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Percolation, sliding, localization and relaxation in topdogically closed circuits
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Consideringrandom walk in random environmeint a topologically closed circuit, we explore the implica-
tions of the percolation and sliding transitions for itsapedtion modes. A complementary question regarding
the “delocalization” of eigenstates of non-hermitian Hidomians has been addressed by Hatano, Nelson, and
followers. But we show that for a conservative stochastacess the implied spectral properties are dramati-
cally different. In particular we determine the threshald dinder-damped relaxation, and observe “complexity
saturation” as the bias is increased.

The original version of Einstein’s Brownian motion prob- bias: it is the pulling force in the case of depinning polymer
lem is essentially equivalent to the analysis of a simpleand DNA denaturation; or the convective flow of bacteria rel-
random walk The more complicated version edndom  ative to the nutrients in the case of population biology;har t
walk on a disordered latticefeatures a percolation-related affinity of the chemical cycle in the case of molecular motors

crossover to variable-range-hopping, or to sub-diffusion oy interest is in the relaxation dynamics of finkesite
one-dimension[{1]. I fact it is formally like a resistor- ying.shaped circuits, that are described by the stochestia-
network pr“oblem,”and has diverse applications, e.g. in thgon £q. (1) TheN sites might be physical locations in some
context of “glassy” electron d}m"’_‘f‘n'dg 12, 3]. But more 9eN-jattice structure, or can represent steps of some chemical-
erally one has to consider Sinai's spreading problerh [4=7leycle. For example, in the Brownian motor contékis the
akarandom walk in a random environmenthere the tran-  ymper of chemical-reactions required to advance the motor
sition rates are allowed to be asymmetric. It turns out thape pace. We are inspired by the study of of non-Hermitian
for any small amount of disorder an unbiased spreading ijyantum Hamiltonians with regard to vortex depinning inetyp
one-dimension becomes sub-diffusive, while for bias that e || superconductori?[_iEllG]' molecular motors witfite pro-
ceeds a finite th_reshold_there isskding transition leading cessivity ]; and related wor@-Zl]. In both exam-
to a non-zero drift velocity. The latter has relevance ed. f pjes conservation of probability is violated. In the firsaex
studies in a biophysical context: population biology[[8, 9] ple the bias is the applied transverse magnetic field; N

pulling pinned polymers and DNA denaturationl[10, 11] andihe number of defects to which the magnetic vortex can pin.
processive molecular motorts [12] 13].

The dynamics in all the above variations of the random- Scope.— In this article we report how the speciral prop-

walk problem can be regarded as a stochastic process in Whi(%tlzs fpf t(;‘e fT?rlﬂg d_?_ﬁend on the ?aragete(rc_;t; 9,9),
a particle hops from site to site. The rate equation for ttee si as defined afteEq. () €se paramelers describe respec-

. S : ; . tively the resistor-network disorder, the stochasticdfigisor-
occupation probabilitiep = {p,} can be written in matrix der, and the average bias field. The eigenvajuekc} of W

notation as . . )
are associated with the relaxation modes of the system.®ue t
@ - W (1 conservation of probabilityy = 0, while all the other eigen-
dt values{Ay} have positive real part, and may have an imagi-

involving a matrix W whose off-diagonal elements are the nary part as well. Complex eigenvalues imply that the relax-
transition ratesv,m, and with diagonal elementsy, such that ~ ation is not over-damped: one would be able to observe an os-
each column sums to zero. Assuming near-neighbor hoppingjllating density during relaxation, as demonstratedig(l.
the W matrix takes the form The first row ofFig[2 provides some representative spectra.
As the biassis increased a complex bubble appears at the bot-
—¥h Wiz O tom of the band, implying delocalization of the eigenstates
W1 —Yo Wo3 ... ' - R
W = 0 o (2)  Our results for the complexity threshadgare summarized in
Wiz —¥s .- Tablell and demonstrated iRig[3. The number of complex
eigenvalues grows as a function of the bias, as demonstrated
In Einstein’s theoryW is symmetric, and all the non-zero in Figi, but asymptotically only a finite fraction of the spec-
rates are the same; In the resistor-network problem the ratérum becomes complex. Our objective below is to explain an-

have some distributioR(w) that features (see SM) alytically the peculiarities of this delocalization trétn, to
. explain how it is affected by the percolation and by the slidi
P(w) O w*™= (for smallw) () thresholds, and to analyze the complexity-saturatiorceffe

