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We consider the prototypical “piston pump” operating on a ring, where a circulating current is
induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model,
incorporating a finite-height moving wall (piston) and non trivial topology (ring). The amount of
particles transported per cycle is determined by a layered structure of phase-space. Each layer is
characterized by a different drift velocity. We discuss the differences compared with the adiabatic
and Boltzmann pictures, and highlight the significance of the ”diabatic” contribution that might
lead to a counter-stirring effect.

Stirring is the operation of inducing a DC circulat-
ing current by means of AC driving. This is naturally
achieved by integrating a pump [2–4] in a closed circuit
[5, 6]. It can also be regarded as a variation of a Hamilto-
nian ratchet [7, 8] where transport is induced in a periodic
array. Pumping and stirring have largely been considered
in the regime of slow (adiabatic) driving, where it can be
related to the Berry phase that is associated with the
driving cycle. This adiabatic approach is based on a sim-
ple picture of probability flow. Challenging this oversim-
plified view, we argue that the analysis should go beyond
the adiabatic picture, even for very slow driving. We here
present a detailed account of deterministic stirring that
naturally extends into the non-adiabatic regime, com-
plementary to related studies of non-adiabatic stochastic
stirring [9] and Brownian ratchets [10]. We shall show
that for a prototype system, the oscillating-piston model,
even if the driving is very slow, the dynamics is actually
complex, due to a non-trivial structure of phase-space,
leading to drastic consequences for the transport.

Outline.– After introducing the model, we describe
the expectations that are based on a stochastic Boltz-
mann picture, and on a deterministic adiabatic picture.
These suggest two different parametric results for the
amount Q of pumped particles. Then we present a proper
analysis of the mixed phase-space dynamics, and high-
light the limitations of the traditional reasoning.

The model.– We consider the prototype system illus-
trated in Fig.1: A particle with mass m moves in a ring of

particle
piston

Ring

Xp
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FIG. 1: (Color on-line) An oscillating piston pump is inte-
grated into a ring. The pumping cycle is illustrated on the
right. The scattering within the ring is modeled as a poten-
tial barrier. We are considering a closed geometry that can
be regarded a generalization of the Fermi-Ulam model. If we
considered an open geometry, the pumping device would be
connected between two unbiased reservoirs (not presented).

length L. There is a fixed barrier Vb at x=0 and a mov-
ing wall (piston) of height Vp at x=Xp. In the oscillating
piston paradigm [4, 11], the two control parameters of
the piston are cycled periodically through a closed loop
in parameter space. The pumping cycle (Xp(ϕ), Vp(ϕ)),
with ϕ = Ωt, consists of translating the piston some dis-
tance to the right, shrinking its “height”, pulling it back
to the left, and restoring its original “height”. In the
sequel, we shall assume a harmonic driving with phase
shift π/2 between the two parameters,

Xp(ϕ) = X0 − δXp cos(ϕ), (1)

Vp(ϕ) = Vp + δVp sin(ϕ). (2)

It is convenient to define u = v/(δXpΩ) as the dimen-

sionless velocity. Accordingly, the piston velocity Ẋp is
expressed as ux(ϕ) = sin(ϕ). The transmissions of the
barrier and the piston are given by boolean expressions
(true=1, false=0):

gb(u) =
[
|u| > ub

]
, (3)

gp(u, ϕ) =
[
|u−ux(ϕ)| > up(ϕ)

]
, (4)

where ub,p = [2Vb,p/m]1/2/(δXpΩ). In addition to
the three dimensionless parameters (ub, up, δup) that de-
scribe the barrier and the piston, we specify the ge-
ometry of the system defining 2π`+ ≡ X0/δXp and
2π`− ≡ (L−X0)/δXp. A Poincaré section of the dynam-
ics is obtained by taking snapshots of (ϕ, u) after each
collision with the fixed barrier:

ϕ′n = ϕn +
2π`n
|un|

, (5)

u′n = −un + 2ux(ϕ′n), if gp(un, ϕ
′
n)=0, (6)

ϕn+1 = ϕ′n +
2π`′n
|u′n|

, (7)

un+1 = −u′n, if gb(u
′
n)=0. (8)

