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Abstract

Current can be pumped through a closed system by changing parameters (or fields) in time. Linear response theory (the

Kubo formula) allows to analyze both the charge transport and the associated dissipation effect. We make a distinction

between adiabatic and non-adiabatic regimes, and explain the subtle limit of an infinite system. As an example we discuss

the following question: What is the amount of charge which is pushed by a moving scatterer? In the low frequency (DC)

limit we can write dQ = −GdX, where dX is the displacement of the scatterer. Thus the issue is to calculate the generalized

conductance G.
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1. Introduction

The analogy between electric current and the flow

of water is in fact older than the discovery of the elec-

trons. There are essentially two ways to move ”water”

(charge) between two “pools” (reservoirs): One pos-

sibility is to exploit potential difference between the

two reservoirs so as to make the “water” flow through

a “pipe” (wire). The other possibility is to operate a

device (pump) at some location along the pipe (the

“scattering region”). This possibility of moving charge

without creating a potential difference is called pump-

ing. This description assumes “open” geometry as in

Fig.1c. But what about a “closed” system as in Fig.1b?

If we operate the same pump, do we get the same cir-

culating current as in the “open” geometry?

1 Lecture notes for the Physica E proceedings of the con-
ference ”Frontiers of Quantum and Mesoscopic Thermody-
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Fig. 1. (a) Upper left: A chaotic ring that has the shape
of a Sinai billiard, with Aharonov-Bohm flux. (b) Upper
right: The dot-wire geometry with the same topology as in
the case of the Sinai billiard. (c) Lower: The wire is cut
into two leads that are attached to reservoirs. The latter is
what we call “open geometry”.



The analysis of “quantum pumping” in closed sys-

tems should take into account several issues that go

beyond the water analogy: (i) Kirchhoff law is not sat-

isfied in the mesoscopic reality because charge can ac-

cumulate; (ii) There are quantized energy levels, con-

sequently one has to distinguish between adiabatic and

non-adiabatic dynamics; (iii) Interference is impor-

tant, implying that the result of the calculation is of

statistical nature (universal conductance fluctuations).

On top we may have to take into account the effect of

having an external environment (decoherence).

Quantum pumping is a special issue in the study of

“driven systems”. We are going to emphasize the sig-

nificance of “quantum chaos” in the analysis. This in

fact provides the foundations for linear response the-

ory (LRT) [1–6]. We shall explain how to apply the

Kubo formalism in order to analyze the dynamics in

the low frequency (DC) regime. Within the Kubo for-

malism the problem boils down to the calculation of

the generalized (DC) conductance matrix.

To avoid miss-understanding we emphasize that the

dynamics in the low frequency (DC) regime is in gen-

eral non-adiabatic: The DC conductance has both a

dissipative and a non-dissipative parts. In the adia-

batic limit (extremely small rate of driving) the dis-

sipative part vanishes, while the non-dissipative part

reduces to “adiabatic transport” (also called “geomet-

ric magnetism”) [7–10]. The “adiabatic regime”, where

the dissipative effect can be ignored, is in fact a tiny

sub-domain of the relatively vast “DC regime”.

The dot-wire geometry of Fig.1b is of particular in-

terest. We are going to discuss the special limit of tak-

ing the length of the wire (L) to be infinite. In this limit

the adiabatic regime vanishes, but still we are left with

a vast ”DC regime” where the pumping is described

by a ”DC conductance”. In this limit we get results

[11] that are in agreement with the well known analy-

sis of quantum pumping [12,13] in an open geometry

(Fig.1c).

2. Driven systems

Consider a Fermi sea of non interacting “spinless”

electrons. The electrons are bounded by some poten-

tial. To be specific we assume a ring topology as in

Fig.1a. Of particular interest is the dot-wire geometry

of Fig.1b, or its more elaborated version Fig.2. It has

the same topology but we can distinguish between a

“wire region” and a “dot region” (or “scattering re-

gion”). In particular we can consider a dot-wire system

such that the length of the wire is very very long. If we

cut the wire in the middle, and attach each lead to a

reservoir, then we get the open geometry of Fig.1c.

We assume that we have some control over the po-

tential that holds the electrons. Specifically, and with-

out loss of generality, we assume that there are control

parameters X1 and X2 that represent e.g. some gate

voltages (see Fig.2) with which we can control the po-

tential in the scattering region. Namely, with these pa-

rameters we can change the dot potential floor, or the

height of some barrier, or the location of a “wall” ele-

ment, or the position of a scatterer inside the dot. We

call X1 and X2 shape parameters.