But in Sinai’'s problenW is allowed to be asymmetric. Ac- Stochastic spreading.—We first consider an opened ring,
cordingly the rates at theth bond can be written ag,e*4n/2 namely a disordered chain. The asymmetry can be gauged
for forward and backward transitions respectively. For theaway, andW becomes similar to a symmetric mat#X (see
purpose of presentation we assume that the stochastiesfield SM). The statistics of its off-diagonal elements is chaact

is box distributed withins— o,s+ og]. We refer tos as the ized bya, while the statistics of the diagonal elements is also
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Type of disordef Parameters S Remarks lustration). Fora > 1, in the absence of bias, the continuum-
Resistor-network a<%7 0=0 | s=oo non-percolating limit approximation featuregt = 1/2. This reflects a nor-
mal diffusive behavior as in Einstein’s theory of Brownian
motion. Below the percolation threshold, namely ok 1,
normal diffusion is suppressed, and the spectral exposent i
u=a/(l1+a) < 1/2. But for large bias, the diagonal disor-
TABLE I. The complexity threshold for different types of digler ~ der in H dominates, leading to trivially localized eigenstates.

(aka delocalization transition). We distinguish betweesistor net-  Hence for large bias we simply haue= a irrespective of the
work disorder and stochastic field disorder. The thresisplgl re- percolation aspect.

flects the strengtlo of the latter. It is smaller than thg threshold Relaxation.— We close arlN-site chain into a ring. The
of the sliding transition. Note that the threshogjsdepend neither ring is characterized by its so-called affinity.

onN nor ona.
S5 = Ns (6)

Now a topological aspect is added to the problem, and one
wonders what are the relaxation modes of the system. The
starting point of our analysis is the secular equation fer th
eigenvalues o¥. Assuming that we already know what are
the eigenvalues of the associated symmetric matfixthe
secular equation takes the form|[22]

z S S5
K w 2
FIG. 1. Simulated trajectory of a particle on a disorderied-r The

number of sites iN=100 and the disorder strengthds=5. The  wherew is the geometric average of all the rates. The Bias
radial direction is time and the angle is the position. Foalss(left affects both they and the right hand side. This equation has
panels=0.88) the dynamics is over-damped, while for laejgight  peen analyzed irl [16] in the case of a non-conservative ma-
Fhin:lzzg'iz;thee d‘g{;ﬁ‘;&'ﬁfﬂ'?s‘égdg\gampe‘j' The outer thick line isyjy y37 whose diagonal elemenys arefixed hence they(s)

y ' there do not depend om Consequently, as of Eq. (8) is

increased beyond a threshold vabkgethe eigenvalues in the

affected byo ands. The eigenvalue$—¢,} of H are real. middle of the spectrum become complex. #\s further in-
In the absence of disorder they form a bdage.] where creased beyond some higher threshold value, the entire spec
€sw = 2[cosh(s/2) F 1]. For sparse disorder withl (< N) trum becomes complex. As already stated in the introdugction
disordered bonds, a few additional isolated eigenvalugsmi this is not the scenario that is observed for our consemativ
appear in the gaf), es]. With full disorder it is possible to get model. Furthermore we want to clarify how the percolation
a gapless spectrum. This is the case for Gaussian white-noig@nd sliding thresholds are reflected.
stochastic-field disorder as analyzedlin [6]. In this caseeth ~ Already at this stage one should be aware of the immediate

is an analytical expression for the spectral density in sepin ~ implications of conservativity. First of al=A¢ = 0 should
Bessel functions. The expression features be a root of the secular equation. The associated eigenstate

byl is the non-equilibrium steady state (NESS), which is an ex-
ple) O e (for smalle) (4)  tended state (see SM). In fact it follows that the localizati

with no gap. The exponent is related to the bias vial€ngth has to diverge a — 0. This is in essence the dif-

s= (1/2)a?u. In the present work we assume the more physference between the conventional Anderson model (Lifshitz

