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Non-equilibrium version of the Einstein relation

Daniel Hurowitz, Doron Cohen
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

The celebrated Einstein relation between the diffusion coefficient D and the drift velocity v is
violated in non-equilibrium circumstances. We analyze how this violation emerges for the simplest
example of a Brownian motion on a lattice, taking into account the interplay between the periodicity,
the randomness and the asymmetry of the transition rates. Based on the non-equilibrium fluctuation
theorem the v/D ratio is found to be a non-linear function of the affinity. Hence it depends in a
non-trivial way on the microscopics of the sample.

I. INTRODUCTION

The Einstein-Smoluchowski relation (ESR) [1, 2] be-
tween the diffusion coefficient (D) and the mobility (µ)
of a Brownian particle is a landmark in the history of
statistical mechanics. It states that D = µkBT , where T
is the temperature, and kB is the Boltzmann constant.
Thus it reflects the microscopics of the stochastic process
(via kB) in a very universal way. Below we set kB = 1.
The ESR constitues the simplest example for a

fluctuation-disspation relation. In a modern perspective
it can be regarded as a consequence of a general non-
equilibrium fluctuation theorem (NFT) [3–6] that con-
cerns the evolving probability distribution p(x; t) that
describes the stochastic motion of the particle. The ESR
is in essence a relation between the second moment of the
spreading Var(x) = 2Dt, and its first moment 〈x〉 = vt,
where v = µF is the drift velocity, and F is the field of
force. Using this language it can be re-written as follows:

v

D
= fσ(s) (1)

where s = F/T is the so-called affinity in units of entropy
production per unit distance, and fσ(s) = s is a universal
function that does not depend on the microscopic details
of the sample.
Model of interest.– We shall consider below the

dynamics of a particle on an N site ring, with transition
rates −→w n and ←−w n across the nth bond. In general the
transition rates are random and asymmetric. In previ-
ous publications [7, 8] we have highlighted the relevance
of Sinai spreading [9] to the analysis of the induced v.
Optionally one may have in mind the unfolded version of
our ring. The latter concerns the motion of a Brownian
particle in a tilted periodic array of identically disordered
unit cells.
Previous studies.– The dramatic influence of a tilt

on the transport in a one-dimensional biased periodic po-
tential has been explored experimentally for a colloidal
particle on a corrugated optical vortex [10, 11], and has
been exploited for optical particle fractionation and sep-
aration [12–14]. Explicit expressions for v and for D for
the case of a tilted cosine potential were first given in
[15–18] and further generalised in [19–22].
Several works have studied the effect of weak spatial

disorder on the non-linear bias dependence of the trans-
port coefficients [23–25]. Tractable expressions for v and

for D were available for a completely disordered lattice
(N =∞) [26, 27]. The prediction is that for small s one
obtains v = 0. This anomaly is related to the work of
Sinai [9] regarding random walk in random environment.
Strangely enough there was no attempt, as far as we

know, to bridge between the implied v/D dependence
on s, and the ESR that is expected close to equilibrium.
Furthermore there was no attempt to settle what looks
like a contradiction with the NFT-based derivation of the
ESR, which relies on the central limit theorem. It is the
purpose of the present work to illuminate the departure
from the ESR, and to explore the route that leads to the
N =∞ Sinai anomaly.
For completeness we note that extensions of the

fluctuation-dissipation phenomenology far from equilib-
rium have been considered in [30–33], but from a different
perspective. In [34] it has been pointed out that a vio-
lation of the ESR is expected in a Markovian network,
however this has not been explicitly demonstrated for a
model of interest, neither related to the Sinai anomaly.