We also assume that it is possible to have an

Aharonov-Bohm flux X3 through the ring. Thus our

notations are:

X1, X2 = shape parameters (1)

X3 = Φ = (~/e)φ = magnetic flux (2)

and the motion of each electron is described by a one

particle Hamiltonian

H = H(r,p; X1(t), X2(t), X3(t)) (3)

To drive a system means to change some parameters

(fields) in time. No driving means that X1 and X2 are

kept constant, and also let us assume for simplicity

that there is no magnetic field and that X3 = 0. In

the absence of driving we assume that the motion of

the electrons inside the system is classically chaotic.
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Fig. 2. Detailed illustration of the dot-wire system. The dot
potential is controlled by gate voltages X1 and X2. The
flux through the loop is X3=Φ. The scattering region (r<0)
is represented by an S matrix. Later we assume that the
length (L) of the wire is very large.
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For example this is the case with the so-called Sinai

billiard of Fig.1a. In such circumstances the energy of

the system is a constant of the motion, and the net

circulating current is zero due to ergodicity.

The simplest way to create a current I in an open

system (Fig.1c) is to impose bias by having a different

chemical potential in each reservoir. Another possibil-

ity is to create an electro-motive-force (EMF) in the

dot region. In linear response theory it can be proved

that it does not matter what is the assumed distribu-

tion of the voltage along the “resistor”. The EMF is

by Faraday law −Φ̇. Assuming DC driving (constant

EMF), and the applicability of LRT, we get the “Ohm

law” I = G33×(−Φ̇) and hence the transported charge

is dQ = −G33 dX3. We call G33 the Ohmic (DC) con-

ductance. If we have a low frequency AC driving rather

than a DC driving, still the impedance (AC conduc-

tance) is expected to be well approximated by the DC

conductance within a frequency range that we call the

DC regime.

Yet another possibility is to induce current by chang-

ing shape parameter in time, while keeping either the

bias or X3 equal to zero. Say that we change X1, then

in complete analogy with Ohm law we can write dQ =

−G31 dX1. More generally we can write

dQ = −
X

j

G3j dXj (4)

Obviously this type of formula makes sense only in the

“DC regime” where the current at each moment of time

depends only on the rates Ẋj .

x1

x2

x3 X2

X1

Bds

Fig. 3. (a) Left: A driving cycle in X space. In order to
have non-zero area enclosed we have to change (without loss
of generality) two parameters. (b) Right: In particular we
consider pumping cycle in the X3 = 0 plane (no magnetic
field).

3. pumping cycles

In practice the interest is a time periodic (AC) driv-

ing. This means that the driving cycle can be repre-

sented by a closed contour at the (X1, X2, X3) space as

in Fig.3a. In fact we assume that the contour is lying

in the (X1, X2) plan as in Fig.3b. We ask what is the

amount of charge which is transported via a section of

the ring per cycle. Assuming the applicability of LRT

we get in the DC regime

Q =

I
Idt =

I
G · dX (5)

where X = (X1, X2, X3) and G = (G31,G32,G33).

Later we shall define a more general object Gkj with

k, j = 1, 2, 3 that we call generalized conductance ma-

trix. In the above formula only the k = 3 row enters

into the calculation.

Getting Q 6= 0 means that the current has a non-

zero DC component. So we can define “pumping” as

getting DC current form AC driving. From the above

it is clear that within the DC regime we have to vary

at least two parameters to achieve a non-zero result.

In a closed (in contrast to open) system this conclu-

sion remains valid also outside of the DC regime, due

to time reversal symmetry. In order to get DC current

from one parameter AC driving, in a closed system, it

is essential to have a non-linear response. Ratchets are

non-linear devices that use “mixed” [15] or “damped”

[14] dynamics in order to pump with only one param-

eter. We are not discussing such devices below.

4. What is the problem?

Most of the studies of quantum pumping were (so

far) about open systems. Inspired by Landauer who

pointed out that G33 is essentially the transmission of

the device, Büttiker, Pretre and Thomas (BPT) have

developed a formula that allows the calculation of G3j

using the S matrix of the scattering region [12,13].

It turns out that the non-trivial extension of this ap-

proach to closed systems involves quite restrictive as-

sumptions [16]. Thus the case of pumping in closed

systems has been left un-explored, except to some past

works on adiabatic transport [9,10]. Yet another ap-
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proach to quantum pumping is to use the powerful

Kubo formalism [6,11,17].

The Kubo formula, which we discuss later, gives a

way to calculate the generalized conductance matrix

Gkj . It is a well know formula [1], so one can ask: what

is the issue here? The answer is that both the validity

conditions, and also the way to use the Kubo formula,

are in fact open problems in physics.

The Van Kampen controversy regarding the validity

of the Kubo formula in the classical framework is well

known, and by now has been resolved. For a systematic

classical derivation of the Kubo formula with all the

validity conditions see Ref.[5] and references therein.