Above `n (`′n) is the scaled travel distance from the bar-
rier to the piston (from the piston to the barrier). In the
“static-wall approximation” it is `+ or `− depending on
the sign of un, while in the simulations the exact value
can be numerically determined.
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Objective.– The map above generalizes the Fermi-
Ulam model (FUM) [12]: here we have finite heights of
piston and barrier, and periodic boundary conditions.
Furthermore, while the FUM has been conceived to study
energy absorption due to deterministic diffusion in mo-
mentum, here our interest is in the directed transport
along the spatial coordinate. The amount of particles
that are pumped per cycle is:

Q =

∮
Idt = ρN

[∮
v(ϕ)

dϕ

2π

]
2π

Ω
, (9)

where the current I ≡ ρNv(ϕ) at a given moment of time
is expressed by the spatial density of the particles ρN ,
and the drift velocity v(ϕ). Assuming that a first-order
description of adiabatic transport applies, if the piston is
displaced with velocity Ẋp, one expects a well defined in-

duced current I = RρN Ẋp, where R is an Ω-independent
dimensionless coefficient that primarily depends on Vp.
One expects R → 1 for Vp →∞ and 0 < R < 1 for fi-
nite Vp. In such a case the amount of particles that are
pumped per cycle becomes a parametric integral:

v(ϕ) = R(ϕ) Ẋp ; Q = ρN

∮
R(ϕ)dXp. (10)

Below we try to formulate an adequate picture of the dy-
namics that interpolates between the opposite extremes
of exclusively chaotic and purely regular motion. In par-
ticular: (i) we clarify what is the drift velocity for a gen-
eral non-equilibrium steady state; (ii) we discuss whether
a first-order description of adiabatic transport applies.
We first review the common expectations.

The stochastic Boltzmann picture.– The piston
stirring problem has been analyzed in the past [11] using
a stochastic approach with transmissions 0 < gb, gp < 1.
Motivated by the prevailing literature that focuses on
electronic systems one assumes a Fermi-like energy dis-
tribution, such that the initial occupation is

f(x, p) =
1

2π~
, for |p| < mvF (11)

ρN =
mvF

π~
, [density of particles] (12)

where mvF is the Fermi momentum. In a classical con-
text, ~ can be regarded as a parameter that determines
the occupation density. Of interest is f(p) = f(0, p),
the momentum distribution at a section x = 0 through
which the current is measured. Its integral over dp gives
the density of particles ρN . If |Ẋp| � vF, the momentum
exchange due to collisions with the piston affects only a
narrow shell of width ∼ 2mẊp around the Fermi energy
EF. Accordingly one writes

I =

∫ ∞
0

dp[f(p)− f(−p)]v(p) = ρN RẊp. (13)

From here Eq.(10) is implied, while R is related to the
reflectivity of the piston as follows [11]:

R(ϕ) =
(1− gp) gb

gp + gb − 2gpgb
. (14)

In the absence of a barrier (gb = 1) the result is R = 1.
If the ring is like a reservoir (gb = 1/2) one observes that
R = 1−gp is the reflectivity of the piston. The latter
result is very well known [4], conventionally derived using
the scattering formalism [2, 3].
Deterministic adiabatic picture.– In our model

the transmission coefficients of the barrier are given by
Eqs.(3-4). In Eq. (14) we have to substitute the val-
ues at the Fermi energy EF = (1/2)mv2F, which gives
R(ϕ) = {0 or 1} depending on whether the piston is “be-
low” or “above” the Fermi energy. In the latter case, from
Eq.(10) with Eq.(12), we get dQ = [mvF/π~]dXp, which
coincides with [4]. If the Fermi energy is “above” the
piston during the whole cycle, meaning that Vp(ϕ) < EF

for any ϕ, we find Q = 0. However, in the latter case,
there is a naive (wrong) picture that suggests a finite re-
sult: Assuming that Q is determined by the fraction of
particles that are affected by the motion of the piston,
the effective Fermi energy is Vp(ϕ), and hence

Q =
1

π~

∮ √
2mVp(ϕ) dXp. (15)

