couplings of the levels to
the dot are cn ∝ (Ca ± Cb) for even or odd levels respectively. Hence it is like
having two continua rather than a single continuum.

Using Eq. (3) we get after differentiation by parts that the current through cn is

G =
|cn|2

(E − ǫn)2

(

∂p

∂u

)

− 2p
|cn|2

(E − ǫn)3

(

∂E

∂u

)

=
∂

∂u

[(

1

2

∂(1/p)

∂cn
cn

)

p

]

=
∂

∂u
[qn] (12)

We further discuss and generalize this trivial result below.

3. Multiple path geometry, adiabatic limit

Let us find what is the expression for G in the case of a general network. It is natural
to switch from the Ei basis to an ǫn basis that diagonalize the network Hamiltonian
in the absence of the dot. Consequently getting a star geometry with

cn =
∑

i

〈ǫn|i〉Ci (13)

An example for this procedure is presented in Section 5 with regard to the dot-wire
ring geometry of Fig. 3. Our interest is in the current through a tagged bond Ca. We
define the “splitting ratio” of the current that flows in the nth levels as

λn[splitting] =
〈ǫn|a〉Ca

cn
=

〈ǫn|a〉Ca
∑N

i=1
〈ǫn|i〉Ci

(14)

A straightforward generalization of the derivation that leads to Eq. (12) implies that
the current through Ca is given by Eq. (5).

At this stage Eq. (5) is regarded as the outcome of adiabatic transport theory,
while in the next section we shall provide its general derivation, and observe that it
is a valid result also in non-adiabatic circumstances.

4. Transport calculation - the splitting ratio approach

Needless to say that we do not really need Eq. (3) in order to get the expression for
G in the case of a star graph. We could simply deduce Eq. (12) from conservation
of probability, i.e. from the continuity equation I = q̇n. This is no longer the case
if we have a multiple path geometry: probability conservation alone cannot tell us
how the current is split between the different paths. Inspecting Eq. (5) it looks like a
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generalization of the continuity equation as discussed in the Introduction. Its physical
simplicity suggests that it can be derived without assuming adiabaticity. We now
show that this is indeed the case.

The stating point is the assumption that we have in hand the solution of the
time-dependent Schrodinger equation, which can be written either in the i or in the
ǫn representations:

|Ψ(t)〉 = Ψ0(t) |0〉+
N
∑

i=1

Ψi(t) |i〉 (15)

= ψ0(t) |0〉+
N
∑

n=1

ψn(t) |ǫn〉 (16)

We recall our definitions of occupation probabilities:

p(t) = 〈0|Ψ(t)〉 = |Ψ0(t)|2 = dot occupation (17)

qn(t) = 〈ǫn|Ψ(t)〉 = |Ψn(t)|2 = level occupations (18)

and obviously the total occupation probability is unity:

p(t) +
∑

n

qn(t) = 1 (19)

In the ǫn basis the Hamiltonian becomes the same as in “Star geometry”. The current
operator for the 0 ❀ n bond is

I0❀n = −icn
[

|n〉〈0| − |0〉〈n|
]

(20)

Accordingly we can write the continuity equation

q̇n = 〈Ψ|I0❀n|Ψ〉 = cn Im [ψ∗
nψ0] (21)

But our interest is in the current that flows in real space through the tagged bond

I = 〈Ψ|I0❀a|Ψ〉 = Ca Im [Ψa(t)
∗Ψ0(t)] (22)

The amplitudes Ψi are related to the amplitudes ψn. In particular

Ψa(t) =
∑

n

〈a|ǫn〉 ψn(t), Ψ0(t) = ψ0(t) (23)

Substitution of Eq. (23) into Eq. (22) gives

I = Ca Im

[

∑

n

〈ǫn|a〉 ψn(t)
∗ ψ0(t)

]

(24)

Using the identification of q̇n from Eq. (21) we get the desired result Eq. (5) with
Eq. (14). This very simple, and yet very general result, has far reaching consequences
as described below.

5. The dot-wire ring geometry

In order to demonstrate the application of the splitting ratio approach we shall consider
the simplest non-trivial example, regarding the dot-wire ring geometry of Fig. 3. The
ring consists of a “dot” whose potential u(t) can be varied in time, and a “wire”
that consists of i = 1, ..., N sites with Ei = 0 and near-neighbor couplings Cij = C0.
Optionally an appropriate procedure allows to take the limit N → ∞ keeping the
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length of the wire (L ≡ (1+N)a) and the mass of the particle (m ∝ 1/(C0a
2)) fixed.