The assumption of chaos is essential in the classical

derivation. If this assumption is not satisfied (as in the

trivial case of a driven 1D ring) then the Kubo formula

becomes non-applicable.

What about the Quantum Mechanical derivation?

The problem has been raised in Ref.[3] but has been

answered only later in Refs.[4,5] and follow up works.

It is important to realize that the quantum mechanical

derivation of the Kubo formula requires perturbation

theory to infinite order, not just 1st order perturbation

theory. We shall discuss later the non-trivial self consis-

tency condition of the quantum mechanical derivation.

We note that the standard textbook derivation of

the Kubo formula assumes that the energy spectrum

is essentially a continuum. A common practice is to as-

sume some weak coupling to some external bath [18].

However, this procedure avoids the question at stake,

and in fact fails to take into consideration important in-

gredients that have to do with quantum chaos physics.

In this lecture the primary interest is in the physics of

a closed isolated system. Only in a later stage we look

for the effects that are associated with having a weak

coupling to an external bath.

Why do we say that it is not clear how to use the

Kubo formula? We are going to explain that the quan-

tum mechanical derivation of the Kubo formula intro-

duces an energy scale that we call Γ. It plays an anal-

ogous role to the level broadening parameter which is

introduced in case of a coupling to a bath. Our Γ de-

pends on the rate Ẋ of the driving in a non-trivial way.

One may say that Γ in case of an isolated system is due

to the non-adiabaticity of the driving. Our Γ affects

both the dissipative and the non-dissipative (geomet-

ric) part of the response. Without a theory for Γ the

quantum mechanical Kubo formula is ill defined.

5. Generalized forces and currents

Given a Hamiltonian we define generalized forces in

the conventional way:

Fk = − ∂H
∂Xk

(6)

one obvious reasoning that motivates this definition

follows from writing the following (exact) expression

for the change in the energy E = 〈H〉 of the system:

Efinal − Einitial = −
Z
〈F(t)〉 · dX (7)

In particular we note that F3 should be identified as

the current I. This identification can be explained as

follows: If we make a change dΦ of the flux during a

time dt, then the EMF is −dΦ/dt, leading to a current

I. The energy increase is the EMF times the charge,

namely dE = (−dΦ/dt) × (Idt) = −IdΦ. Hence I is

conjugate to Φ.

As an example we consider [17] a network model [19].

See the illustration of Fig.4d. The Hamiltonian is

H = network + X2 δ(x−X1) (8)

We assume control over the position X1 of the delta

scatterer, and also over the “height” X2 of the scat-

terer. By the definition we get:

F1 = X2δ
′(x−X1) (9)

F2 = −δ(x−X1) (10)

Note that F1 is the ordinary Newtonian force which is

associated with translations. Its operation on the wave-

function can be realized by the differential operator

F1 7→ −X2

„
−→
∂ +

←−
∂ − 2m

~2
X2

«
x=X1+0

(11)

where we have used the matching condition across the

delta function and m is the mass of the particle.

What about the current operator? For its definition

we have to introduce a vector potential A(x) = Φa(x)

into the Hamiltonian such thatI −→
A ·
−→
dr = Φ (12)

Thus we have to specify a(x), which describes how

the vector potential varies along the loop. This is

not merely a gauge freedom because the electric field
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−Φ̇a(x) is a measurable quantity. Moreover, a different

a(x) implies a different current operator. In particular

we can choose a(x) to be a delta function across a

section x = x0. Then we get:

I =
e

2m
(δ(x− x0)p+ pδ(x− x0)) (13)

Note that the operation of this operator can be realized

by the differential operator

I 7→ −i e~
2m

“−→
∂ −

←−
∂

”
x=x0

(14)

A few words are in order regarding the continuity of

the charge flow. It should be clear that in any moment

the current through different sections of a wire does not

have to be the same, because charge can accumulate.

Kirchhoff law is not satisfied. For example if we block

the left entrance to the dot in Fig.2, and raise the dot

potential, then current is pushed out of the right lead,

while the current in the blocked side is zero. Still if

we make a full pumping cycle, such that the charge

comes back to its original distribution at the end of

each cycle, then the result forQ should be independent

of the section through which the current is measured.

(a)

(c)

(d)

(b)

(e)

Fig. 4. A scatterer (represented by a black circle) is trans-
lated through a system that has a Fermi occupation of spin-
less non-interacting electrons. In (a) the system is a sim-
ple ring. In (b) it is a chaotic ring (Sinai billiard). In (c)
and in (d) we have network systems that are of the same
type of (a) and (b) respectively. In the network, the scat-
terer (“piston”) is a delta function (represented as a big
circle) located at x = X1. The current is measured through
x = x0 (dotted vertical line). In (e) we have an open geom-
etry with left and right leads that are attached to reservoirs
that have the same chemical potential.

