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Abstract

Current can be pumped through a closed system by changing parameters (or fields) in time. Linear response theory

(the Kubo formula) allows one to analyze both the charge transport and the associated dissipation effect. We make a

distinction between adiabatic and non-adiabatic regimes, and explain the subtle limit of an infinite system. As an

example we discuss the following question: What is the amount of charge which is pushed by a moving scatterer? In the

low-frequency (DC) limit we can write dQ ¼ �G dX , where dX is the displacement of the scatterer. Thus the issue is to

calculate the generalized conductance G.
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1. Introduction

The analogy between electric current and the
flow of water is in fact older than the discovery of
electrons. There are essentially two ways to move
‘‘water’’ (charge) between two ‘‘pools’’ (reser-
voirs): One possibility is to exploit the potential
difference between the two reservoirs so as to
make the ‘‘water’’ flow through a ‘‘pipe’’ (wire).
The other possibility is to operate a device (pump)
at some location along the pipe (the ‘‘scattering
e front matter r 2005 Elsevier B.V. All rights reserve
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region’’). This possibility of moving charge with-
out creating a potential difference is called
pumping. This description assumes ‘‘open’’ geo-
metry as in Fig. 1c. But what about a ‘‘closed’’
system as in Fig. 1b? If we operate the same pump,
do we get the same circulating current as in the
‘‘open’’ geometry?
The analysis of ‘‘quantum pumping’’ in closed

systems should take into account several issues
that go beyond the water analogy: (i) Kirchhoff
law is not satisfied in the mesoscopic reality
because charge can accumulate. (ii) There
are quantized energy levels; consequently one
has to distinguish between adiabatic and non-
adiabatic dynamics. (iii) Interference is important,
d.
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Fig. 1. (a) Upper left: A chaotic ring that has the shape of a

Sinai billiard, with Aharonov–Bohm flux. (b) Upper right: The

dot-wire geometry with the same topology as in the case of the

Sinai billiard. (c) Lower: The wire is cut into two leads that are

attached to reservoirs. The latter is what we call ‘‘open

geometry’’.
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Fig. 2. Detailed illustration of the dot-wire system. The dot

potential is controlled by gate voltages X 1 and X 2. The flux

through the loop is X 3 ¼ F. The scattering region (ro0) is
represented by an S matrix. Later we assume that the length (L)

of the wire is very large.
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implying that the result of the calculation is of
statistical nature (universal conductance fluctua-
tions). On top we may have to take into account
the effect of having an external environment
(decoherence).
Quantum pumping is a special issue in the study

of ‘‘driven systems’’. We are going to emphasize
the significance of ‘‘quantum chaos’’ in the
analysis. This in fact provides the foundations
for linear response theory (LRT) [1–6]. We shall
explain how to apply the Kubo formalism in order
to analyze the dynamics in the low-frequency (DC)
regime. Within the Kubo formalism the problem
boils down to the calculation of the generalized
(DC) conductance matrix.
To avoid misunderstanding we emphasize that

the dynamics in the low-frequency (DC) regime is
in general non-adiabatic: The DC conductance has
both a dissipative and a non-dissipative parts. In
the adiabatic limit (extremely small rate of driving)
the dissipative part vanishes, while the non-
dissipative part reduces to ‘‘adiabatic transport’’
(also called ‘‘geometric magnetism’’) [7–10]. The
‘‘adiabatic regime’’, where the dissipative effect
can be ignored, is in fact a tiny sub-domain of the
relatively vast ‘‘DC regime’’.
The dot-wire geometry of Fig. 1b is of particular
interest. We are going to discuss the special limit of
taking the length of the wire (L) to be infinite. In
this limit the adiabatic regime vanishes, but still we
are left with a vast ‘‘DC regime’’ where the
pumping is described by a ‘‘DC conductance’’. In
this limit we get results [11] that are in agreement
with the well-known analysis of quantum pumping
[12,13] in an open geometry (Fig. 1c).
2. Driven systems

Consider a Fermi sea of non-interacting ‘‘spin-
less’’ electrons. The electrons are bounded by some
potential. To be specific we assume a ring topology
as in Fig. 1a. Of particular interest is the dot-wire
geometry of Fig. 1b, or its more elaborated version
Fig. 2. It has the same topology but we can
distinguish between a ‘‘wire region’’ and a ‘‘dot
region’’ (or ‘‘scattering region’’). In particular we
can consider a dot-wire system such that the length
of the wire is very long. If we cut the wire in the
middle, and attach each lead to a reservoir, then
we get the open geometry of Fig. 1c.
We assume that we have some control over the

potential that holds the electrons. Specifically, and
without loss of generality, we assume that there are
control parameters X 1 and X 2 that represent e.g.
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Fig. 3. (a) Left: A driving cycle in X space. In order to have

non-zero area enclosed we have to change (without loss of

generality) two parameters. (b) Right: In particular we consider

pumping cycle in the X 3 ¼ 0 plane (no magnetic field).
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some gate voltages (see Fig. 2) with which we can
control the potential in the scattering region.
Namely, with these parameters we can change
the dot potential floor, or the height of some
barrier, or the location of a ‘‘wall’’ element, or the
position of a scatterer inside the dot. We call X 1

and X 2 shape parameters.
We also assume that it is possible to have an

Aharonov–Bohm flux X 3 through the ring. Thus
our notations are:

X 1;X 2 ¼ shape parameters, ð1Þ

X 3 ¼ F ¼ ð_=eÞf ¼ magnetic flux, ð2Þ

and the motion of each electron is described by a
one-particle Hamiltonian

H ¼Hðr; p;X 1ðtÞ;X 2ðtÞ;X 3ðtÞÞ. (3)

To drive a system means to change some
parameters (fields) in time. No driving means that
X 1 and X 2 are kept constant, and also let us
assume for simplicity that there is no magnetic
field and that X 3 ¼ 0. In the absence of driving we
assume that the motion of the electrons inside the
system is classically chaotic. For example this is
the case with the so-called Sinai billiard of Fig. 1a.
In such circumstances the energy of the system is a
constant of the motion, and the net circulating
current is zero due to ergodicity.
The simplest way to create a current I in an

open system (Fig. 1c) is to impose bias by having a
different chemical potential in each reservoir.
Another possibility is to create an electromotive-
force (EMF) in the dot region. In linear response
theory it can be proved that it does not matter
what is the assumed distribution of the voltage
along the ‘‘resistor’’. The EMF is by Faraday law
� _F. Assuming DC driving (constant EMF), and
the applicability of LRT, we get the ‘‘Ohm law’’
I ¼ G33

� ð� _FÞ and hence the transported charge
is dQ ¼ �G33 dX 3. We call G33 the Ohmic (DC)
conductance. If we have a low-frequency AC
driving rather than a DC driving, still the
impedance (AC conductance) is expected to be
well approximated by the DC conductance within
a frequency range that we call the DC regime.
Yet another possibility is to induce current by

changing shape parameter in time, while keeping
either the bias or X 3 equal to zero. Say that we
change X 1 then in complete analogy with Ohm’s
law we can write dQ ¼ �G31 dX 1. More generally
we can write

dQ ¼ �
X

j

G3j dX j. (4)

Obviously this type of formula makes sense only in
the ‘‘DC regime’’ where the current at each
moment of time depends only on the rates _X j.
3. Pumping cycles

In practice the interest is a time periodic (AC)
driving. This means that the driving cycle can be
represented by a closed contour at the ðX 1;X 2;X 3Þ

space as in Fig. 3a. In fact we assume that the
contour is lying in the ðX 1;X 2Þ plan as in Fig. 3b.
We ask what is the amount of charge which is
transported via a section of the ring per cycle.
Assuming the applicability of LRT we get in the
DC regime

Q ¼

I
Idt ¼

I
G � dX , (5)

where X ¼ ðX 1;X 2;X 3Þ and G ¼ ðG31;G32;G33
Þ.

Later we shall define a more general object Gkj

with k; j ¼ 1; 2; 3 that we call generalized conduc-

tance matrix. In the above formula only the k ¼ 3
row enters into the calculation.
Getting Qa0 means that the current has a non-

zero DC component. So we can define ‘‘pumping’’
as getting DC current form AC driving. From the
above it is clear that within the DC regime we have
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to vary at least two parameters to achieve a non-
zero result. In a closed (in contrast to open) system
this conclusion remains valid also outside of the
DC regime, due to time reversal symmetry. In
order to get DC current from one-parameter AC
driving, in a closed system, it is essential to have a
non-linear response. Ratchets are non-linear de-
vices that use ‘‘mixed’’ [15] or ‘‘damped’’ [14]
dynamics in order to pump with only one
parameter. We are not discussing such devices
below.
4. What is the problem?

Most of the studies of quantum pumping were
(so far) about open systems. Inspired by Landauer
who pointed out that G33 is essentially the
transmission of the device, Büttiker, Pretre and
Thomas (BPT) have developed a formula that
allows the calculation of G3j using the S matrix of
the scattering region [12,13]. It turns out that the
non-trivial extension of this approach to closed
systems involves quite restrictive assumptions [16].
Thus the case of pumping in closed systems has
been left unexplored, except to some past works on
adiabatic transport [9,10]. Yet another approach
to quantum pumping is to use the powerful Kubo

formalism [6,11,17].
The Kubo formula, which we discuss later, gives

a way to calculate the generalized conductance
matrix Gkj. It is a well-known formula [1], so one
can ask: what is the issue here? The answer is that
both the validity conditions, and also the way to
use the Kubo formula, are in fact open problems
in physics.
The Van Kampen controversy regarding the

validity of the Kubo formula in the classical
framework is well known, and by now has been
resolved. For a systematic classical derivation of
the Kubo formula with all the validity conditions,
see Ref. [5] and references therein. The assumption
of chaos is essential in the classical derivation. If
this assumption is not satisfied (as in the trivial
case of a driven 1D ring) then the Kubo formula
becomes non-applicable.
What about the Quantum Mechanical deriva-