II. NFT BASED DERIVATION

The NFT relates the probability of a stochastic trajec-
tory r(t) to the probability of the time reversed process:

P [r(−t)]
P [r(t)]

= exp [−S[r]] (2)

where S[r] is the entropy production that is associated
with the trajectory. The implicit assumption here is that
S[r] is well defined. This is a very strong assumption
because in an actual experiment S might depend on ad-
ditional ”hidden” microscopic coordinates that cannot
be resolved by the measuring device. This can be sum-
marized by saying that coarse-graining might make the
”bare” NFT inapplicable: possibly an effective version
of S[r] should be defined [35–37]. In our model S[r] is
a well defined functional, still we shall see later that in
some sense s is renormalized due to coarse-graining.
We proceed with a critical overview of the the deriva-

tion of the traditional ESR based on Eq.(2). The entropy
production during one trip around the ring is

S	 =
∑

n∈ring

ln

[ −→w n
←−w n

]

(3)
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The terms in this sum can be regarded as a stochastic
field. Summing over the terms along the closed loop we
get the stochastic motive force (SMF). In the context of
molecular motors the SMF is known as the affinity. The
entropy production for a general trajectory that has a
winding number q is S[r] = qS	. We disregard here small
fractional-loop error that can be neglected in the infinite
time limit. We define formally the distance as x = qN ,
and the entropy per unit distance as s = S	/N . If follows
from Eq. (2) that the evolving probability distribution
satisfies

p(−x; t)
p(x; t)

= e−sx (4)

In the long time limit, by virtue of the central limit theo-
rem (CLT), one can introduce a Gaussian approximation
p(x) ≈ p(x), where

p(x; t) =
1√
4πDt

exp

[

− (x− vt)2
4Dt

]

(5)

Substitution in Eq.(4) leads to the standard ESR, namely
v/D = s. Below we are going to argue that the last step
should be handled with much more care. The coarse-
grained distribution p(x) that appears in the CLT, is in
fact a convoluted (”smoothed”) version of the bare p(x).
If follows that p(x) obeys a ”dressed” version of Eq.(4),
with effective affinity s = fσ(s), where

fσ(s) =
2

as
tanh

(ass

2

)

(6)

The length scale as is related to the microscopic details of
the model. We first clarify this statement for the simplest
case of a non-disordered ring, for which as = 1 is the
lattice constant, and later discuss the general case.
At this point one should realize that Eq.(1) with Eq.(6)

can be regarded as a generalized ESR. The v/D ratio is
no longer a universal function because there is an affinity
dependent length-scale as, that reflects the microscopic
structure. The standard ESR is recovered if ass≪ 1. In
the other extreme we get the simple relation

D =
1

2
vsas (7)

where the subscript s has been added in order to empha-
size the crucial dependence on the affinity. We would like
to illuminate how as depends on the periodicity N , on
the strength of the disorder σ, and on the affinity s.

III. EFFECTIVE AFFINITY

Consider the simplest discrete model with asymmetry.
All the bonds are identical; the transition rates from left
to right are −→w , and the transition rates from right to left
are←−w . Hence it follows from Eq.(3) that S	 = ln(−→w/←−w ).
It is not difficult to find the exact expression for the the

evolving probability distribution p(x; t). The dynamics
that is generated by a rate equation can be simulated
as a random walk process with infinitesimal time steps
τ . The traversed distance is x = X1 + ...+XN . The
transition probabilities per step are

P (X = +1) = p ≡ −→wτ (8)

P (X = −1) = q ≡ ←−wτ (9)

P (X = 0) = 1− p− q (10)

The probability distribution can be obtained from the
moment generating function of the process

Z(k) = 〈e−ikx〉 =
[

pe−ik + qe+ik + (1− p− q)
]N

(11)

In the continuous time limit p, q ≪ 1, hence one can
expand

lnZ(k) = N
[

pe−ik + qe+ik − (p+ q)
]

+O(N τ2) (12)

Accordingly, one obtains

p(x; t) =

∫ ∞

−∞

dk eikx+(
−→we−ik+←−weik−(←−w+−→w ))t (13)

This distribution obviously satisfies the NFT Eq. (4),
which can be easily verified by inverting the sign of the
dummy integration variable in p(−x; t) and then shift-
ing it by a constant k → k + ln(←−w/−→w ). Expanding the
expression in the exponent in powers of k one obtains

p(x; t) =

∫ ∞

−∞

dk eik(x−(
−→w−←−w )t)− k2

2
(−→w+←−w )t+O(k3t) (14)