6. Linear response theory

Assume that X(t) = X(0) + δX(t), and look for

a quasi-stationary solution. To have linear response

means that the generalized forces are related to the

driving as follows:

〈F(t)〉 = 〈F〉0 +

Z ∞

−∞
α(t− t′) · δX(t′) dt′ (15)

where 〈...〉0 denote the expectation value with respect

to the unperturbedX(t) = X(0) stationary state. From

now on we disregard the zero order term (the “conser-

vative force”), and focus on the linear term. The gen-

eralized susceptibility χkj(ω) is the Fourier transform

of the (causal) response kernel αkj(τ), while the gen-

eralized conductance matrix is defined as

Gkj =
Im[χkj(ω)]

ω

˛̨̨̨
ω∼0

= ηkj + Bkj (16)

The last equality defines the symmetric and the anti-

symmetric matrices ηkj and Bkj . Thus in the DC limit

Eq.(15) reduces to a generalized Ohm law:

〈Fk〉 = −
X

j

Gkj Ẋj (17)

which can be written in fancy notations as

〈F 〉 = −G · Ẋ = −η · Ẋ − B ∧ Ẋ (18)

Note that the rate of dissipation is

Ẇ = −〈F 〉 · Ẋ =
X
kj

ηkj Ẋk Ẋj (19)

We would like to focus not on the dissipation issue,

but rather on the transport issue. From Eq.(5) we get

Q =
h
−

I
η · dX −

I
B ∧ dX

i
k=3

(20)

From now on we consider a planar (X1, X2) pumping

cycle, and assume that there is no magnetic field. Then

it follows from time reversal symmetry [Onsager] that

η31 = η32 = 0, and consequently

Q = −
I −→

B ·
−→
ds (21)

where
−→
B = (B23,B31,B12), with B12 = 0, and

−→
ds =

(dX2,−dX1, 0) is a normal vector in the pumping plane

as in Fig.3b.
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The various objects that have been defined in this

section are summarized by the following diagram:

?
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XXXXXXz

?
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αkj(t− t′)

χkj(ω)

Re[χkj(ω)] (1/ω) × Im[χkj(ω)]

ηkj Bkj

(non-dissipative)

Gkj

(dissipative)

7. The Kubo formula

The Kubo formula for the response kernel is

αkj(τ) = Θ(τ)× i

~
〈[Fk(τ),Fj(0)]〉0 (22)

where the expression on the right hand side assumes

a zero order X = X0 stationary state (the so called

“interaction picture”), and Θ(τ) is the step function.

Using the definitions of the previous section, and as-

suming a Fermi sea of non-interacting fermions with

occupation function f(E), we get the following expres-

sions:

ηkj =−π~
X
n,m

f(En)−f(Em)

En−Em
Fk

nmFj
mn δΓ(Em−En)

Bkj = 2~
X

n

f(En)
X

m( 6=n)

Im
ˆ
Fk

nmFj
mn

˜
(Em−En)2 + (Γ/2)2

(23)

We have incorporated in these expression a broaden-

ing parameter Γ which is absent in the “literal” Kubo

formula. If we set Γ = 0 we get no dissipation (η = 0).

We also see that Γ affects the non-dissipative part of

the response. Thus we see that without having a theory

for Γ the Kubo formula is an ill defined expression.

8. Adiabatic transport (Geometric magnetism)

The “literal” Kubo formula (i.e. with Γ = 0) has

been considered in Refs.([9,10]). In this limit we have

no dissipation (η = 0). But we may still have a non-

vanishing B. By Eq.(23) the total B is a sum over the

occupied levels. The contribution of a given occupied

level n is:

Bkj
n = 2~

X
m( 6=n)

Im
ˆ
Fk

nmFj
mn

˜
(Em − En)2 + (Γ/2)2

(24)

with Γ = 0. This is identified as the geometric mag-

netism of Ref.[10].

We can get some intuition for
−→
B from the theory

of adiabatic processes. The Berry phase is given as a

line integral (1/~)
H −→

A · dX over “vector potential” in

X space. By stokes law it can be converted to an inte-

gral (1/~)
RR −→

B · dS over a surface that is bounded by

the driving cycle. The
−→
B field is divergence-less, but it

may have singularities at X points where the level n

has a degeneracy with a nearby level. We can regard

these points as the location of magnetic charges. The

result of the surface integral should be independent of

the choice of the surface modulo 2π, else Berry phase

would be ill defined. Therefore the net flux via a closed

surface (which we can regard as formed of two Stokes

surfaces) should be zero modulo 2π. Thus, if we have a

charge within a closed surface it follows by Gauss law

that it should be quantized in units of (~/2). These are

the so called “Dirac monopoles”. In our setting X3 is

the Aharonov-Bohm flux. Therefore we have vertical

“Dirac chains”

chain =
“
X

(0)
1 , X

(0)
2 , Φ(0) + 2π

e

~
× integer

”
(25)

In the absence of any other magnetic field we have time-

reversal symmetry for either integer or half integer flux.