But the mathematics is more transparent with a tight binding model.
The energy levels of the wire are ǫn = −2C0 cos(kn), where the wavenumbers are

kn = (π/L)n, with L = N+1. The respective couplings to the dot are

cn =

[

(

2

L

)1/2

sin(kn)

]

(Ca ± Cb) (25)

where the ± reflects the parity of the level. It follows that the splitting ratios are

λn = λ± =
Ca

Ca ± Cb
for level with even/odd parity (26)

In a later section we consider N ≫ 1 wire, and focus on levels with wavenumber
kn ∼ k and energy ǫn ∼ E = −2C0 cos(k), that are located away from the band edges.
In order to allow analytical treatment we assume that the density of states in the
energy window of interest can be approximated as constant. Accordingly one can
regard the level spacing ∆ as a free parameter. In the same spirit it is convenient to
absorb the constant pre-factor in Eq. (25) into the definition of Ca and Cb, such that
cn = (Ca ± Cb)/

√
2.

6. The integrated current

From Eq. (5) it follows that the integrated current after a sweep process can be
calculated as follows:

Q0❀ a ≡
∫

I(t′) dt′ =
∑

n

[

qn(final)− qn(initial)
]

λn (27)

In particular for an Injection process

Q0❀ a[injection] =
∑

n

qn(final) λn (28)

For an adiabatic injection scenario, in which the particle ends up at the lower network
level we get

Q0❀ a[adiabatic injection] = λground level (29)

while in the non-adibatic case the sum can be regarded as a weighted average of the
λn. Let us consider for example the dot-wire ring system. For an adiabatic injection
scenario we get

Q0❀ a[adiabatic injection] = λ− =
Ca

Ca−Cb
(30)

Unlike the case of a stochastic transition this value is not bounded within [0, 1]. rather
it may have any value, depending on the relative sign of the amplitudes Ca and Cb.
But if the process is not adiabatic, the probability is distributed over both the odd
and the even levels with probabilities that are proportional to |Ca ± Cb|2 respectively.
Then we get from the weighted average a stochastic-like result, namely

Q0❀ a[fast injection] = average(λn) =
|Ca|2

|Ca|2 + |Cb|2
(31)

For an adiabatic induction scenario, the particle is prepared (say) in an even
wire-level, and is adiabatically transferred, due to the sweep, into the adjacent odd
wire-level. Then we get

Q0❀ a[adiabatic induction] = λ− − λ+ =
2CaCb

|Ca|2 − |Cb|2
(32)
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It looks as if the result does not depend on C0. However this is misleading. In the next
section we shall give a detailed account with regard to the time dependence of I, and
we shall see that the induction process is significantly different depending on whether
C0 is small or large.

7. The parametric variation of the current

The results for the integrated current give the impression that the size of the coupling
cn compared with the levels spacing ∆ is of no importance. But this is a wrong
impression. Once we get deeper into the analysis it becomes clear that the familiar
two level approximation for the adiabatic current I, requires the coupling cn to be
very small compared with the level spacing ∆. Our interest below is focused in the
case of having a quasi-continuum, meaning that the cn are larger than ∆, hence many
levels are mixed during the sweep process.

Before discussing the quasi-continuum case it is useful to note that the 3 site
(N = 2) ring system has been solved exactly in [23]. It has been found that if the cn
are not smaller compared with ∆, the dot-induced mixing of the levels modifies the
functional form of G(u) in a non-trivial way.

We now turn to discuss what happens with N ≫ 1 dot-wire system. In Fig. 4
we show how the occupations of the levels change as u is swept during an adiabatic
induction process. Initially only level n0 = 250 is occupied, while at the end of the
sweep the probability is fully transferred to n = 251. The figure assumes cn ≫ ∆,
and therefore during the process many other levels are occupied. This is what we call
quasi-continuum case. In the other extreme of having cn ≪ ∆, only 3 levels participate
in the scenario: the dot level and the network levels n = 250, 251. In the latter case
there are two distinct crossings, each can be described as a two-level crossing, with
current dependence that is shown in the upper panel of Fig. 5. In contrast to that,
in the quasi continuum case, individual crossings with the network levels cannot be
resolved. Rather we see in the lower panel of Fig. 5 that there is a single wide collective
peak in the current that extends over an energy range that contains many network
levels. It is the purpose of the next section to get an analytical understanding of this
multi-level mixing, and to obtain an explicit result for the current dependence.

