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The non-equilibrium steady state of sparse systems with nontrivial topology
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We study the steady state of a multiply-connected system that is driven out of equilibrium by a
sparse perturbation. The prototype example is an N-site ring coupled to a thermal bath, driven by a
stationary source that induces transitions with log-wide distributed rates. An induced current arises,
which is controlled by the strength of the driving, and an associated topological term appears in the
expression for the energy absorption rate. Due to the sparsity, the crossover from linear response to
saturation is mediated by an intermediate regime, where the current is exponentially small in

√
N ,

which is related to the work of Sinai on “random walk in a random environment”.

The transport in a chain due to non-symmetric transi-
tion probabilities is a fundamental problem in statistical
mechanics [2–7]. It can be regarded as a random walk in

a random environment. The seminal observation is due
to Sinai [3]: considering a chain of length N , the random-
ness implies a buildup of an exponentially large potential
barrier exp(

√
N), and consequently an exponential sup-

pression of the current, reflecting a sub-diffusive [log(t)]4

spreading in time.
We would like to explore how this picture is modified if

the chain is replaced by a configuration with a non-trivial
topology, such as a ring, accounting for: (1) unavoidable
telescopic correlations [a] between the transition proba-
bilities; (2) sparsity due to log-wide distribution of the
transition rates as in glassy systems; (3) Global currents
that reflect the non-trivial topology.
Our focus is on the non-equilibrium steady state

(NESS) global current I that circulates the whole ring,
and on the associated energy absorption rate (EAR). Let
us present some numerical results that clarify the phys-
ical picture and motivate the subsequent analysis. We
consider a ring that is composed of N sites (Fig.1). The
ring is weakly coupled to a bath that has temperature TB.
In the absence of driving the average current I is zero.
The driving is modeled as a stationary noise source that
has an intensity ǫ2. The driving breaks detailed balance,
leading to a non-vanishing affinity along the ring. This
affinity, which we call stochastic motive force (SMF), la-
beled as E	, induces a circulating steady-state current,
see Fig. 2. For weak driving one observes a linear re-
sponse behavior I ∝ E	 ∝ ǫ2. For very strong driving I
saturates.
The crossover from linear response to saturation is re-

lated to the distribution of the transitions rates. If the
distribution is log-wide we call the system sparse, imply-
ing that most of elements are much smaller compared
with the average. Due to the sparsity one observes that
there is an intermediate region where E	 ∼

√
N , while

the current becomes exponentially small, exhibiting fluc-
tuations as a function of ǫ2.
Outline.– We introduce the Ring model and clarify

its relation to the standard paradigm of NESS analysis.
We derive expressions for the SMF, for the current, and

FIG. 1: A ring made up of N isolated sites with on site en-
ergies ǫn. The ring is coupled to a heat reservoir (represented
by the blue ”environment”) and subjected to a noisy driving
field (represented by the red circle) that induces a current in
the ring. In the numerical tests the energies occupy a band of
width ∆ = 1, and the temperature of the bath is TB = 2. The
driving source induced rates wǫ

n are log-box distributed over
8 decades, while the bath induced rates are all with wβ

n = 1.

for the EAR, illuminating their dependence on the driv-
ing intensity. With regard to the EAR, we highlight the
manifestation of a topological term.
Sparse networks.– Consider a general rate equation

with transition rates wnm. We can regard it as describing
a network that consists of ”sites” connected by ”bonds”.
Specifically we consider later a ring that consists of N
sites (Fig. 1). With regard to the bond x ≡ (m ; n),
that connects site m to site n, we define the coupling
w(x) and the field E(x) as follows:

E(x) ≡ ln

[

wnm

wmn

]

, w(x) ≡ [wnmwmn]
1/2

(1)

We say that the system is sparse or glassy if either w(x)
or E(x) of the connecting bonds have a log-wide distribu-
tion. This means that there is a small fraction of bonds
where the coupling or the field is strong, while in the
overwhelming majority it is very small.
We define the “potential variation” between two points

x1 and x2 along a line segment as follows:

E(x1 ; x2) =

∫ x2

x1

E(x)dx (2)