Resistor-network%<a<17 0=0|s; ~ (1/N) |residual percolatio
Sparse (M/N) <1 |sc~ (1/N)|both disorder type
Stochastic field) a>1, 0#0 | s~ S/ percolating

(2]

ically appealing log-box disorder for which (see SM) tails at the band floor) and the Debye model (phonons at the
1 ) band floor). It is the latter picture that applies in the case o
s=s, = —In <M) (5)  conservative model.
H oH Electrostatic picture.— In order to get an insight into the

Unlike Gaussian disorder the range of possible rates isecular equation we define an “electrostatic” potentiaktky t

bounded, and we see that a finite threstsale- o is deduced. ing the log of the left hand side &q.(7) Namely,

Fors > s, a gap opens up. Using the above spectral properties ,

it is deduced that the spreading of a distribution along &n in Y@ = Z'n (z—e) = V(XY)+IAXY)  (8)

nite chain goes like ~ tH for s < s;, while fors > s; we have

a non-zero drift velocity. This is known as the “sliding tran wherez= x+iy. Note that we have flipped the sign conven-

sition”. As for the second moment, for < 1/2 the diffusion  tion (z— —2), and also we set the time units such tivat 1.

coefficient is zero. The constan¥ (x,y) curves correspond to potential contours,
The introduction of resistor-network-disorder modifies th and the constanA(x,y) curves corresponds to stream lines.

spectral density at higher energies (5égl5 of the SM foril-  The derivative¥’'(z) corresponds to the field, which can be
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FIG. 2. The emergence of complexity in the relaxation speetr The upper panels display representative examples afatbn spectra.
The {A¢} are indicated by green points in the complex plane. The ragiNa=500 sites witho=5, and (from left to rights = 1.24,2.43,10.
The calculated threshold values &g, = 1.77 ands; = 2.7 ands. = 5. In the left hand colums <'s; > and the spectrum is real. In the
middle columns, , < s < s and the spectrum is with several complex bubbles separgtezhbsegments. In the right colursn- s, and the
real spectrum has a gap, while the complex spectrum is adeNgloped complex bubble, tangent to the origin (no gapg “Etectrostatic
field” that is associated with the secular equation is represl by a few field-lines, while the background color pregidisualization of the
corresponding electrostatic potential. The spectrum fained by looking for the intersections of the field lineshnilhe equipotential line
V(z) =V (0) that goes through the origin (indicated in white). The lowanels plot the potential (¢) along the real axis. The horizontal
dashed line i¥/(0).
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regarded as either electric or magnetic field up to a 90deg rot if the envelope oW (¢) is above the/ =V (0) line, then the
tion. Using this language, the secular equation takes time fo spectrum is real, and th¥, are roughly the same as thg
: hifted a bit to the left.
V(xy) =V(0); A(xy)=2mint 9 ° .
() ©) (xy) = 2+ integer ©) From the above it follows that the threshoky for
Namely the roots are the intersection of the field lines with t the appearance of a Comp]ex quasi_continuum is either
potential contour that goes through the oridiig2). We want V(es) <V(0) or V/(0) < 0, depending on whethg(e) is
to find what are the conditions for getting a real spectrumfro gapped or not. In the latter case it follows frdfq. (I1)that
Eq.[9) and in particular what is the threshaddfor getting 5 =, ,. We note that for the Gaussian model of [6] one
complex eigenvalues at the bottom of the spectrum. We firsgptainsV (¢ — ) = const, implying that the entire spectrum

look on the potential along the real axis: would go from real to complex &= s, ,. In general this is
B , not the case: the complex spectrum typically forms a “bubble
Vie) = /In (|€ X \)p(x’)d% (10) tangentto the origin, or possibly one may find some additiona