It follows that there are two types of Dirac chains:

those that have a monopole in the plane of the pumping

cycle, and those that have their monopoles half unit

away from the pumping plane.

In the next section we shall see how these observa-

tions help to analyze the pumping process. We shall

also illuminate the effect of having Γ 6= 0. Later we

shall discuss the “physics” behind Γ.
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9. Quantized pumping?

The issue of quantized pumping is best illustrated

by the popular two delta barrier model, which is illus-

trated in Fig.5. The “dot region” |Q| < a/2 is described

by the potential

U(r;X1, X2) = X1δ
“
x+

a

2

”
+X2δ

“
x− a

2

”
(26)

The pumping cycle is described in Fig.5c. In the 1st

half of the cycle an electron is taken from the wire into

the dot region via the left barrier, while in the second

half of the cycle an electron is transfered from the dot

region to the wire via the right barrier. So it seems that

one electron is pumped through the device per cycle.

The question is whether it is exactly one electron (Q =

e) or not?

In the case of an open geometry the answer is known

[20,21]. Let us denote by g0 the average transmission

of the dot region forX values along the pumping cycle.

In the limit g0 → 0, which is a pump with no leakage,

indeed one getsQ = e. Otherwise one getsQ = (1−g)e.

dot state

position

En

wire states

X2
X1 dot level

nE  (x(t))

time

−

−

−−

+

+

−

+

X2 X3

X2=X1

2n
d h

alf
 cy

cle

1s
t h

alf
 cy

cle

+

+

+

+

X1

Fig. 5. (a) Upper left: The energy levels of a ring with
two barriers, at the beginning of the pumping cycle. It is
assumed that the three lower levels are occupied. (b) Upper
right: The adiabatic levels as a function of time during the
pumping cycle. (c) Lower Left: The (X1, X2) locations of
the Dirac chains of the 3 occupied levels. Filled (hollow)
circles imply that there is (no) monopole in the pumping
plane. Note that for sake of illustration overlapping chains
are displaced from each other. The pumping cycle encircles
2+1 Dirac chains that are associated with the 3rd and 2nd
levels respectively. (d) Lower right: The 2 Dirac chains that
are associated with the 3rd level.

What about a closed (ring) geometry? Do we have

a similar result? It has been argued [20] that if the

the pumping process is strictly adiabatic then we get

exactly Q = e. We are going to explain below that this

is in fact not correct: We can get either Q < 1 or Q > 1

or even Q� 1.

Recall that by Eq.(21) the pumped charge Q equals

the projected flux of the
−→
B field through the pump-

ing cycle (Fig.3b). If the charge of the monopoles were

uniformly distributed along the chains, it would follow

that Q is exactly quantized. But this is not the case,

and therefore Q can be either smaller or larger than 1

depending on the type of chain(s) being encircled. In

particular, in case of a tight cycle around a monopole

we get Q � e which is somewhat counter-intuitive,

while if the monopole is off-plane Q < e.

What is the effect of Γ on this result? It is quite

clear that Γ diminishes the contribution of the singular

term. Consequently it makesQ less than one. This gives

us a hint that the introduction of Γ might lead to a

result which is in agreement with that obtained for an

open geometry. We shall discuss this issue in the next

sections.

10. The Kubo Formula and “quantum chaos”

We turn now to discuss Γ. Any generic quantum

chaos system is characterized by some short correlation

time τcl, by some mean level spacing ∆, and by a semi-

classical energy scale that we denote as ∆b. Namely:

∆ ∝ ~d/volume = mean level spacing (27)

∆b ∼ ~/τcl = bandwidth (28)

The term bandwidth requires clarification. If we change

a parameter X in the Hamiltonian H, then the per-

turbation matrix Fnm has non-vanishing matrix ele-

ments within a band |En − Em| < ∆b. These matrix

elements are characterized by some root-mean-square

magnitude σ, while outside of the band the matrix el-

ements are very small.