This is identified as the medium entropy production [8]
during a realization of a process where the system makes
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the transitions from x1 to x2. Given a loop, one defines
the SMF (or mesoscopic affinity [9]) as follows:

E	 ≡
∑

x

E(x) ≡
∮

E(x)dx (3)

The summation above is over the bonds x along the loop,
which becomes an integral in the continuum limit. For a
detailed balanced system the SMF is zero for any loop.
Otherwise the system relaxes to a NESS.
For the subsequent analysis we define “the effective po-

tential barrier” along a segment as the maximal potential
variation:

E∩ ≡ maximum
{

|E(x1 ; x2)|
}

(4)

Referring to a Ring, it is important to realize that E∩
cannot be smaller than E	. See Fig.2. If the E(x) were
totally uncorrelated both the maximal potential variation
and the SMF would be proportional to

√
N .

NESS paradigm.– In the physical problem the net-
work consists of N sites, with on-site energies En. The
transition rates wnm from site n to site m are induced by
a driving source that has an intensity ǫ2, and by a bath
that has a temperature TB. Namely,

wnm = wǫ
nm + wβ

nm (5)

where wǫ
nm = wǫ

mn ∝ ǫ2, while the bath is detailed-
balanced with wβ

nm/wβ
mn = exp[−(En−Em)/TB]. This

is formally a special case of the common non-equilibrium
paradigm of a system that is coupled to two heat baths.
The driving source is like a bath that has temperature
TA = ∞, while the environment is a bath that has a finite
temperature TB < ∞.
Microscopic temperature.– In the absence of driv-

ing the transitions that are induced by the bath sat-
isfy detailed balance, and accordingly the steady state
of the system is canonical with occupation probabilities
pn ∝ exp[−En/TB]. Once we add the driving this is no
longer true. Still, there is a well defined NESS, so we
can formally define a microscopic temperature for each
transition separately via the formula

pn
pm

= exp

[

−En − Em

Tnm

]

(6)

Unlike a canonical state, here we may have a wide dis-
tribution of microscopic temperatures. Furthermore, in
a NESS the local temperature can be negative, i.e. the
occupation of a higher level can be larger than the occu-
pation of a lower one.
The Ring model.– As a specific example we con-

sider a ring with random on-site energies En ∈ [0,∆],
and near neighbor transitions. We use the notations
∆n = En −En−1, and w−→n = wn,n−1, and w←−n = wn−1,n,
and wn = (w−→n + w←−n )/2. The superscripts β and ǫ are

used in order to distinguish the bath and driving source
contributions. Inspired by the analogy to “connectors in
series” we define the “average” transition rate as

w ≡
(

1

N

∑

x

1

wn(x)

)−1

(7)

with similar definitions for wβ and wǫ. It is now natu-
ral to define a dimensionless driving intensity ǫ2 and di-
mensionless coupling parameters gn, such that the latter
reflect the relative exposure of the bonds to the driving:

wǫ

wβ
≡ ǫ2,

wǫ
n

wβ
n

≡ gnǫ
2 (8)

Note that if the wβ
n are identical, as assumed in our nu-

merical tests, then the harmonic average over the gn is
unity. The 1st and 2nd moments are always larger, and in
particular for sparse wǫ

n they satisfy the strong inequality

1 ≪ gn ≪ g2n. The variance is Var(gn) = g2n−gn
2. In the

numerics we assume that the gn are log-box distributed
over several decades in the range [gmin, gmax].
Estimating the SMF.– In the presence of driving

the SMF is non zero:

E	 = TB ln

[

∏	

x wx
∏�

x wx

]

≡ ln
[	]

[�]
(9)

where
∏	 is the product of all the N anticlockwise rates,

and
∏�

is similarly defined. If TB ≫ ∆ we get

E	 ≈ −
∑

n

[

1

1 + gnǫ2

]

∆n

TB
(10)

Recall that we have
∑

n ∆n = 0. Additionally we define

∆(0) ≡
∑

n

gn∆n ∼ ±
[

2N Var(g)
]1/2

∆ (11)