This “area” that is enclosed by the cycle resembles the
action integral that is encountered in the canonical adi-
abatic picture [a]. It has the form of Eq. (10) with a
modified ‘reflection’ coefficientR(ϕ) = [Vp(ϕ)/EF]1/2. In
spite of the wrong reasoning, Eq.(15) is interesting be-
cause it can be justified as an approximation to what we
call later “adiabatic contribution”.
Non-adiabatic deterministic dynamics.– The

Poincaré section for the generalized FUM Eqs.(5-8) is
illustrated in Fig.2 (see [a] for additional plots). We in-
dicate there (by dashed red lines) the threshold velocity
for piston reflection

u±p (ϕ) = ux(ϕ)± up(ϕ) (16)

which is implied by Eq.(4). We define v(±) as the ve-
locities that correspond to max[u+p ] and min[u−p ], respec-

tively, and denote by E(±) the associated kinetic ener-
gies. For simplicity of presentation we assume that Vb is
smaller than E(−), which is always smaller than E(+).
Accordingly, the ballistic motion of clockwise moving
particle is not affected if E > E(−), while for anticlock-
wise moving particles the condition is E > E(+).

The non-integrable region in phase-space occupies the
rectangular strip [v(−), v(+)]. One expects adiabatic dy-
namics if the slowness condition |u| � ` is satisfied there.
Looking at Fig.2cd one observes that this region consists
of layers. In each layer the motion is chaotic, with the
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possible exception of regular motion in some small is-
lands. The lower layers, labeled collectively as r = 0, are
non-transporting: either the particle is bounded in the
`+ or in the `− segment, or else it occupies the whole
ring without being ever able to cross one of the barri-
ers. The motion in the subsequent transporting layers,
labeled r = 1, 2, ...rc, is characterized by a non-zero drift
velocity 〈v〉r = ūrΩδXp.

Stirring.– Define E(0) as the minimal energy required
for transporting motion. Consider a zero temperature
Fermi occupation as the preparation. If either EF is be-
low E(0) or above E(+) the induced current would be
zero. In the latter case the non-regular transporting mo-
tion is merely a “musical chair” dynamics that takes place
deep in the Fermi sea. The current would be non-zero if
E(0) < EF < E(+), meaning that only a fraction of the
transporting region is occupied. The amount of particles
that are pumped during a period is Q = (2π/Ω)ρN 〈v〉,
where the cycle-averaged drift velocity is

〈v〉 =

rc∑
r=1

fr〈v〉r =

[
rc∑
r=1

frūr

]
ΩδXp (17)

The normalized occupations satisfy
∑
fr = 1, with

r = 0, 1, 2, ..., rc. For a saturated occupation the fr are

(a) (b)

(c) (d)

FIG. 2: The (ϕ, u) Poincaré section for a particle in a ring,
with l±=15, considering several cases: (a) ring with up=∞
and ub=44; (b) here ub=0, and up=26, and δup=2.04; (c) here
ub=0, and up = 380 and δup=2.55; (d) the same but with
ub=378. The color code of the trajectories: gray - non
transporting; yellow to green - low current; blue to purple -
large positive current; orange to red - large negative current.
The dashed red lines indicate the piston scattering thresh-
old u±(ϕ), while the dashed blue line gives that of the bar-
rier ub. The dot-dashed black lines are calculated adiabatic
trajectories. Above the barrier the variation in |u|, due to
the bounces with the piston, is sin(ϕ), with alternating sign
in each bounce. Below the barrier u keeps its sign, and the
adiabatic variation is [〈|u|〉/(2πl+)] cos(ϕ). See [a].

proportional to the phase-space area of the filled layers.
In the latter case 〈v〉 is merely the average velocity within
the occupied region. If the whole transporting region is
saturated, one obtains 〈v〉 =

(
|v(+)| − |v(−)|

)
/2 = Ẋp.