If the system is driven slowly in a rate Ẋ then lev-

els are mixed non-perturbatively. Using a quite subtle

reasoning [4–6,2] the relevant energy range for the non-

perturbative mixing of levels is found to be
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Γ =

„
~σ
∆2
|Ẋ|

«2/3

×∆ ∝
“
L |Ẋ|

”2/3 1

L
(29)

The latter equality assumes dot-wire geometry as in

Fig.1b, where L is the length of the wire. Now we can

distinguish between three Ẋ regimes:

Γ� ∆ adiabatic regime (30)

∆ < Γ < ∆b non-adiabatic regime (31)

otherwise non-perturbative regime (32)

In the adiabatic regime levels are not mixed by the

driving, which means that the system (so to say) fol-

lows the same level all the time. In the perturbative

regime there is a non-perturbative mixing on small

energy scales, but on the large scale we have Fermi-

Golden-Rule (FGR) transitions. If the self consistency

condition (Γ � ∆b) breaks down, then the FGR pic-

ture becomes non-applicable, and consequently Γ be-

comes a meaningless parameter.

In the non-perturbative regime we expect semiclas-

sical methods to be effective, provided the system has a

classical limit (which is not the case with random ma-

trix models [22]). In general one can argue that in the

limit of infinite volume (or small ~) perturbation theory

always breaks down, leading to a semiclassical behav-

ior. But in the dot-wire geometry this is not the case

if we take the limit L → ∞, keeping the width of the

wire fixed. With such limiting procedure Eq.(29) im-

plies that the self-consistency condition Γ� ∆b is bet-

ter and better satisfied! This means that the Kubo for-

mula can be trusted. Furthermore, with the same lim-

iting procedure the L→∞ is a non-adiabatic limit be-

cause the adiabaticity condition Γ� ∆ breaks down.

11. Kubo formula using an FD relation

The Fluctuation-dissipation (FD) relation allows us

to calculate the conductance Gkj from the correlation

function Ckj(τ) of the generalized forces. In what fol-

lows we use the notations:

Kkj(τ) =
i

~
〈[Fk(τ),Fj(0)]〉0 (33)

Ckj(τ) =
1

2

“
〈Fk(τ)Fj(0)〉0 + cc

”
(34)

Their Fourier transforms are denoted K̃kj(ω) and

C̃kj(ω). The expectation value above assumes a

zero order stationary preparation. We shall use sub-

script |F to indicate many-body Fermi occupation.

We shall use the subscript |T or the subscript |E
to denote one-particle canonical or microcanonical

preparation. At high temperatures the Boltzmann

approximation applies and we can use the exact

relation f(En)−f(Em) = tanh((En−Em)/(2T )) ×
(f(En)+f(Em)) so as to get

K̃kj
F (ω) = iω × 2

~ω
tanh

„
~ω
2T

«
Ckj

T (ω) (35)

At low temperatures we can use the approxima-

tion f(E)−f(E′) ≈ − 1
2
[δT (E−EF ) + δT (E′−EF )] ×

(E−E′) with δT (E−EF ) = −f ′(E) so as to get

K̃kj
F (ω)≈ iω × g(E) C̃kj

EF
(ω) (36)

The application of this approximation is “legal” if we

assume temperature T � ∆b. This is a very “bad”

condition because for (e.g.) ballistic dot ∆b is the rel-

atively large Thouless energy. However, we can regard

the large T result as an EF averaged zero temperature

calculation. Then it can be argued that for a quantum

chaos system with a generic bandprofile the average

is in fact the “representative” result (see discussion of

“universal conductance fluctuation” in later sections).

Substituting the Kubo formulaαkj(τ) = Θ(τ)Kkj(τ)

in the definition of Gkj , and using the latter rela-

tion between Kkj(τ) and Ckj(τ) we get after some

straightforward algebra the following expression for

the conductance:

Gkj =

Z ∞

0

Kkj
F (τ)τdτ ≈ g(EF )

Z ∞

0

Ckj
EF

(τ)dτ (37)

where g(EF ) is the density of the one-particle states.

If we want to incorporate Γ the recipe is simply:

C(τ) 7→ C(τ) e−
1
2 (Γ/~)|τ | (38)

The expression of Gkj using Ckj(τ) is a generalized

FD relation. It reduces to the standard FD relation if

we consider the dissipative part:

ηkj =
1

2
g(EF )C̃kj

EF
(ω ∼ 0) (39)

whereas the non-dissipative part requires integration

over all the frequencies (see next section).
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12. Kubo via Green functions or S matrix

Now we would like to express Gkj using Green func-

tions, and eventually we would like to express it using

the S matrix of the scattering region. The first step is

to rewrite the FD relation as follows:

Gkj = ~g(EF )

Z ∞

−∞

−iC̃kj
EF

(ω)

~ω − i(Γ/2)

dω

2π
(40)