∆(∞) ≡
∑

n

1

gn
∆n ∼ ±

[

2N Var(g−1)
]1/2

∆ (12)

The RMS-based estimate of the sums follows from
the observation that, say, ∆(0) can be rearranged as
∑

n(gn+1 − gn)En, which is a sum of N independent ran-
dom variables. Consequently we get for the SMF the
following approximation

E	 ≈ 1

TB







∆(0)ǫ2, ǫ2 < 1/gmax

−∆(∞)/ǫ2, ǫ2 > 1/gmin

∼ [±]∆(∗), otherwise

(13)

where ∆(∗) ≡ N1/2∆, and the ∼ implies that the the
result exhibit fluctuations as ǫ2 is varied. Looking in
Fig.3 at the plot of |E	|, we notice that there are dips that
indicate that the SMF changes sign. These sign reversals
depend on the specific realization of gn and ∆n.
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The NESS current.– The rate equation for nearest
neighbor transitions is

ṗn = w←−−
n+1

pn+1 + w−→n pn−1 − 2wnpn (14)

This set of equations is redundant because of conserva-
tion of probability. At steady state ṗn = 0, and there
is some current I in the system. So we can write the
equivalent non-redundant set of N+1 equations

w−→n pn−1 − w←−n pn = I,
∑

n

pn = 1 (15)

This set of equations can be solved for the current using
elementary algebra, or alternatively using the network
formalism for stochastic systems [9–11]. The result may
be written in compact notation as follows:

I =

∏	

x wx −
∏�

x wx
∑

x,n

∏(x;n)
x′ wx′

≡ [	]− [�]

[;]
(16)

where
∏(x;n) is the product of the N−1 rates that lead

from the cut at bond x to the target site n. In continuum
limit notations the expression can be written as

I =
eE	/2 − e−E	/2

∑

x
1

w(x)

∫

dx′eE(x;x′)/2
(17)

Which can be roughly estimated as

I ∼ 1

N
w exp

[

−E∩
2

]

2 sinh

(E	
2

)

(18)

This rough estimate is tested in Fig.2, and is in fact quite
satisfactory. Let us discuss in more detail the current for
very weak and very strong driving. In both limits the
SMF becomes very small, the Sinai factor exp[] becomes
of order unity, and the sinh() can be approximated by a
linear function. Accordingly we get

I ≈ 1

N

{

−[∆(0)/TB]w
ǫ, linear regime

[∆(∞)/TB]w
β , Saturation

(19)

As evident from these expressions, and as implied by the
numerics, the direction of the current can change as the
strength of the driving is increased, hence the dips in
|I| in Fig.3. The small ǫ result is independent of wβ ,
in spite of the bath dominance. The fingerprints of the
bath show up only for strong driving, where the result
becomes saturated, independent of wǫ.
In the intermediate regime |E	| ∼ N1/2. The maximal

potential variation E∩ is of the same order of magnitude,
but always lager, typically by some factor of order unity.
Hence the current becomes exponentially small in

√
N , as

in the model by Sinai. Sparsity is the crucial requirement
in order to observe this intermediate Sinai regime, other-
wise there is merely a crossover from the linear response
regime to the saturation regime.

The EAR formula.– Let us define the average occu-
pation of the sites in the nth bond as p̄n = (pn−1 + pn)/2.
It follows from Eq.(15) that the occupation difference is

pn−1 − pn =

[

w←−n−w−→n
w←−n+w−→n

]

2p̄n +

[

2

w←−n+w−→n

]

I (20)

For zero SMF the current is zero, and we can define mi-
croscopic temperatures using Eq.(6). For TB ≫ ∆ one
easily obtains the following practical approximation:

1

T
(0)
n

≈
[

w←−n − w−→n
wn

]

1

∆n
≈
[

1

1 + gnǫ2

]

1

TB
(21)

If the current I were zero, the system would be locally

heated, with microscopic temperatures T
(0)
n > TB that

are non-uniform due to the dispersion in the couplings.