tion? The problem has been raised in Ref. [3] but
has been answered only later in Refs. [4,5] and
follow-up works. It is important to realize that the
quantum mechanical derivation of the Kubo
formula requires perturbation theory to infinite
order, not just first-order perturbation theory. We
shall discuss later the non-trivial self-consistency
condition of the quantum mechanical derivation.
We note that the standard textbook derivation

of the Kubo formula assumes that the energy
spectrum is essentially a continuum. A common
practice is to assume some weak coupling to some
external bath [18]. However, this procedure avoids
the question at stake, and in fact fails to take into
consideration important ingredients that have to
do with quantum chaos physics. In this lecture the
primary interest is in the physics of a closed
isolated system. Only in a later stage we look for
the effects that are associated with having a weak
coupling to an external bath.
Why do we say that it is not clear how to use the

Kubo formula? We are going to explain that the
quantum mechanical derivation of the Kubo
formula introduces an energy scale that we call
G. It plays an analogous role to the level broad-
ening parameter which is introduced in case of a
coupling to a bath. Our G depends on the rate _X of
the driving in a non-trivial way. One may say that
G in case of an isolated system is due to the non-
adiabaticity of the driving. Our G affects both the
dissipative and the non-dissipative (geometric)
part of the response. Without a theory for G the
quantum mechanical Kubo formula is ill defined.
5. Generalized forces and currents

Given a Hamiltonian we define generalized
forces in the conventional way:

Fk ¼ �
qH
qX k

. (6)

One obvious reasoning that motivates this defini-
tion follows from writing the following (exact)
expression for the change in the energy E ¼ hHi
of the system:

Efinal � Einitial ¼ �

Z
hFðtÞi � dX . (7)
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In particular we note thatF3 should be identified as
the currentI. This identification can be explained as
follows: If we make a change dF of the flux during a
time dt, then the EMF is �dF=dt, leading to a
current I. The energy increase is the EMF times the
charge, namely dE ¼ ð�dF=dtÞ � ðIdtÞ ¼ �IdF.
Hence I is conjugate to F.
As an example we consider [17] a network model

[19]. See the illustration of Fig. 4d. The Hamilto-
nian is

H ¼ networkþ X 2dðx� X 1Þ. (8)

We assume control over the position X 1 of the
delta scatterer, and also over the ‘‘height’’ X 2 of
the scatterer. By the definition we get

F1 ¼ X 2d
0
ðx� X 1Þ, ð9Þ

F2 ¼ �dðx� X 1Þ. ð10Þ

Note that F1 is the ordinary Newtonian force
which is associated with translations. Its operation
on the wavefunction can be realized by the
differential operator

F1 7! � X 2 q
!
þ q
 
�
2m

_2
X 2

� �
x¼X 1þ0

, (11)

where we have used the matching condition across
the delta function andm is the mass of the particle.
(a)

(c)

(d)

(b)

(e)

Fig. 4. A scatterer (represented by a black circle) is translated

through a system that has a Fermi occupation of spinless non-

interacting electrons. In (a) the system is a simple ring. In (b) it

is a chaotic ring (Sinai billiard). In (c) and in (d) we have

network systems that are of the same type of (a) and (b)

respectively. In the network, the scatterer (‘‘piston’’) is a delta

function (represented as a big circle) located at x ¼ X 1. The

current is measured through x ¼ x0 (dotted vertical line). In (e)

we have an open geometry with left and right leads that are

attached to reservoirs that have the same chemical potential.
What about the current operator? For its
definition we have to introduce a vector potential
AðxÞ ¼ FaðxÞ into the Hamiltonian such thatI

A
!
� dr
!
¼ F. (12)

Thus we have to specify aðxÞ, which describes how
the vector potential varies along the loop. This is
not merely a gauge freedom because the electric
field � _FaðxÞ is a measurable quantity. Moreover, a
different aðxÞ implies a different current operator.
In particular we can choose aðxÞ to be a delta
function across a section x ¼ x0. Then we get

I ¼
e

2m
ðdðx� x0Þpþ pdðx� x0ÞÞ. (13)

Note that the operation of this operator can be
realized by the differential operator

I7! � i
e_

2m
q
!
� q
 � �

x¼x0
. (14)

A few words are in order regarding the continuity
of the charge flow. It should be clear that in any
moment the current through different sections
of a wire does not have to be the same, because
charge can accumulate. Kirchhoff law is not
satisfied. For example if we block the left entrance
to the dot in Fig. 2, and raise the dot potential,
then current is pushed out of the right lead, while
the current in the blocked side is zero. Still if we
make a full pumping cycle, such that the charge
comes back to its original distribution at the end of
each cycle, then the result for Q should be
independent of the section through which the
current is measured.
6. Linear response theory