The average vt and the variance 2Dt are implied by the
coefficients of the k and k2 terms in the exponent, namely

v = (−→w −←−w ) (15)

D =
1

2
(−→w +←−w ) (16)

The v/D ratio is given by Eq.(6) with as = 1. This exact
result clearly contradicts the traditional ESR.
We now would like to see what happens to the NFT

and the ESR if the CLT is applied. Recall that the
CLT procedure is to introduce the re-scaled variable
(x− vt)/(2Dt) and to claim that in the t→∞ limit the
higher order cumulants O(k3t) can be neglected. We
use the notation p(x; t) for the normal distribution that
is obtained via CLT. It is easy to see that it satisfies
Eq.(4), but with an effective value of s that is given by
Eq.(6). Consequently the associated relation v/D = s is
consistent with the exact analysis, while the bare relation
v/D = s is violated.
We conclude that the normal approximation for p(x; t),

which is implied by CLT, obeys the NFT provided s is
replaced by a renormalized value s. The reason for that
is as follows: The CLT procedure is the same as cutting
off the high k modes, which is the same as smoothing the
function p(x, t). Due to the smoothing the effective value
of s becomes smaller, and consequently the bare ESR is
violated.
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IV. DRIFT AND DIFFUSION

We now turn to describe a general procedure for ex-
act calculation of v and D. Any rate equation can be
written schematically as dp/dt =Wp, where p = {pn} is
a column vector that contains the occupation probabili-
ties, andW is a matrix that contains the transition rates.
Note that this matrix is non-symmetric, hence one should
distinguish between right and left eigenvectors. If the lat-
tice is periodic, with a unit cell that consists of N sites,
the eigenevectors satisfy the Bloch theorem. The reduced
equation for the eigenmodes becomes W (ϕ)ψ = −λψ,
where W (ϕ) is an N×N matrix, and the presence of the
phase ϕ implies that ψn+N = eiϕψn, where n is the site
index mod(N). The Bloch quasi-momentum is formally
defined via the relation ϕ ≡ kN . The outcome of the
diagonalization process are the Bloch state |k, ν〉, where
ν is the band index, and the corresponding eigenvalues
are −λν(k). The bottom line is that the time dependent
solution of the rate equation can be written as

pn(t) ≈
1

L

∑

k,ν

Ck,ν e−λν(k)t eikn (17)

where Ck,ν are constants that depend on the initial
preparation. For technical details see appendix A. The
long time spreading is dominated by the lowest band
ν = 0. It is not difficult to show (see appendix) that
the drift velocity and the diffusion coefficient are deter-
mined by the derivatives of λ0(k). Namely,

v = i
∂λ0(k)

∂k

∣

∣

∣

∣

k=0

(18)

D =
1

2

∂2λ0(k)

∂k2

∣

∣

∣

∣

k=0

(19)

The N = 2 system.– As an explicit example for the
outcome of this procedure we consider a periodic lattice
that has unit cell with N=2 sites. The transition rates
(
−→
A,
←−
A,
−→
B,
←−
B ) are characterized by ln(

−→
A/
←−
A ) = s+σ and

ln(
−→
B/
←−
B ) = s−σ, such that σ is the “disorder” (in a later

example σ will stand for the width of a box distribution).
After some straightforward algebra (see Appendix B) one
obtains

v =

−→
A
−→
B −←−A←−B

−→
A +

←−
A +

−→
B +

←−
B

(20)

and

D =
1

2

[−→
A
−→
B +

←−
A
←−
B − 2v2

−→
A +

←−
A +

−→
B +

←−
B

]

(21)

The v/D ratio is given by Eq.(1) with

fσ(s) =
2

1 + tanh2
(

σ
2

)

tanh2
(

s
2

) tanh
(s

2

)

(22)
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FIG. 1: The ratio v/(2D) for a Brownian motion in a one-
dimensional regular lattice. The number of sites per unit cell
is N=1 (black stars) and N=2 (red circles). The numeri-
cal results (symbols) are based on simulations with ensembles
of 103 trajectories, while the lines are exact analytical ex-
pressions. The dashed line is the ESR. The upper and lower
thick solid lines are Eq.(6) with a=1 and a=2 respectively. In

the N=2 case
←−
A
−→
A =

←−
B
−→
B = 1 and σ = 2. The intermediate

thick solid line is Eq.(6) with a = a∞ = 1.58. It barely can
be resolved from the exact result (thin red line).