In regions where théec} form a quasi-continuum, one can Pubbles as irfFigl2b. _ .
identify (1/N)V (¢) as the Thouless expression for the inverse  1he identification of thes with s, , holds for full disor-
localization length[[16]. The explicit value &f(0) is im-  der, but not for sparse disorder. In the latter case 1/N,
plied by Eq. (7) namelyV (0) = In[2(cosi{S-/2) —1)]. For ~ Or we may better look ofi, = Ns. The reasoning that leads
a charge-density that is given Igg. (4) with some cutofk., {0 this conclusion is as follows: We start with a clean ring.
the derivative of the electrostatic potential at the origitsee ~ Recall thatp(e) feature a gag0,e|. If we haveM uncor-

SM) related defected bonds with songedisorder the condition
ot V(es) < V(0) implies S = vVMa (see SM). The handling of

V/(€) ¢ T COY( 7Tt ) (11)  weaklinksis a bit more complicated (see SM) but leads to the
€c same conclusion, where the rolemfis played by the disper-

One observes that the sign changes from positive to negativaon of the defecteds,. Smalla is conceptually like having
atp = 1/2. Some examples are illustratedrig[2. Clearly, sparsely distributed weak links, so similar dependence-is e
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FIG. 4. Complexity saturation. The number of complex eigdues

is counted for a ring wittN=100 sites, for various values of the
affinity s. Each red line corresponds to a different realization ofifiel
disorder witho=3 (red) ando=5 (blue). The vertical lines are the
corresponding values ef, at which the sliding transition occurs. We
see that the asymptotic fraction of complex eigenvaluesratss.
The horizontal dashed line are the analytical estimatesqp{14)

If the lattice were continuous with Gaussian disorder, thenlber

of complex eigenvalues would go to 100%. In the background a
disordered resistor network with = 0.9 is shown. The crossover is

0 0.5 o 1 15 blurred and the saturation value is lower compareBdd14)

Ns,

FIG. 3. The complexity threshold. Top panel: The threshalie

-Om| res _ a(stae)/2 : :
s for delocalization versus the number of stochastic fieldedsf — €¢ = elst7)/2, wherea is the solution of

M. The number of sites ill=100 and the disorder strength (of the o
defected sites) ig=5. Blue dots correspond to different realizations, / In ’ec/z — eUC/Z‘ d¢ = 0 (13)
while red dots are the average (pé). For a fully disordered lattice i

we expect: = 12, hence the scaling of the axes. The black line is |t follows that the fraction of complex eigenvalues is

s = +v/Ma/N. Bottom panel: The threshold valsgversusa. The L L

dots are for different realizations, while the lines are stetistical s cc . €\ Oc+0
average. Foo < 1/2 thes; diverges ad is increased. Data points fraction= N /es ple)de = o In <65) T 20 (14)
for eachN are slightly shifted for clarity.

We demonstrate the agreement with this formulRigid. We

plot there also what happens if resistor-network disorsler-i
pected. InFig[3 we demonstrate numerically the dependencdroduced. We see that for smallthe crossover is not as sharp
of s on M/N and ona, confirming the observations above. and the saturation value is lower th&u. (I3)as expected
In the non-percolating regime we expegtto diverge asN fromEq.([12)

is increased. In fact we see that it happens only i 1/2, In conclusion.— we have shown that the relaxation proper-
and can be explained on the basisEaf. (I1)with u that is  ties of a closed circuit (or chemical-cycle), whose dynansc
determined byr as discussed earlier. generated by a conservative rate-equation, is dramatidid|