Assume that X ðtÞ ¼ X ð0Þ þ dX ðtÞ, and look for a
quasi-stationary solution. To have linear response
means that the generalized forces are related to the
driving as follows:

hFðtÞi ¼ hFi0 þ

Z 1
�1

aðt� t0ÞdX ðt0Þdt0, (15)

where h� � � i0 denotes the expectation value
with respect to the unperturbed X ðtÞ ¼ X ð0Þ

stationary state. From now on we disregard
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the zero-order term (the ‘‘conservative force’’), and
focus on the linear term. The gene-
ralized susceptibility wkjðoÞ is the Fourier trans-
form of the (causal) response kernel akjðtÞ,
while the generalized conductance matrix is
defined as

Gkj
¼
Im½wkjðoÞ�

o

����
o�0
¼ gkj þ Bkj. (16)

The last equality defines the symmetric and the
anti-symmetric matrices gkj and Bkj. Thus in the
DC limit Eq. (15) reduces to a generalized Ohm
law:

hFki ¼ �
X

j

Gkj _X j, (17)

which can be written in fancy notation as

hFi ¼ �G � _X ¼ �g � _X � B ^ _X . (18)

Note that the rate of dissipation is

_W ¼ �hFi � _X ¼
X

kj

gkj _X k
_X j. (19)

We would like to focus not on the dissipation
issue, but rather on the transport issue. From Eq.
(5) we get

Q ¼ �

I
g � dX �

I
B ^ dX

	 

k¼3

. (20)

From now on we consider a planar ðX 1;X 2Þ

pumping cycle, and assume that there is no
magnetic field. Then it follows from time reversal
symmetry (Onsager) that g31 ¼ g32 ¼ 0, and con-
sequently

Q ¼ �

I
B
!
� ds
!
, (21)

where B
!
¼ ðB23;B31;B12Þ, with B12 ¼ 0, and ds

!
¼

ðdX 2;�dX 1; 0Þ is a normal vector in the pumping
plane as in Fig. 3b.
The various objects that have been defined in

this section are summarized by the following
diagram:
7. The Kubo formula

The Kubo formula for the response kernel is

akjðtÞ ¼ YðtÞ �
i

_
h½FkðtÞ;Fjð0Þ�i0, (22)

where the expression on the right-hand side
assumes a zero-order X ¼ X 0 stationary state
(the so-called ‘‘interaction picture’’), and YðtÞ is
the step function.
Using the definitions of the previous section,

and assuming a Fermi sea of non-interacting
fermions with occupation function f ðEÞ, we get
the following expressions:

gkj ¼ �p_
X
n;m

f ðEnÞ � f ðEmÞ

En � Em

Fk
nmF

j
mndGðEm � EnÞ,

Bkj ¼ 2_
X

n

f ðEnÞ
X

mðanÞ

Im½Fk
nmF

j
mn�

ðEm � EnÞ
2
þ ðG=2Þ2

.

ð23Þ

We have incorporated in these expressions a
broadening parameter G which is absent in the
‘‘literal’’ Kubo formula. If we set G ¼ 0 we get no
dissipation (g ¼ 0). We also see that G affects the
non-dissipative part of the response. Thus we see
that without having a theory for G the Kubo
formula is an ill-defined expression.
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Fig. 5. (a) Upper left: The energy levels of a ring with two

barriers, at the beginning of the pumping cycle. It is assumed

that the three lower levels are occupied. (b) Upper right: The

adiabatic levels as a function of time during the pumping cycle.

(c) Lower left: The ðX 1;X 2Þ locations of the Dirac chains of the

three occupied levels. Filled (hollow) circles imply that there is

(no) monopole in the pumping plane. Note that for the sake of

illustration overlapping chains are displaced from each other.

The pumping cycle encircles 2þ 1 Dirac chains that are

associated with the third and second levels respectively. (d)

Lower right: The two Dirac chains that are associated with the

third level.
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8. Adiabatic transport (geometric magnetism)

The ‘‘literal’’ Kubo formula (i.e. with G ¼ 0) has
been considered in Refs. [9,10]. In this limit we
have no dissipation (g ¼ 0). But we may still have
a non-vanishing B. By Eq. (23) the total B is a sum
over the occupied levels. The contribution of a
given occupied level n is

Bkj
n ¼ 2_

X
mðanÞ

Im½Fk
nmF

j
mn�

ðEm � EnÞ
2
þ ðG=2Þ2

, (24)

with G ¼ 0. This is identified as the geometric
magnetism of Ref. [10].
We can get some intuition for B

!
from the

theory of adiabatic processes. The Berry phase is

given as a line integral ð1=_Þ
H

A
!
� dX over ‘‘vector

potential’’ in X space. By Stokes law it can be

converted to an integral ð1=_Þ
RR

B
!
� dS over a

surface that is bounded by the driving cycle. The

B
!