This result is compared to a numerical simulation of a
random walk in Fig.1, which was obtained by standard
simulation methods (Gillespie’s algorithm). As s is in-
creased the v/D ratio approaches a limiting value which
we define as 2/a∞. In Fig.1 we have added a curve of
the function Eq.(6) with as = a∞. We observe that for
practical purpose a∞ can be regarded as an effective lat-
tice constant. As the “disorder” σ increases tanh2(σ/2)
grows from 0 to 1, and consequently a∞ grows from the
value a = 1 to the value a = 2. In spite of the simplic-
ity of this example we shall see that it provides partial
insight with regard to the general N case.
General N system.– Let us explore how fσ(s) looks

like when N becomes larger. Fig.2 provides a few exam-
ples that were calculated analytically using Eq.(18) and
Eq.(19) for N=20. The rates were chosen as −→w n = eSn/2

and ←−w n = e−Sn/2, where Sn are box distributed within
[s− σ, s+ σ]. This implies that the rates have log-box
distribution as in ”glassy” systems.
Looking at the numerical results (Fig.2), and taking

into account the simple periodic lattice as a reference
case, we observe that fσ(s) has some typical properties
that we would like to analyze in later sections. Namely:
(1) For small values of s we have fσ(s) = s in consis-
tency with the ESR. (2) For no disorder (σ = 0) we
already have established that fσ(s) obeys Eq. (6) with
as = 1, reflecting the microscopic discreteness of the lat-
tice. (3) For finite disorder we see that for moderate
values of s the function fσ(s) can be approximated by
Eq.(6) with as = N , reflecting the length of the unit cell.
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FIG. 2: The same as Fig.1 but with N=20 sites per unit cell.
The upper and lower thick solid lines are for zero disorder
(σ=0) and for infinite disorder (σ→∞), as implied by Eq.(6)
with a=1 and a=20 respectively. The thin solid curves are
based on exact analytical calculation for various realizations
of disorder that is characterized by σ=3.5. The intermediate
thick solid line is Eq.(6) with a = a∞ = 1.9316, estimated
using Eq.(29). The linear dashed line is the ESR while the
second dashed line that exhibits a “Sinai step” is the N=∞
prediction of [26] (see text).

(4) For very large values of s the function fσ(s) satu-
rates, reflecting an effective lattice constant a∞ that we
discuss in Section V. (5) AsN becomes larger our results
approach those of [26], as discussed in Section VII.

V. THE POISSON LIMIT

Going to the extreme of very large s it is possible to get
simple analytical expressions for v and D. We first con-
sider a simple periodic lattice. From Eq.(15)-Eq.(16) we
get v = −→wa and D = (1/2)−→wa2 where a=1 is the lattice
constant. Accordingly v/(2D) = 1 in consistency with
Eq.(7). Let us illuminate the statistical meaning of this
result. Recall that the dynamics is generated by a rate
equation that can be simulated as a random walk process
with infinitesimal time steps τ . The traversed distance is
x = X1 + ...+XN . For s→∞ we get a Poisson process

P (X = 1) = p (23)

P (X = 0) = 1− p (24)

P (X = −1) = 0 (25)

with p = −→wτ . Taking the continuous time limit one
deduces that in the Poisson limit the ratio between the
first and the second moment is unity, hence v/(2D) is
determined.
We now turn to the disordered case, i.e. the rates

are not the same. In the Poisson limit we still can get
a simple analytical expression for a∞, which determines

0 5 10 15 20
0

1

2

3

4

5

6

σ

a ∞

 

 

Numerics
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Statistical

FIG. 3: The effective length scale a∞ = (2D/v)s→∞. The
number of sites per unit cell is N=6. The symbols are the
outcome of an exact analytical calculation. The exact sam-
ple specific expression Eq. (29) (solid line) works perfectly,
independent of N . The statistical approximation Eq. (30)
(dashed line) becomes indistinguishable for large values of N