At this stage we have to clarify how the drift veloci-
ties 〈v〉r are determined by the dynamics. The winding
number of a trajectory that is generated by Eqs.(5-8) is∑

n gb(un)sign(un), and hence ūr is proportional to the
temporal average over gb(u)sign(u). Assuming ergodic-
ity, and taking into account that the phase-space invari-
ant measure is ∝ ududϕ, we deduce (see [a])

〈v〉r =

s
gb(v) v dvdϕs

dvdϕ
≡
∫
v(ϕ)

dϕ

2π
(18)

where the phase-space integration extends over the rth
layer, and v(ϕ) is defined as the drift velocity. Results
for the drift velocity are presented in Fig.3a.

Contrasting with adiabaticity.– The observed re-
sults imply that even for very slow driving the analysis
should go beyond the adiabatic picture. If a first-order
adiabatic transport picture were applicable: (1) the
drift velocity of the particle would adjust itself to the
motion of the piston, and it would be possible to write
Eq.(10) with an Ω-independent R; (2) one would not be
able to obtain a non-zero drift velocity in the absence of
a barrier, because it requires a variation in R(ϕ) during
the cycle.

In practice we observe that 〈v〉r has no simple linear
relation to Ẋp. Furthermore, it is non-zero even in the
absence of a barrier, due to the breakdown of the adia-
batic approximation. The deterministic adiabatic result

(a) (b)
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FIG. 3: (a) The drift velocity u(ϕ) for trajectories in 4 rep-
resentative layers (blue, cyan, orange, green) of Fig.2d. The
motion consists of “free” and “adiabatic” stages. If the strict
adiabatic picture were applicable it would be described by an
expression R(ϕ)Ẋp(ϕ), with 0 < R(ϕ) < 1, as illustrated by

the dotted curve. The dashed curve is Ẋ(ϕ). The dashed hor-

izontal lines correspond to v(±). Note that the [−2,+2] range
of the vertical axis is zoomed. (b) The drift velocity 〈u〉 as
function of 〈|u|〉, for the various layers that appear in Fig.2d
(diamonds). One should exclude the framed data which rep-
resent additional layers that appear in Fig.2c (circles). The
dashed black line assumes u > 0 motion during the ballistic
stage [a], while the vertical dotted lines correspond to values
of u that accommodate an even number of bounces.
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Eq.(15) would be obtained if we had a saturated occupa-
tion of the region bounded by u±p (ϕ). It can be regarded
as a rough approximation to the total adiabatic contri-
bution that we discuss below.

Looking in Fig.2c we observe that in the absence of
a barrier the motion in the transporting layers is not
strictly adiabatic. Rather it contains a “diabatic tran-
sition” from adiabatic to free motion when gp switches
from 0 to 1. For u > 0 this transition takes place at
the intersection of the stochastic layer with u+(ϕ). The
relative filling of the u < 0 branch is determined by the
number of bounces that are accommodated in the adia-
batic stage. It follows that the dependence of the drift
velocity on 〈|u|〉 is modulated as seen in Fig.3b.

From the above phase-space picture, it follows that
the value of 〈v〉r is a sum of adiabatic-like and free-like
contributions. The adiabatic-like contribution is propor-
tional to the integral over Ẋp during the gp = 0 stage.
The free-like contribution is due to the average velocity
in the gp = 1 stage, during which the particle circulates
the ring without being back-scattered. The result of the
free-like contribution depends on the branching that has
been explained above, and accordingly, due to the al-
ternating branching ratio, we observe an alternating net
result for 〈v〉r as we go from layer to layer (Fig.3).

With a barrier the motion is somewhat more chaotic,
and the local drift velocity adjusts better to Ẋ, as seen
in Fig. 3a. A strict adiabatic approximation would be
applicable if the momentary motion (for a frozen piston
position) were chaotic, with some finite correlation time
τcl. Then the adiabatic condition would be Ωτcl � 1.
This would require to consider a 2D ring, say a Sinai
billiard. Within this approximation we could defineR(ϕ)
such that Eq. (10) would lead to an Ω free parametric
integral for Q.
Contrasting with Boltzmann.– There are two con-

spicuous differences between our results and the expec-
tations on the basis of the Boltzmann picture. (a) In
the Boltzmann picture, with “high” piston, in the ab-
sence of a barrier, we expect parametric transport with
R = 1, hence obtaining Q = 0 upon integration, im-
plying zero drift velocity. (b) Including a barrier, the
Boltzmann picture suggests a non-zero net transport in
the same direction that is implied by the pumping oper-
ation, with 0 < R(ϕ) < 1. This means ūr > 0 for all the
layers. Both (a) and (b) are in contradiction to what we
observe. In particular we point out that the negative ūr
characterizing some of the layers is due to the possibil-
ity of having a free-like contribution with branching ratio
that favors u < 0 motion.