field is divergence-less, but it may have
singularities at X points where the level n has a
degeneracy with a nearby level. We can regard
these points as the location of magnetic charges.
The result of the surface integral should be
independent of the choice of the surface modulo
2p, else Berry phase would be ill defined. Therefore
the net flux via a closed surface (which we can
regard as formed of two Stokes surfaces) should be
zero modulo 2p. Thus, if we have a charge within a
closed surface it follows by Gauss law that it
should be quantized in units of ð_=2Þ. These are the
so called ‘‘Dirac monopoles’’. In our setting X 3 is
the Aharonov–Bohm flux. Therefore we have
vertical ‘‘Dirac chains’’

chain ¼ X
ð0Þ
1 ; X

ð0Þ
2 ; Fð0Þ þ 2p

e

_
� integer

� �
. (25)

In the absence of any other magnetic field we have
time-reversal symmetry for either integer or half
integer flux. It follows that there are two types of
Dirac chains: those that have a monopole in the
plane of the pumping cycle, and those that have their
monopoles half unit away from the pumping plane.
In the next section we shall see how these

observations help to analyze the pumping process.
We shall also illuminate the effect of having Ga0.
Later we shall discuss the ‘‘physics’’ behind G.
9. Quantized pumping?

The issue of quantized pumping is best illu-
strated by the popular two delta barrier model,
which is illustrated in Fig. 5. The ‘‘dot region’’
jQjoa=2 is described by the potential

Uðr;X 1;X 2Þ ¼ X 1d xþ
a

2

� �
þ X 2d x�

a

2

� �
: ð26Þ

The pumping cycle is described in Fig. 5c. In the
first half of the cycle an electron is taken from the
wire into the dot region via the left barrier, while in
the second half of the cycle an electron is
transferred from the dot region to the wire via
the right barrier. So it seems that one electron is
pumped through the device per cycle. The question
is whether it is exactly one electron (Q ¼ e) or not?
In the case of an open geometry the answer is

known [20,21]. Let us denote by g0 the average
transmission of the dot region for X values along
the pumping cycle. In the limit g0! 0, which is a
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pump with no leakage, indeed one gets Q ¼ e.
Otherwise one gets Q ¼ ð1� gÞe.
What about a closed (ring) geometry? Do we

have a similar result? It has been argued [20] that if
the pumping process is strictly adiabatic then we
get exactly Q ¼ e. We are going to explain below
that this is in fact not correct: We can get either
Qo1 or Q41 or even Qb1.
Recall that by Eq. (21) the pumped charge Q

equals the projected flux of the B
!

field through
the pumping cycle (Fig. 3b). If the charge of
the monopoles were uniformly distributed
along the chains, it would follow that Q is exactly
quantized. But this is not the case, and therefore
Q can be either smaller or larger than 1 depending
on the type of chain(s) being encircled. In
particular, in case of a tight cycle around a
monopole we get Qbe which is somewhat
counter-intuitive, while if the monopole is off-
plane Qoe.
What is the effect of G on this result? It is quite

clear that G diminishes the contribution of the
singular term. Consequently it makes Q less than
one. This gives us a hint that the introduction of G
might lead to a result which is in agreement with
that obtained for an open geometry. We shall
discuss this issue in the next sections.
10. The Kubo formula and ‘‘quantum chaos’’

We turn now to discuss G. Any generic quantum
chaos system is characterized by some short
correlation time tcl, by some mean level spacing
D, and by a semiclassical energy scale that we
denote as Db. Namely

D / _d=volume ¼ mean level spacing, ð27Þ

Db�_=tcl ¼ bandwidth. ð28Þ

The term bandwidth requires clarification. If we
change a parameter X in the HamiltonianH, then
the perturbation matrix Fnm has non-vanishing
matrix elements within a band jEn � EmjoDb.
These matrix elements are characterized by some
root-mean-square magnitude s, while outside of
the band the matrix elements are very small.
If the system is driven slowly in a rate _X then
levels are mixed non-perturbatively. Using a quite
subtle reasoning [4–6,2] the relevant energy range
for the non-perturbative mixing of levels is found
to be

G ¼
_s

D2
j _X j

� �2=3
� D / ðLj _X jÞ2=3

1

L
. (29)

The latter equality assumes dot-wire geometry as
in Fig. 1b, where L is the length of the wire. Now
we can distinguish between three _X regimes:

G5D adiabatic regime, ð30Þ

DoGoDb non-adiabatic regime, ð31Þ

otherwise non-perturbative regime. ð32Þ

In the adiabatic regime levels are not mixed by the
driving, which means that the system (so to say)
follows the same level all the time. In the
perturbative regime there is a non-perturbative
mixing on small energy scales, but on the large
scale we have Fermi-golden-rule (FGR) transi-
tions. If the self-consistency condition (G5Db)
breaks down, then the FGR picture becomes non-
applicable, and consequently G becomes a mean-
ingless parameter.
In the non-perturbative regime we expect

semiclassical methods to be effective, provided
the system has a classical limit (which is not the
case with random matrix models [22]). In general
one can argue that in the limit of infinite volume
(or small _) perturbation theory always breaks
down, leading to a semiclassical behavior. But in
the dot-wire geometry this is not the case if we take
the limit L!1, keeping the width of the wire
fixed. With such limiting procedure Eq. (29)
implies that the self-consistency condition G5Db
is better and better satisfied! This means that the
Kubo formula can be trusted. Furthermore, with
the same limiting procedure the L!1 is a non-

adiabatic limit because the adiabaticity condition
G5D breaks down.
11. Kubo formula using an FD relation