(not shown). The dotted line is a(σ) of Eq.(39).

the asymptotic value of v/(2D). This is done using the
same procedure as in section III. The rates are −→w n = wn

and ←−w n = 0 for n = 1...N . The characteristic equation
for the eigenvalues of W (ϕ) is

det(λ+W (ϕ)) =

N
∏

n=1

(λ−wn) + e−iϕ
N
∏

n=1

wn = 0

This can be re-written as

N
∏

n=1

(

1− λ

wn

)

= e−iϕ (26)

Expanding to second order we get

N
∑

n=1

λ

wn
−
∑

i6=j

λ2

wnwm
= 1− e−iϕ (27)

with the solution

λ = −i





(

N
∑

n=1

1

wn

)−1


ϕ (28)

+
1

2





(

N
∑

n=1

1

wn

)−3( N
∑

n=1

1

w2
n

)



ϕ2 + O(ϕ3)

Using Eq.(18) and Eq.(19) we deduce that

a∞ =

(

2D

v

)

s→∞

=

[

〈

(1/−→w )2
〉

〈

(1/−→w )
〉2

]

(29)
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where the sample average is 〈R〉 ≡ (1/N)
∑

nRn. For
large N the sample average can replaced by an ensemble
average. Note that the expression in the square brackets
constitutes a measure for the ”glassiness” of the network:
it becomes much larger than unity due to the presence of
weak links. For the log-box distributed transition rates
of Fig.2

a∞ =
σ

2
coth

(σ

2

)

(30)

In Fig.3 we test this estimate for N=6. We observe (not
shown) that the statistical result Eq.(30) becomes indis-
tinguishable from the exact sample average Eq.(29) for
large values of N .

VI. DIGRESSION - SINAI SPREADING

In order to understand the dependence of v and D on
N and s, it is useful to recall known results that have
been obtained for the time-dependent spreading in an
N = ∞ lattice. Recall that the drift is induced by the
stochastic field, whose affinity is defined in Eq.(3)). The
comulant generating function of the stochastic field can
be written as g(µ) = (s − sµ)µ, where sµ is defined via
the following expression:

〈(←−w
−→w

)µ〉

≡ e−(s−sµ)µ (31)

If the stochastic field has normal distribution with stan-
dard deviation σ, then sµ = (1/2)σ2µ. For our box dis-
tribution

sµ =
1

µ
ln

(

sinh(µσ)

µσ

)

(32)

which is monotonically ascending from zero to σ. The
positive monotonic function sµ can be inverted, hence
we can define a scaled affinity µ(s). Note that Eq.(31)
implies that µ(s) is the value of µ for which the left-hand-
side equals unity.
The time dependent spreading in the zero bias case

(s=0) has been worked out by Sinai ([9]), leading to the
anomalous time dependence

x ∼ [log(t)]2 (33)

For finite s one obtains [28? ]

x ∼ tµ (34)

where the exponent µ = µ(s) is the “scaled affinity” that
has been defined above.
From the time dependent spreading we can deduce the

N dependence of the stationary drift velocity. The de-
duction goes as follows: The time required to drift a
distance x ∼ N is t ∼ N1/µ, hence

v ∼ x

t
∼

(

1

N

)
1

µ
−1

(35)

0 2 4 6 8
0

0.5

1

1.5

s

D(s)

v(s)

10
−2

10
0

10
−5

10
0

1/N

s

FIG. 4: The drift velocity vs = v(s) [labeled red lines],
the monotonic decreasing as/N , and the diffusion coefficient
D = D(s) [labeled blue lines] as a function of s. The time
units are chosen such that v∞ = 〈1/−→w 〉−1 = 1. The horizontal
lines from left to right correspond to s = 1/N (inset), and
s1/2, and s1, and s2. They divide the s dependence into 5
distinct regimes (see text). Solid lines are for N = 20 and
σ = 3.5. The dashed lines are for N = 300. For the latter the
step in v (at s = s1) and the drop in a (at s = s2) become
more pronounced.