The second step is to write

Ckj
E (ω) =

~
2g(E)

h
Ckj(E+~ω,E) + Cjk(E−~ω,E)

i
(41)

where

Ckj(E′, E) = 2π
X
nm

Fk
nmδ(E

′ − Em)Fj
mnδ(E − En)(42)

=
2

π
trace

h
Fk Im[G(E′)] Fj Im[G(E)]

i
(43)

We use the standard notations G(z) = 1/(z −H), and

G±(E) = G(E±i0), and Im[G] = −i(G+−G−)/2 =

−πδ(E−H). After some straightforward algebra we

get:

Gkj = i
~
2π

trace
h
FkG(EF−iΓ/2)FjIm[G(EF )]

− FkIm[G(EF )]FjG(EF +iΓ/2)
i

(44)

For the dot-wire geometry in the limit L → ∞ we

can treat the iΓ as if it were the infinitesimal i0. Some

more non-trivial steps allow us to reduce the trace op-

eration to the boundary (r = 0) of the scattering region

(Fig.2), and then to express the result using the S ma-

trix. Disregarding insignificant interference term that

has to do with having “standing wave” the result is:

G3j =
e

2πi
trace

„
PA

∂S

∂Xj
S†

«
(45)

This formula, which we derive here using “quantum

chaos” assumptions is the same as the BPT formula

that has been derived for an open geometry. It is im-

portant to remember that the limit L → ∞ is a non-

adiabatic limit (Γ� ∆). Still it is a “DC limit”. There-

fore what we get here is “DC conductance” rather than

“adiabatic pumping”. The latter term is unfortunately

widely used in the existing literature.

13. The prototype pumping problem

What is the current which is created by translating

a scatterer (“piston”)? This is a “pumping” question.

Various versions of the assumed geometry are illus-

trated in Fig.4. Though it sounds simple this questions

contains (without loss of generality) all the ingredients

of a typical pumping problem. Below we address this

question first within a classical framework, and then

within quantum mechanics.

The simplest case is to translate a scatterer in 1D

ring (Fig.4a). Assuming that there is no other scatter-

ing mechanism it is obvious that the steady state solu-

tion of the problem is:

dQ = 1× e

π
kF × dX (46)

We assume here Fermi occupation, but otherwise this

result is completely classical. This result holds for any

nonzero ”size” of scatterer, though it is clear that in the

case of a tiny scatterer it would take a much longer time

to attain the steady state. Also note that there is no

dissipation in this problem. The steady state solution

is an exact solution of the problem.

The picture completely changes if we translate a

scatterer inside a chaotic ring (Fig.4b). In such case the

problem does not possess a steady state solution. Still

there is a quasi steady state solution. This means that

at any moment the state is quasi-ergodic: If we follow

the evolution for some time we see that there is slow

diffusion to other energy surfaces (we use here phase

space language). This diffusion leads to dissipation as

explained in [5] (and more Refs therein). However, we

are interested here mainly in the transport issue. As

the scatterer pushes its way through the ergodizing

distribution, it creates a current. Obviously the size

of the scatterer do matter in this case. Using classical

stochastic picture we can derive the following result:

dQ =

»
gT

1−gT

– »
1−g0
g0

–
× e

π
kF × dX (47)

where g0 is the transmission or the relative size of the

moving scatterer, while gT is the overall transmission

of the ring.

What about the quantum mechanical analysis? We

shall show that the same result is obtained on the aver-

age. This means that the classical expression still holds,

but only in a statistical sense. This is in close analogy
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with the idea of “universal conductance fluctuations”.

We shall discuss the effect of Γ on the distribution of G.

It should be noticed that our quantum chaos network

model (Fig.4d) essentially generalizes the two barrier

model. Namely, one delta function is the “scatterer”

and the other delta functions is replaced by a compli-

cated “black box”. Let us use the term “leads” in order

to refer to the two bonds that connect the “black box”

to the scatterer. Now we can ask what happens (given

Ẋ1) if we take the length of the leads to be very very

long. As discussed previously this is a non-adiabatic

limit. We shall explain that in this limit we expect to

get the same result as in the case of an open geometry.

For the latter the expected result is [23]:

dQ = (1−g0)×
e

π
kF × dX (48)

We shall explain how Eq.(47) reduces to Eq.(48). The

latter is analogous to the Landauer formula G33 =

(e2/~)g0. The charge transport mechanism which is

represented by Eq.(48) has a very simple heuristic ex-

planation, which is reflected in the term “snow plow

dynamics” [23].

Fig. 6. The average conductance G31 for the network of
Fig.4d. The average is taken over more than 20000 levels
around EF , while the calculation (for each Fermi level) was
performed in an interval of 32000 levels. The transmission
of the “piston” is g0 ≈ 0.1. The perpendicular dotted line
indicates the border of the regime where the Kubo calcu-
lation is valid. We also plot the standard deviation, while
the inset displays the distribution for Γ = 0.0001∆.