One should appreciate the essential difference between
the Boltzmann and adiabatic pictures: Both would agree
qualitatively if during the time of gp = 1 the drift veloc-
ity were zero. Instead it remains constant. One realizes
that there is an “order of limits” issue: the Boltzmann
picture assumes that there is always some infinitesimal

reflection that allows in the adiabatic limit a randomiza-
tion of the velocity. In contrast to that in the adiabatic
picture the reflection during the gp = 1 stage is strictly
zero and hence 〈v〉 remains constant.
Summary and discussion.– A phase-space based

approach for the analysis of stirring in a deterministic
driven system has been presented. Our oscillating-piston
model exhibits a layered mixed phase-space structure.
The determination of the drift velocity requires to go be-
yond a simple parametric theory: in general neither an
adiabatic nor a Boltzmann picture applies. The drift ve-
locity in some layers can even have a sign opposite to the
current direction that would be expected for a strictly
adiabatic pumping (“counter stirring”). These chaotic
layers appear already for slow driving, whereas a homoge-
neously chaotic phase-space, compatible with a stochas-
tic picture of stirring, requires the opposite limit. It is
important to realize that no simple relation can be estab-
lished between a stirring problem and its corresponding
pumping problem (that is, the same driven potential in
an open configuration). Different paradigms are involved.

A few words are in order regarding the quantum case
[11]: In the quantum adiabatic limit R can be calcu-
lated using the Kubo formalism. It has a wide distribu-
tion, which is the “geometric conductance” analogue of
universal conductance fluctuations (UCF). One can even
observe a counter-stirring effect (R < 0) which would be
impossible in the strict classical adiabatic picture. The
manifestation of dynamical localization requires signif-
icantly longer time scale of coherence, as explained in
Ref.[8] with regard to Hamiltonian ratchets.
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Supplementary material

THE DETERMINISTIC ADIABATIC PICTURE

Canonical adiabatic theory [A] ensures the invariance
of the actions for a sufficiently slow perturbation of an
otherwise integrable system. It is analogous to the con-
servation of the energy-level-index in its quantum ver-
sion [B]. It holds as long as the trajectory does not
change its topology. If a trajectory does change its topol-
ogy, we call this occurrence a diabatic transition.

In the oscillating-piston model, each time that the mo-
tion switches between free ballistic motion, extended adi-
abatic motion, and bounded adiabatic motion, it is a dia-
batic transition. The two types of adiabatic motions are
described in the next section.

The small parameter of the adiabatic theory is Ẋ. In
the absence of magnetic field the zero-order adiabatic
states carry no current. This is true both classically and
quantum mechanically: note that in the latter case the
parametric eigen-function |X〉 is real. It follows that adi-
abatic transport requires to go beyond zero-order. Linear
response theory is based on a first-order treatment, lead-
ing to the Kubo formula for the transport coefficient. In
open geometry the scattering formalism leads to the same
result.

Using a quantum language, but referring on equal foot-
ing to the classical picture, the evolving zero-order adi-
abatic state |X(t)〉 does not satisfy the continuity equa-
tion: at any moment 〈I〉 = 0. Still we can deduce from
the zero-order parametric solution a non-zero result for
the current. This is done by associating a parametric ve-
locity to each “piece” of the evolving probability distribu-
tion. This leads to Eq.(15). We note that such procedure
has been used in [C]. We also note that such procedure
becomes ambiguous in the case of multiple path geome-
try: to associate a “displacement velocity” to each piece
in phase space is not always well defined.

THE ADIABATIC MOTION

In this subsection we clarify what are the equations
that describe adiabatic trajectories for the pertinent two
types of motion of the Fermi-Ulam “box model” and its
“ring model” variation.