This result has meaning only within the Sinai regime
s < s1. One observed that the dependence of v on N is
either sub-Ohmic or super-Ohmic depending whether s
is smaller or larger than s1/2. Note that for s ∼ 0 the
same argument leads to the well known Sinai suppres-

sion factor ∼ exp
(

−
√
N
)

that reflects the build-up of

an activation barrier.

VII. THE SINAI ANOMALY

For a non-periodic disordered lattice (N = ∞) it has
been found [26] that outside of the Sinai regime (s > s1)
the the drift velocity is

vs =
1− 〈(←−w/−→w )〉
〈(1/−→w )〉 =

[

1− e−(s−s1)
]

v∞ (36)

The exact expression for the diffusion coefficient is also
known but is quite lengthy [26]. In practice we find that
we can deduceD from Eq.(7) if we make the identification

as ≈
a∞

1− 〈(←−w/−→w )2〉 =
a∞

1− e−2(s−s2)
(37)

This expression holds in the normal diffusion regime
s > s2, where D is finite. We emphasize again that this
expression is implied by inspection of a very complicated
formal expression [26] whose physics we would like to il-
luminate below. In a practical perspective our approach
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s regime [0, 1/N ] [1/N, s1/2] [s1/2, s1] [s1, s2] [s2,∞]

as irrelevant as ∼ N as ≈
[

1− e−2(s−s2)
]

−1

a∞

vs v = 2Ds ∼
(

1
N

) 1

µ
−1

vs ≈
[

1− e−(s−s1)
]

v∞

D ∼ exp
(

−
√
N
)

∼ (1/N)
1

µ
−2 ∼ (N)

2− 1

µ ∼ N D = 1
2
asvs

TABLE I: Transport characteristics in the various s regimes. In the s < s1 regime the transport is suppressed due to Sinai
activation-barrier that scales with N . In the s > s1 regime the bias stretches away this barrier, and the drift approaches its
resistor-network limited value v∞. Normal diffusion is recovered for s > s2.

opens the way for an easy extension to finite N , which
we present in the next section.
The result of the v/D calculation using Eq.(7) with

Eq.(37) is displayed in Fig.2. Due to the Sinai anomaly
we have v = 0 within a finite range s < s1, hence the ESR
is completely violated. For large but finite N we observe
in Fig.2 the remnants of the Sinai anomaly, which we
call “Sinai step”. The question arises what does it mean
“large N”. For this purpose let us use a hand-waving
argument in order to illuminate the reason for having a
vanishingly small drift velocity. In a quasi-equilibrium
situation we have −→w npn =←−w npn+1. It follows that pn ∼
αn where

α ≡
〈←−w
−→w

〉−1

= es−s1 (38)

Transport into the sample is possible provided α > 1,
else, if [log(1/α)]N ≫ 1, the probability for penetration
is blocked. Thus a small s regime with vanishingly small
drift velocity is feasible if N ≫ a(σ), where

a(σ) =
1

s1
=

[

ln

(

sinhσ

σ

)]−1

(39)

The dependence of a(σ) on σ is illustrated in Fig.3. In the
numerics we assume large σ values, so there are remnants
of the Sinai anomaly. For weak disorder (σ ≪ 1) only a
very large sample will exhibit the “Sinai step” that we
see in Fig.2.

VIII. THE s DEPENDENCE OF D

The generalized ESR Eq. (1) with the affinity-
dependent length scale a(s) can be used in order to de-
duce the dependence of D on s for a finite N system with
disorder. For s < 1/N we have the conventional linear
dependence that is predicted by the traditional ESR. For
s > 1/N the diffusion coefficient D is determined by the
product vsas, see Eq.(7).
Recall that the N dependence of vs goes from sub-

Ohmic to super-Ohmic at s = s1/2, and becomes N in-
dependent for s > s1. Recall also that as scales like N for
s < s2, and becomes N independent for s > s2. Accord-
ingly as s increases we have the following regimes: (1)
Linear hopping regime for s < 1/N . (2) Hopping regime
with small D for s ∈ [1/N, s1/2]. (3) Hopping regime

with large D for s ∈ [s1/2, s1]. (4) Sliding regime with
large D for s ∈ [s1, s2]. (5) Sliding regime with normal
diffusion for s > s2. We use the keywords “Hopping” and
“Sliding” in order to indicate whether vs vanishes or not
in the N → ∞ limit. We use the keywords “small” and
“large” with regard to D in order to indicate whether it
vanishes or diverges in the N →∞ limit, while “normal”
means finite result in this limit. The generic s depen-
dence is illustrated in Fig.4 and summarized in Table I.