14. Analysis of the network model

One way to calculate G31 for the network model of

Fig.4d is obviously to do it numerically using Eq.(23).

For this purpose we find the eigenstates of the network,

and in particular the wavefunctions ψn = An sin(knx+

ϕn) at (say) the right lead. Then we calculate the ma-

trix elements

Inm =−i e~
2m

(ψn∂ψm − ∂ψnψm)x=x0
(49)

Fnm =−λ ~2

2m
(ψn∂ψm + ∂ψnψm − λψnψm)x=X1+0(50)

and substitute into Eq.(23). The distribution that we

get for G31, as well as the dependence of average and

the variance on Γ are presented in Fig.6. We see that Γ

reduces the fluctuations. If we are deep in the regime

∆ � Γ � ∆b the variance becomes very small and

consequently the average value becomes an actual es-

timate for G31. This average value coincides with the

“classical” (stochastic) result Eq.(47) as expected on

the basis of the derivation below.

In order to get an expression for G31 it is most con-

venient to use the FD expression Eq.(37). For this pur-

pose we have to calculate the cross correlation function

of I and F1 which we denote simply as C(τ). If we de-

scribe the dynamics using a stochastic picture [17] we

get that C(τ) is a sum of delta spikes:

C(τ) = e
vF
2L

2mvF

"
(1− g0)

X
±

±δ(τ ± τ1)

#
+ ....(51)

where τ1 = (x0 −X1)/vF is the time to go from X1 to

x1 with the Fermi velocity vF, and the dots stand for

more terms due to additional reflections. If we integrate

only over the short correlation then we getZ short

0

C(τ)dτ = −emv2
F

L
[1− g0] (52)

while if we include all the multiple reflections we get a

geometric sum that leads to [17]:Z ∞

0

C(τ)dτ = −emv2
F

L

»
1− g0
g0

– »
gT

1− gT

–
(53)

This leads to the result that was already mentioned in

the previous section:

G31 = −
»
1− g0
g0

– »
gT

1− gT

–
× e

π
kF (54)
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We also observe that if the scattering in the outer re-

gion results in “loss of memory”, then by Eq.(38) only

the short correlation survives, and we get

G31 = −(1− g0)×
e

π
kF (55)

Technically this is a special case of Eq.(54) with the

substitution of the serial resistance (1−gT )/gT =

(1−g0)/g0 + (1−0.5)/0.5.

The stochastic result can be derived also using a

proper quantum mechanical calculation [17]. The start-

ing point is the following (exact) expression for the

Green function:

〈x|G(E)|x0〉 = − i

~vF

X
p

ApeikELp (56)

The sum is over all the possible trajectories that con-

nect x0 and x. More details on this expression the the

subsequent calculation can be found in Ref.[17]. The

final result for the average conductance coincides with

the classical stochastic result.

15. Summary

Linear response theory is the major tool for study of

driven systems. It allows to explore the crossover from

the strictly adiabatic “geometric magnetism” regime

to the non-adiabatic regime. Hence it provides a unified

framework for the theory of pumping.

• “Quantum chaos” considerations in the derivation

of the Kubo formula for the case of a closed isolated

system are essential (Γ ∝ |Ẋ|2/3).

• We have distinguished between adiabatic, non-

adiabatic and non-perturbative regimes, depending

on what is Γ compared with ∆ and ∆b.

• In the strict adiabatic limit Kubo formula reduces

to the familiar adiabatic transport expression (“ge-

ometric magnetism”).

• A generalized Fluctuation-dissipation relation can

be derived. In the zero temperature limit an im-

plicit assumption in the derivation is having a generic

bandprofile as implied by quantum chaos considera-

tions.

• We also have derived an S matrix expression for the

generalized conductance of a dot-wire system, in the

non-adiabatic limit L → ∞. The result coincides

with that of open system (BPT formula).

• The issue of “quantized pumping” is analyzed by re-

garding the field which is created by “Dirac chains”.

In the adiabatic regime Q can be either smaller or

larger than unity, while in the non-adiabatic regime

Q is less than unity in agreement with BPT.

• We have analyzed pumping on networks using

Green function expressions. The average result can

be expressed in terms of transmission probabilities.

The analog of universal conductance fluctuations is

found in the strict adiabatic regime. The conduc-

tance becomes well define (small dispersion) in the

non-adiabatic regime.

• The average over the quantum mechanical result,

which becomes the well defined conductance in the

non-adiabatic regime, coincides with the result that

had been obtained for the corresponding stochastic

model.
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