Bounded adiabatic motion.– If a particle is moving
back and forth in a Box of length L, between an infinite

barrier and an oscillating piston, then

v(t) = const−
∑
n

2Ẋ(tn) (19)

= const−
∫

2Ẋ
dt

2L/vE
(20)

= const− vE
L
X(t) (21)

where the sum is over the collisions, and the absolute
value of the velocity vE = (2E/m)1/2 is assumed to be
approximately constant. This implies that the equation
of the adiabatic curve in the Poincaré section for this
type of motion is

u(ϕ) = const +
uE
2π`

cos(ϕ) (22)

Note that in our ring setting ` is `+ or `− depending
whether it is u > 0 or u < 0 trajectory.

Extended adiabatic motion.– There is a similar
derivation for a particle on a clean ring of length L. There
is no barrier. The particle changes direction each time
that it collides with the moving piston. Consequently
v(t) changes sign each period, and it is convenient to
sum the increments pairwise. This leads, after an even
number of collisions, to the obvious result

v(t) = const + Ẋ(t) (23)

This implies that the equation of the adiabatic curve in
the Poincaré section for this type of motion is

u(ϕ) = const + sin(ϕ) (24)

THE DRIFT VELOCITY

The winding number of a trajectory that is generated
by Eqs.(5-8) is

WindingNumber =
∑
n

gb(vn)sign(vn) (25)

The total time of the motion is

TotalTime =
∑
n

L

|vn|
(26)

The drift velocity is

v̄ =
WindingNumber

TotalTime
L (27)

=

∑
n gb(vn)sign(vn)∑

n |vn|−1
(28)

= gb(vn)sign(vn)
/
|vn|−1 (29)

Using ergodicity the time average can be replaced by
phase-space average. We just have to remember that
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ϕ is like time, which is canonically conjugate to the en-
ergy. Hence the integration measure in phase-space is
∝ vdvdϕ. Consequently we get the obvious result

v̄ =

s
gb(v) v dvdϕs

dvdϕ
≡
∫
v(ϕ)

dϕ

2π
(30)

where the phase-space integration extends over the layer
that is filled by the trajectory, and v(ϕ) is defined as the
parametric drift velocity.

ESTIMATE FOR THE DRIFT VELOCITY

The dimensionless amplitude of the piston velocity is
unity. Accordingly the condition for the emergence of
multiple transporting layers is δup > 2. Typically the
result for 〈u〉r is dominated by the ballistic stage of the
motion. This contribution can be estimated quite easily,
and illuminates the numerical results in Fig.3b.

Neglecting small uncertainty of order Ẋ/v, the ballistic
motion takes place in the ∆ϕ interval where |u| > up(ϕ).
Hence this interval is determined by the roots of the equa-
tion up + δup sin(ϕ) = |u|. Assuming that the ballistic
motion takes place in the u > 0 region of phase-space,
without branching to the u < 0 region, we get the upper
bound estimate

〈u〉r = 〈|u|〉
(

∆ϕ

2π

)
(31)

An improved estimate should take the branching into ac-
count. This branching depends on the number of bounces
that are accommodated in the adiabatic stage. i.e. dur-
ing the interval ∆ϕc = 2π −∆ϕ. The variation of ϕ be-
tween successive bounces is

∆ϕ0 =
2π`

〈|u|〉
(32)

Hence the number of accommodated bounces is

mbounces =
∆ϕc

∆ϕ0
(33)

We expect the branching to become negligible each time
that m crosses an even integer number. This in confirmed
by the numerical results of Fig.3b.
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ADDITIONAL FIGURE
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Fig.4: In this figure we present additional Poincaré sections (top) for the generalized FUM map, Eqs.(5-8). The parameters are such that

the non-adiabatic behavior is more conspicuous. There is no barrier. The parameters are l± = 15, while, from left to right, up = 27, 29, 30

and δup = 2.24, 2.48, 2.82, respectively. See specification of color code and lines in the captions of Fig.2 Plots of the corresponding drift

velocity 〈u〉 as a function of 〈|u|〉 appear in bottom panels. For details see caption of Fig.3.
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