IX. DISCUSSION

In general non-equilibrium circumstances the bare
ESR is not valid. For the model system of interest
we write its generalized version as Eq.(1) with Eq.(6),
where as is an s dependent effective scale that depends
on microscopics of the sample. It is only in the quasi-
equilibrium limit s→ 0 that the traditional ESR becomes
valid. As the affinity s is increased, the length-scale as
drops from the maximal value a0 = N (the periodicity) to
the disorder limited value value a∞. The latter depends
monotonically on the strength σ of the disorder.
The first impression is that the generalized ESR Eq.(1)

with Eq.(6) is very wrong. Naively the ESR should ap-
ply also in non-equilibrium circumstances because it can
be derived from the NFT assuming CLT. We have ex-
plained that the resolution of this puzzle is related to the
implicit coarse-graining procedure. Consequently the ef-
fective affinity is s = fσ(s). One wonders what is the
”small parameter” on which the ESR is based. Consid-
ering Brownian motion on an a = 1 periodic lattice the
answer is that the affinity should be small (sa ≪ 1).
For a disordered lattice with period N the effective lat-
tice constant as becomes larger, and hence the condition
sas ≪ 1 becomes more demanding.
The implication of coarse graining is relevant experi-

mentally if the resolution of the measurement apparatus
is limited [35]. A recent example presented itself in an
experimental test of the NFT for electron transport
through a quantum dot [38–40]. The explanation of the
apparent violation of the NFT has been based on the
elimination of secondary loops in the circuit [36, 37],
hence what counts is not the bare affinity but the
effective affinity. In the present study we have assumed
that topological ambiguities are absent. There are no
secondary loops, just simply connected circuit. Still
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we see that the NFT cannot be applied using the bare
affinity. Replacing it by an effective affinity one obtains
the generalized ESR.
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Appendix A: Procedure for calculating v and D

We present here the general procedure for calculating v and D of a diffusive particle on a lattice that has an N site
unit cell. For presentation purpose let us consider for example a lattice with a 2 site unit cell. The rate equation for
(say) sites n = 3, 4 takes the form

ṗ3 =
−→
Ap2 − (

←−
A +

−→
B )p3 +

←−
Bp4 (A1)

ṗ4 =
−→
Bp3 − (

←−
B +

−→
A )p4 +

←−
Ap5 (A2)

where pn are the occupation probabilities of the infinite lattice. Applying Bloch theorem the right eigenvectors are
determined by two amplitudes ψ1 and ψ2, and the recursion ψn+2 = eiϕψn, where the Bloch phase ϕ ≡ kN is used
to define the quasi-momentum k. The reduced equation for the Bloch amplitudes is

(

−(←−A +
−→
B )
−→
Ae−iϕ +

←−
B−→

B +
←−
Aeiϕ −(←−B +

−→
A )

)(

ψ1

ψ2

)

= −λ
(

ψ1

ψ2

)

(A3)

The minus sign in front of the eigenvalues is a matter of convention. Note that for ϕ = 0 one obtains the lowest
eigenvalue λ0 = 1 which is associated with the NESS. Schematically we write the reduced equation as Wψ = −λψ.
The generalization for N site unit cell is straightforward. Using Dirac notations the reduced Bloch equation is

W (ϕ)|ϕ, ν〉 = −λν(ϕ)|ϕ, ν〉 (A4)

Since W is not a symmetric matrix, one should distinguish between left and right eigenvectors. The left eigenvectors
are defined via the equation