The fluctuation-dissipation (FD) relation allows
us to calculate the conductance Gkj from the
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correlation function CkjðtÞ of the generalized
forces. In what follows we use the notations

KkjðtÞ ¼
i

_
h½FkðtÞ;Fjð0Þ�i0, ð33Þ

CkjðtÞ ¼
1

2
ðhFkðtÞFjð0Þi0 þ c:c:Þ. ð34Þ

Their Fourier transforms are denoted by ~K
kj
ðoÞ

and ~C
kj
ðoÞ. The expectation value above assumes

a zero-order stationary preparation. We shall
use subscript jF to indicate many-body Fermi
occupation. We shall use the subscript jT or
the subscript jE to denote one-particle canonical
or microcanonical preparation. At high tempera-
tures the Boltzmann approximation applies and
we can use the exact relation f ðEnÞ � f ðEmÞ ¼

tanhððEn � EmÞ=ð2TÞÞ � ðf ðEnÞ þ f ðEmÞÞ so as to
get

~K
kj

F ðoÞ ¼ io�
2

_o
tanh

_o
2T

� �
C

kj
T ðoÞ. (35)

At low temperatures we can use the approximation
f ðEÞ � f ðE0Þ � � 1

2
½dT ðE � EFÞ þ dT ðE

0 � EFÞ� �

ðE � E0Þ with dT ðE � EFÞ ¼ �f 0ðEÞ so as to get

~K
kj

F ðoÞ � io� gðEÞ ~C
kj

EF
ðoÞ. (36)

The application of this approximation is ‘‘legal’’ if
we assume temperature TbDb. This is a
very ‘‘bad’’ condition because for (e.g.) ballistic
dot Db is the relatively large Thouless
energy. However, we can regard the large T result
as an EF averaged zero-temperature calculation.
Then it can be argued that for a quantum chaos
system with a generic bandprofile the average is
in fact the ‘‘representative’’ result (see discussion
of ‘‘universal conductance fluctuation’’ in later
sections).
Substituting the Kubo formula akjðtÞ ¼

YðtÞ KkjðtÞ in the definition of Gkj , and using the
latter relation between KkjðtÞ and CkjðtÞ we get
after some straightforward algebra the following
expression for the conductance:

Gkj
¼

Z 1
0

K
kj
F ðtÞtdt � gðEFÞ

Z 1
0

C
kj
EF
ðtÞdt,

(37)

where gðEFÞ is the density of the one-particle
states. If we want to incorporate G the recipe
is simply

CðtÞ7!CðtÞe�ð1=2ÞðG=_Þjtj. (38)

The expression of Gkj using CkjðtÞ is a general-
ized FD relation. It reduces to the standard FD
relation if we consider the dissipative part:

gkj ¼
1

2
gðEFÞ ~C

kj

EF
ðo�0Þ (39)

whereas the non-dissipative part requires integra-
tion over all the frequencies (see the next section).
12. Kubo via Green functions or S matrix

Now we would like to express Gkj using Green
functions, and eventually we would like to express
it using the S matrix of the scattering region. The
first step is to rewrite the FD relation as follows:

Gkj
¼ _gðEFÞ

Z 1
�1

�i ~C
kj

EF
ðoÞ

_o� iðG=2Þ
do
2p
. (40)

The second step is to write

C
kj
E ðoÞ ¼

_

2gðEÞ
½CkjðE þ _o;EÞ þ CjkðE � _o;EÞ�,

(41)

where

CkjðE0;EÞ

¼ 2p
X
nm

Fk
nmdðE

0 � EmÞF
j
mndðE � EnÞ ð42Þ

¼
2

p
trace½Fk Im½GðE0Þ�Fj Im½GðEÞ��. ð43Þ

We use the standard notations GðzÞ ¼ 1=ðz�HÞ,
G�ðEÞ ¼ GðE � i0Þ, and Im½G� ¼ �iðGþ �G�Þ=2
¼ �pdðE �HÞ. After some straightforward alge-
bra we get

Gkj
¼ i

_

2p
trace½FkGðEF � iG=2ÞFj Im½GðEFÞ�

�Fk Im½GðEFÞ�F
jGðEF þ iG=2Þ�. ð44Þ

For the dot-wire geometry in the limit L!1

we can treat the iG as if it were the infinitesimal i0.
Some more non-trivial steps allow us to reduce
the trace operation to the boundary (r ¼ 0) of the
scattering region (Fig. 2), and then to express
the result using the S matrix. Disregarding
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insignificant interference term that has to do with
having ‘‘standing wave’’ the result is

G3j
¼

e

2pi
trace PA

qS

qX j

Sy
� �

. (45)