We keep using the notation T
(0)
n even if I 6= 0. Us-

ing Eq.(20) the heat flow through the system is

Q̇ =
∑

n

[

wβ
←−n
pn − wβ

−→n
pn−1

]

∆n (22)

=
∑

n

[

(w←−n−w−→n )p̄n + wβ
n(pn−pn−1)

]

∆n (23)

=
∑

n

[

p̄nw
β
n∆

2
n

TB
− p̄nw

β
n∆

2
n

T
(0)
n

− I
wβ

n

wn
∆n

]

(24)

In order to gain physical insight into this expression we
assume TB ≫ ∆, and identify the sum in the last term
as the SMF of Eq.(10). Then we write the expression
schematically as in Ref.[12] with an additional topological
term due to the current:

Q̇ ≈
[

DB

TB
− DB

T (0)

]

+ TBE	 I (25)

The first term represents the heat flow due to a tem-
perature gradient. The definitions of the diffusion coeffi-
cient DB and the induced temperature T (0) are implied
by a comparison with Eq.(24). It is interesting to point
out that Eq.(25) connects between the entropy produc-
tion obtained under different levels of coarse graining [8].
The term E	I is a coarse-grained entropy production for
a setup in which one can not distinguish between tran-
sitions mediated by the thermal bath and noise. In con-
trast, Q̇/TB is the entropy production rate when the two
types of transitions are distinguishable.
EAR vs Current.– The topological term in Eq.(25)

is due to the current. However, one should realize that
also the pn in Eq.(24) depend implicitly on the current.
Nevertheless, it makes sense to assume that the contri-
bution of the second term can be experimentally distin-
guished. To confirm this conjecture we calculate in Fig.3
the difference between the EAR of a connected Ring, and
the EAR of the same ring after it had been disconnected
at one point. We realize that this difference is correlated
with the current.
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The driving induces non-vanishing current I, hence the
EAR of a closed ring is larger than that of a linear chain.
However, the dependence of the EAR on the driving in-
tensity remains sub-linear, even if the topological term is
included. To establish this observation we further sim-
plify the expression for the EAR in the linear-response
regime:

Q̇ =
∑

n

p̄nw
β
n∆

2
n

TB

[

1− 1

1 + gnǫ2

]

+ TBE	 I (26)

≈ DB

TB

[

(gnǫ2)− (gnǫ2)2 +Var(g)ǫ4
]

(27)

We realize that without the current the non-linear term
in the EAR expression has the coefficient −g2n, while
with current the coefficient becomes −gn

2, which implies
larger EAR but still sub-linear.
Summary.– The study of transport in network sys-

tems has numerous applications, notably in physical
chemistry, where the dynamics is commonly described
by a rate equation. There is much interest in studying
NESS currents that are induced either by periodically
varying system parameters [13], or by stochastic driving.
Assuming the latter, we have considered the NESS of a
driven ring that is coupled to a bath, and found both
the steady state current and the EAR. We have demon-
strated how the ring-like topology and the sparsity lead
to a glassy NESS with a non-trivial current dependence,
exhibiting an interesting crossover from linear-response
to saturation via an intermediate Sinai-type regime.
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FIG. 2: We consider a Ring with N=103 sites, as defined in
Fig.1. In the upper panel the absolute values of the SMF
(solid curve) and the current (thick dashed curve) are plotted
as a function of the scaled driving intensity. The dotted lines
and the solid horizontal line are the estimates for the SMF
Eq.(13). Also the global approximation Eq.(18) is displayed
(thin dashed curve). The vertical lines are 1/gmax and 1/gmin.
In the Lower panel the potential difference E(0 ; x) is plotted
against x, for two values of the driving intensity. Note that
the SMF is E	 ≡ E(0 ; N). The vertical lines correspond to
the maximal potential variation E∩.
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FIG. 3: The energy absorption rate (EAR) versus the driv-
ing intensity for a Ring with N = 106 sites, while the other
parameters are the same as in the previous figure. The solid
curve is the total EAR. The dotted horizontal line is the ex-
pected saturation value. The dashed curve is the topological
term E	I . The dash-dot curve is the EAR difference if the
Ring is disconnected at one point. The current in the ring is
also drawn (triangular markers).