8. Adiabatic mixing in quasi continuum

We turn to the detailed analysis of adiabatic mixing in the dot-wire system. The first
step is to get an expression for g(E) of Eq. (9). With cn = c± the sum over the levels
splits into two partial sums, over the odd and over the even levels. Consequently after
summation we get two terms:

g(E) =
( π

2∆

)

[

c2− cot

(

π
E

2∆

)

− c2+ tan

(

π
E

2∆

)]

(33)

The secular equation g(E) = E − u becomes a quadratic equation for cot(), and can
be solved explicitly:

cot

(

π
E

2∆

)

=
∆

πc2−

[

(E−u)±
√

(E−u)2 +
(πc+c−

∆

)2

]

(34)

where the ± refers to the parity that is alternating for subsequent levels. Then it is
straightforward to get an explicit expression for the dot occupation probability p(u)
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Figure 4. We consider an adiabatic sweep of an empty dot level through
a wire that is occupied by a single particle. The particle is initially placed at
n0 = 250 (an arbitrary level). The variation of the occupation probabilities is
plotted as a function of u. The level spacing is ∆ = 1, and the couplings are
Ca = 6 and Cb = 4. Accordingly the couplings to the even and to the odd levels
are c± = (Ca ±Cb)/

√
2. The red thick line is the dot occupation p, with vertical

scale that is magnified ×400. The other solid lines are q250, and q251. The dashed
lines from up to down are q249 and q253 and q247 and q252.

−1 0 1 2
−0.06

−0.04

−0.02

0

0.02

0.04

(u−ε250)/∆

G

 

 

Ca=6,Cb=4 
Ca=2,Cb=4
Ca=4,Cb=8

−500 −250 0 250 500
−0.02

−0.01

0

0.01

0.02

(u−ε250)/∆

G

Figure 5. Flow of the current from the dot to the wire through the Ca bond, for
the same scenario as in Fig. 4. The parameters are indicted in the legend. The
raw calculation is done using Eq. (40) with Eq. (10). In the upper panel ∆ = 200,
hence a two-level approximation for each crossing is satisfactory. In the lower
panel ∆ = 1, hence the explicit result Eq. (43) can be optionally used in order to
describe the multi-level crossing.
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via Eq. (10), and for the level occupations qn(u) via Eq. (11). The expressions are
quite lengthy but can be simplified in the regime of interest as described below.

Of interest is the case of a quasi-continuum, meaning that the couplings cn are
larger compared with ∆, hence a two level approximation is out of the question,
while a Wigner-type approximation is most appropriate. For this purpose we find
it useful to define parameters that describe the effective coupling of the dot to the
quasi-continuum, and its asymmetry:

Ceff ≡ π

2

c+c−
∆

(35)

Γ ≡ π
c2+ + c2−

∆
(36)

sin(θ) ≡ c2+ − c2−
c2+ + c2−

(37)

Here and below we assume without loss of generality that the particle starts in an
even-parity level. Using these notations we get after some algebra an approximation
that should be valid in the quasi-continuum case:

p(u) ≈ ∆ · L [u− E; Γ, θ] (38)

The distorted Lorentzian L [x; Γ; θ] is

1

π

[

1 +
sin θ x

√

x2 + cos2 θ (Γ/2)2

]−1

cos2 θ (Γ/2)

x2 + cos2 θ (Γ/2)2
(39)

In the expression above E is the energy in which the particle has been prepared. In
the regime of interest, where the levels are treated as quasi-continuum, this energy
can be regarded as a constant. Some further straightforward algebra leads to

G(u) = Ca
∂

∂u

[

p
∑

n

c∗n〈n|a〉
(E − ǫn)2

]

(40)

= Ca
∂

∂u







c
−

sin2(π E

2∆ )
+ c+

cos2(π E

2∆ )
(

2∆

π

)2
+

c2
−

sin2(π E

2∆)
+

c2
+

cos2(π E

2∆ )






(41)

≈ ∂

∂u
Ca

[

c+ + c− cot2
(

π E
2∆

)

c2+ + c2− cot2
(

π E
2∆

)

]

(42)

= (λ− − λ+)
2C2

eff

(4C2
eff

+ (u− E)2)
3/2

(43)

Disregarding the splitting-ratio factor, this expression has surprisingly the same
functional form as that of crossing a single level (N = 1), see e.g. [23], but with
an effective coupling constant Ceff that reflects the density of states.