This formula, which we derive here using ‘‘quan-
tum chaos’’ assumptions, is the same as the BPT
formula that has been derived for an open
geometry. It is important to remember that the
limit L!1 is a non-adiabatic limit (GbD). Still
it is a ‘‘DC limit’’. Therefore what we get here is
‘‘DC conductance’’ rather than ‘‘adiabatic pump-
ing’’. The latter term is unfortunately widely used
in the existing literature.
13. The prototype pumping problem

What is the current which is created by
translating a scatterer (‘‘piston’’)? This is a
‘‘pumping’’ question. Various versions of the
assumed geometry are illustrated in Fig. 4. Though
it sounds simple this question contains (without
loss of generality) all the ingredients of a typical
pumping problem. Below we address this question
first within a classical framework, and then within
quantum mechanics.
The simplest case is to translate a scatterer in 1D

ring (Fig. 4a). Assuming that there is no other
scattering mechanism it is obvious that the steady-
state solution of the problem is

dQ ¼ 1�
e

p
kF � dX 1. (46)

We assume here Fermi occupation, but otherwise
this result is completely classical. This result holds
for any non-zero ‘‘size’’ of scatterer, though it is
clear that in the case of a tiny scatterer it would
take a much longer time to attain the steady-state.
Also note that there is no dissipation in this
problem. The steady-state solution is an exact

solution of the problem.
The picture completely changes if we translate a

scatterer inside a chaotic ring (Fig. 4b). In such a
case the problem does not possess a steady-state
solution. Still there is a quasi-steady-state solution.
This means that at any moment the state is quasi-
ergodic: If we follow the evolution for some time
we see that there is slow diffusion to other energy
surfaces (we use here phase space language). This
diffusion leads to dissipation as explained in Ref.
[5] (and more reference therein). However, we are
interested here mainly in the transport issue. As
the scatterer pushes its way through the ergodizing
distribution, it creates a current. Obviously the size
of the scatterer does matter in this case. Using
classical stochastic picture we can derive the
following result:

dQ ¼
gT

1� gT

	 

1� g0

g0

	 

�

e

p
kF � dX 1, (47)

where g0 is the transmission or the relative size of
the moving scatterer, while gT is the overall
transmission of the ring.
What about the quantum mechanical analysis?

We shall show that the same result is obtained
on the average. This means that the classical
expression still holds, but only in a statistical
sense. This is in close analogy with the idea
of ‘‘universal conductance fluctuations’’. We
shall discuss the effect of G on the distribution
of G .
It should be noticed that our quantum chaos

network model (Fig. 4d) essentially generalizes the
two-barrier model. Namely, one delta function is
the ‘‘scatterer’’ and the other delta function is
replaced by a complicated ‘‘black box’’. Let us use
the term ‘‘leads’’ in order to refer to the two bonds
that connect the ‘‘black box’’ to the scatterer. Now
we can ask what happens (given _X 1) if we take the
length of the leads to be very long. As discussed
previously this is a non-adiabatic limit. We shall
explain that in this limit we expect to get the same
result as in the case of an open geometry. For the
latter the expected result is [23]

dQ ¼ ð1� g0Þ �
e

p
kF � dX 1. (48)

We shall explain how Eq. (47) reduces to Eq. (48).
The latter is analogous to the Landauer formula
G33
¼ ðe2=2p_Þg0. The charge transport mechan-

ism which is represented by Eq. (48) has a very
simple heuristic explanation, which is reflected in
the term ‘‘snow plow dynamics’’ [23].
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14. Analysis of the network model

One way to calculate G31 for the network model
of Fig. 4d is obviously to do it numerically using
Eq. (23). For this purpose we find the eigenstates
of the network, and in particular the wavefunc-
tions cn

¼ An sinðknxþ jnÞ at (say) the right lead.
Then we calculate the matrix elements

Inm ¼ �i
e_

2m
ðcnqcm

� qcncm
Þx¼x0

, (49)

Fnm ¼ �l
_2

2m
ðcnqcm

þ qcncm
� lcncm

Þx¼X 1þ0

(50)

and substitute into Eq. (23). The distribution that
we get for G31, as well as the dependence of
average and the variance on G are presented in
Fig. 6. We see that G reduces the fluctuations. If we
are deep in the regime D5G5Db the variance
becomes very small and consequently the average
value becomes an actual estimate for G31. This
average value coincides with the ‘‘classical’’
(stochastic) result Eq. (47) as expected on the
basis of the derivation below.
Fig. 6. The average conductance G31 for the network of

Fig. 4d. The average is taken over more than 20 000 levels

around EF, while the calculation (for each Fermi level) was

performed in an interval of 32 000 levels. The transmission of

the ‘‘piston’’ is g0 � 0:1. The perpendicular dotted line indicates
the border of the regime where the Kubo calculation is valid.