〈ϕ, ν̃|W (ϕ) = −λν(ϕ)〈ϕ, ν̃ | (A5)

Optionally the latter can be regarded as the right eigenvectors of W†

W †(ϕ)|ϕ, ν̃〉 = −λ∗ν(ϕ)|ϕ, ν̃〉 (A6)

The left and right eigenvectors form a complete basis

∑

ϕ,ν

|ϕ, ν〉〈ϕ, ν̃| = 1 (A7)

〈ϕ, ν̃|ϕ′, ν′〉 = δϕ,ϕ′δν,ν′ (A8)

Turning back to the full lattice, disregarding normalization and gauge issues, the Bloch states can be written in the
traditional way as a modulated plane wave:

〈

n
∣

∣k, ν
〉

=
〈

nmod(N)
∣

∣ϕk, ν
〉

eikn (A9)

where ϕk is related to k as defined previously. Consequently the time dependent solution of the rate equation is

pn(t) =
∑

k,ν

e−λν(k)t 〈n|k, ν〉〈k, ν̃|initial-state〉 (A10)

Averaging the probability within each unit cell, we get rid of the intra-cell modulation, leading to

pn(t) ≈
1

L

∑

k,ν

Ck,ν e−λν(k)t eikn (A11)

where L is the length of the sample, and Ck,ν are constants that depend on the initial preparation. Note that in the
limit k → 0 the lower bands degenerate, reflecting a unique NESS. Furthermore, due to normalization C0,0 = C = 1.
The moment generating function that is associated with pn(t) is

Z(k) =
∑

n

e−iknpn(t) ≈
∑

ν

Ck,ν e−λν(k)t (A12)
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The first and second moments of n can be deduced by taking the first and second derivative of Z(k) at k = 0. In the
long time limit, only the ν = 0 band survives. Expanding to second order in k we get

Z(k) ≈
[

C + C′k +
1

2
C′′k2 + ...

] [

1−
(

λ′k +
1

2
λ′′k2 + ...

)

t+
1

2

(

λ′k + ...
)2

t2 + ...

]

(A13)

From which we deduce that in the long time limit

〈n〉 ≈ i(C′ − Cλ′t) (A14)

〈n2〉 ≈ −(C′′ − Cλ′′t− 2C′λ′t+ Cλ′2t2) (A15)

Var(n) ≈ Cλ′′t− C′′ + C′2 (A16)

where C=1, while λ′ and λ′′ are Taylor coefficients in the expansion of λ0(k). The mobility and the diffusion coefficient
are determined accordingly:

v = lim
t→∞

[ 〈n〉
t

]

= i
∂λ0(k)

∂k

∣

∣

∣

∣

k=0

(A17)

D = lim
t→∞

[

1

2

Var(n)

t

]

=
1

2

∂2λ0(k)

∂k2

∣

∣

∣

∣

k=0

(A18)

Appendix B: Calculation of v and D for N=2 lattice

For the two site system, the lowest eigenvalue λ0(k) is

λ0(k) =
1

2

[

(
−→
A +

←−
A +

−→
B +

←−
B )−

√

(
−→
A +

←−
A +

−→
B +

←−
B )2 − 4(1− e−iϕ)

←−
A
←−
B − 4(1− eiϕ)

−→
A
−→
B

]

(B1)

≈ −i
[ −→

A
−→
B −←−A←−B

−→
A +

←−
A +

−→
B +

←−
B

]

ϕ+







−→
A
−→
B +

←−
A
←−
B

2(
−→
A +

←−
A +

−→
B +

←−
B )
−

(−→
A
−→
B −←−A←−B

)2

(−→
A +

←−
A +

−→
B +

←−
B
)3






ϕ2 (B2)

From which the mobility and diffusion coefficients are derived

v =

−→
A
−→
B −←−A←−B

−→
A +

←−
A +

−→
B +

←−
B

(B3)

D =

−→
A
−→
B +

←−
A
←−
B

2(
−→
A +

←−
A +

−→
B +

←−
B )
−

(−→
A
−→
B −←−A←−B

)2

(−→
A +

←−
A +

−→
B +

←−
B
)3 (B4)