The functions p(u) and G(u) are plotted in Fig. 4 and in Fig. 5. In the latter we
contrast with the cn ≪ ∆ case, for which the dynamics can be regarded as a sequence
of two N = 1 crossings.

9. Adiabatic and non-adiabatic regimes

The results for the integrated current give another wrong impression: it looks as if
we are dealing with two regimes: either the process is adiabatic or non-adiabatic. A
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more careful inspection reveals that depending on u̇ we have 3 regimes: Adiabatic,
Slow and Fast. For star geometry with comb-like quasi continuum of levels, the Slow
regime is defined by the condition

c2 < u̇ < Γ2, Γ ≡ 2π
c2

∆
(44)

For simplicity we assume here comb-like quasi continuum with identical couplings
cn = c. The left inequality in Eq. (44) means that the adiabatic condition is violated,
while the right inequality implies that a first-order perturbative approximation is
violated as well. The identification of this intermediate Slow regime parallels the
notion of Wigner or FGR or Kubo regime in past studies of time-dependent dynamics
[19].

Some illustrations for energy spreading are presented in Fig. 2. If c < ∆ the
transport of probability from the dot to the network levels would be described using
a two-level approximation. But the illustration in the upper panel assumes c > ∆,
hence many levels are mixed within a parametric range Γ. The time during which
this mixing takes place is Γ/u̇. In the opposite limit of Fast sweep, which we further
discuss below, the decay time of the probability to the quasi-continuum is 1/Γ.

10. Non adiabatic spreading

The calculation of I in the non-adiabatic regime requires knowledge of qn(t). For star
geometry this calculation is a variant of the Wigner decay problem, and hence can be
solved analytically: instead of a fixed level that decays into a quasi-continuum we have
a moving level. The usual textbook procedure is followed [31] leading to the following
set of equations

∂tΨ0 =
[

− iu(t)− (Γ/2)
]

Ψ0 (45)

∂tΨn = − iǫnΨn − icnΨ0 (46)

With u(t) = u̇t one obtains the solution

qn(t) =

∣

∣

∣

∣

cn

∫ t

0

dτ exp

(

iǫnτ − i
u̇

2
τ2 − Γ

2
τ

)∣

∣

∣

∣

2

(47)

By inspection one observes that going from the Slow to the Fast regime, the spreading
line shape changes from Lorentzian-type to Fresnel-type, as illustrated in the lower
panel of Fig. 2.

11. Summary

Molecular motors and pumps are of great interest in various fields of Physics and
Biology. Conceptually the major theme concerns the possibility to induce a circulating
motion, or a circulating current, by some driving protocol. We use the term stirring

rather than pumping in order to emphasize that closed geometry is concerned (no
reservoirs). Considering (e.g.) the unidirectional rotation of a molecular rotor [27], it
is possibly allowed to be satisfied with a stochastic picture [26] that relates the currents,
via a “decomposition formula”, to rates of change of occupation probabilities. Once
we turn (e.g.) to the analysis of pericyclic reactions [30] this is no longer possible. In
the latter case the method of calculating electronic quantum fluxes had assumed that
they can be deduced from the continuity equation. Such procedure is obviously not
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applicable for (say) a ring-shaped molecule: due to the multiple path geometry there
is no obvious relation between currents and time variation of probabilities.

Nevertheless, we have found using elementary considerations, that it is possible
to replace the traditional adiabatic transport formula Eq. (3) by a simple expression
Eq. (5), that holds both in adiabatic and non-adiabatic circumstances. It can be
regarded as a generalized multi-path generalization of the continuity equation. Hence
the problem of calculating currents is reduced to that of calculating time-dependent
probabilities qn(t) as in the above mentioned stochastic formulation.

Our result Eq. (5) is quite general. We have demonstrated its use in the very
simple case of “ring geometry”, but it can be applied to any network configuration,
and for any u(t) time dependence. In particular one can use it in order to analyze
a multi-cycle stirring process. Furthermore, the application of Eq. (5) to a many-
body system of non-interacting particles follows trivially, with qn(t) that represent
the actual occupations of the levels.

It is important to realize that the “splitting ratio” Eq. (14) unlike the stochastic
“partitioning ratio” is not bounded within [0, 1]. This observation has implications on
the calculation of “counting statistics” and “shot noise” [32, 33, 34].

We have emphasized aspects that go beyond the familiar two-level approximation
phenomenology, related to the scrambling of the network levels during the sweep
process. The dot-induced mixing is reflected in the time dependence of the currents,
but not in Q.
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