We also plot the standard deviation, while the inset displays the

distribution for G ¼ 0:0001D.
In order to get an expression for G31 it is most
convenient to use the FD expression Eq. (37). For
this purpose we have to calculate the cross
correlation function of I andF1 which we denote
simply as CðtÞ. If we describe the dynamics using a
stochastic picture [17] we get that CðtÞ is a sum of
delta spikes:

CðtÞ ¼ e
vF

2L
2mvF ð1� g0Þ

X
�

�dðt� t1Þ

" #
þ � � � ,

(51)

where t1 ¼ ðx0 � X 1Þ=vF is the time to go from X 1

to x1 with the Fermi velocity vF, and the dots stand
for more terms due to additional reflections. If we
integrate only over the short correlation then we
getZ short

0

CðtÞdt ¼ �e
mv2F

L
½1� g0� (52)

while if we include all the multiple reflections we
get a geometric sum that leads to [17]Z 1
0

CðtÞdt ¼ �e
mv2F

L

1� g0
g0

	 

gT

1� gT

	 

. (53)

This leads to the result that was already mentioned
in the previous section:

G31
¼ �

1� g0
g0

	 

gT

1� gT

	 

�

e

p
kF. (54)

We also observe that if the scattering in the outer
region results in ‘‘loss of memory’’, then by Eq.
(38) only the short correlation survives, and we get

G31
¼ �ð1� g0Þ �

e

p
kF. (55)

Technically this is a special case of Eq. (54)
with the substitution of the serial resistance
ð1� gT Þ=gT ¼ ð1� g0Þ=g0 þ ð1� 0:5Þ=0:5.
The stochastic result can be derived also using a

proper quantum mechanical calculation [17]. The
starting point is the following (exact) expression
for the Green function:

hxjGðEÞjx0i ¼ �
i

_vF

X
p

Ape
ikE Lp . (56)

The sum is over all the possible trajectories that
connect x0 and x. More details on this expression
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and the subsequent calculation can be found in Ref.
[17]. The final result for the average conductance
coincides with the classical stochastic result.

15. Summary

Linear response theory is the major tool for
study of driven systems. It allows one to explore
the crossover from the strictly adiabatic ‘‘geo-
metric magnetism’’ regime to the non-adiabatic
regime. Hence it provides a unified framework for
the theory of pumping.
�
 ‘‘Quantum chaos’’ considerations in the deriva-
tion of the Kubo formula for the case of a
closed isolated system are essential (G / j _X j2=3).

�
 We have distinguished between adiabatic, non-
adiabatic and non-perturbative regimes, de-
pending on what is G compared with D and Db.

�
 In the strict adiabatic limit the Kubo formula
reduces to the familiar adiabatic transport
expression (‘‘geometric magnetism’’).

�
 A generalized fluctuation–dissipation relation
can be derived. In the zero-temperature limit an
implicit assumption in the derivation is having a
generic bandprofile as implied by quantum
chaos considerations.

�
 We also have derived an Smatrix expression for
the generalized conductance of a dot-wire
system, in the non-adiabatic limit L!1.
The result coincides with that of the open
system (BPT formula).

�
 The issue of ‘‘quantized pumping’’ is analyzed
by regarding the field which is created by
‘‘Dirac chains’’. In the adiabatic regime Q can
be either smaller or larger than unity, while in
the non-adiabatic regime Q is less than unity in
agreement with BPT.

�
 We have analyzed pumping on networks using
Green function expressions. The average result
can be expressed in terms of transmission
probabilities. The analog of universal conduc-
tance fluctuations is found in the strict adiabatic
regime. The conductance becomes well defined
(small dispersion) in the non-adiabatic regime.

�
 The average over the quantum mechanical
result, which becomes the well-defined conduc-
tance in the non-adiabatic regime, coincides
with the result that had been obtained for the
corresponding stochastic model.
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M. Büttiker, T. Dittrich, M. Moskalets and K.
Yakubo for discussions. This research was sup-
ported by the Israel Science Foundation (Grant
no. 11/02), and by a grant from the GIF, the
German-Israeli Foundation for Scientific Research
and Development.

References

[1] L.D. Landau, E.M. Lifshitz, Statistical Physics, Butter-

worth Heinemann, Stoncham, MA, 2000.

[2] D. Cohen, Dynamics of dissipation, in: P. Garbaczewski, R.

Olkiewicz (Eds.), Proceedings of the 38th Karpacz Winter

School of Theoretical Physics, Springer, Berlin, 2002.

[3] M. Wilkinson, J. Phys. A 21 (1988) 4021;

M. Wilkinson, E.J. Austin, J. Phys. A 28 (1995) 2277.

[4] D. Cohen, Phys. Rev. Lett. 82 (1999) 4951.

[5] D. Cohen, Ann. Phys. 283 (2000) 175.

[6] D. Cohen, Phys. Rev. B 68 (2003) 155303.

[7] M.V. Berry, Proc. Roy. Soc. Lond. A 392 (1984) 45.

[8] D.J. Thouless, Phys. Rev. B 27 (1983) 6083.

[9] J.E. Avron, et al., Rev. Mod. Phys. 60 (1988) 873.

[10] M.V. Berry, J.M. Robbins, Proc. Roy. Soc. Lond. A 442

(1993) 659.

[11] D. Cohen, Phys. Rev. B 68 (2003) 201303(R).
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