Complexity saturation.— The secular equation for the ferent from that of a biased non-hermitian Hamiltonian. The
eigenvalues is given bigqg. () In the nonconservative case, transition to complexity depends on the type of disorder as
the eigenvalues off do not depend os, thus raisings will summarized iriTablelll Surprisingly it happens foor > 1/2
eventually make the entire spectrum complex. For a conbefore the percolation transition, and for> 1/2 before the
servative matrix, howevel/ (¢) is also a function ofs, so  sliding transition, and diminishes agN for sparse disorder.
increasings raisesV(¢) at the same rate. Takingto be  Furtherincreasing the bias does not lead to full delocadina
as large as desired, the eigenvaluesHobecome trivially —instead a “complexity saturation” is observed.
€n ~ Yh ~ Wne’/2, and the equatiovi(¢) =V (0) for the upper
cutoff ¢ of the complex energies takes the form

In[e—wef/2] = s/2 (12)

It is natural to write the stochastic field &= s+ ¢, such
that¢ € [—o,+0]. For the purpose of presentation we assume
thatw=1. Then the spectrum stretches fregn= e(S-9)/2 to
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Supplement

The percolation threshold.— An example where the per-
colation issue arises is provided by the analysis of relaxat
in “glassy” networksmz 3], where the sites are distributed

ary Material

scale Is. In the absence of bias the smoothed functions are
constant and we get the canonical equilibrium state.

randomly in space, and the rates depend exponentially on The similarity transformation.— Define the diagonal ma-

the inter-site distance, namely exp(—r/&). In such type
of model there is a percolation-related crossover to végiab

trix U = diag{U (n)}. The stochastic field can be made uni-
form, as in [16], by performing a similarity transformation

range-hopping|E3]. But in one-dimension there is a moreW = eV/2We U/2 |eading to

dramatic crossover to sub-diffusidn [1]. The statisticghof
inter-site distances is Poisson Pfob exp(—r/a), wherea
is the mean spacing, and therefare= £ /a in Eq.(8) The
diffusion coefficient is the harmonic average overreflect-
ing serial addition of connectors. It becomes zerodor. 1.

The percolation control-parameter is reflected in the
exponeni that characterizes the spectral functiéo (4) As
explained in the main text, the exponents further affected
by the biass. SeeFigH for illustration.

The NESS formula.— Following the derivation irJE4] the
explicit formula for the NESS is

o O (é) (UM ~Us(n) (15)
S

whereU (n) is the stochastic potential that is associated with

the stochastic field such that,=U(n)—U(n—1). The
transitions in the drift-wise direction are;; = w,e’"/2, and
the subscrips indicates drift-wise smoothing over a length

o Numerics
-m -eﬂs

TS
—Bessel

10°

FIG. 5. The spectrum of the associated hermitian matrix. sleue
late numerically the integrated density, which counts igerevalues
{ek < €} of H for a ring with N=3000 sites. The system is char-
acterized by a percolation expongnt= Ly =1/3, and by a scaled
affinity u = pus=1. The stochastic-field distribution is withi=2.
The blue points are are results of numerical diagonalinafidnere is

a crossover from density that correspondgid@dashed black line),
to density that corresponds ty (dashed green line). The red line is
the Bessel expression &f [6].

W = diagona{ — yn} + offdiagona{wnei%ﬁ } (16)

where the %" are for the forward and backward transitions
respectively. Note that the-dependent statistics of th&,

is still hiding in the diagonal elements. The associated
symmetric matrixH is defined by setting- = 0. Then one
can define an associated spectrgm For an open chain
settingS+ = 0 can be regarded as a gauge transformation of
an imaginary vector potential. For a closed riagis like an
imaginary Aharonov-Bohm flux, and cannot be gauged away.

Finding s;.— The cummulant generating function of the
stochastic field can be written géu) = (s— sy )4, where the
sy are defined via the following expression:

<efﬂof"> = g (s—swu

If the stochastic field has normal distribution with stamtar
deviationo, thens, = (1/2)0?u. For our log-box distribu-
tion Eq. (8) applies. The finite value of, reflects thats” is
bounded.

(17)

Finding V’(0).— To deriveEqg. (1) we assume an inte-
grated density of states that correspond&tp (4) namely,
N (e) = (e/ec)!, whereec is some cutoff that reflects the dis-
creteness of the lattice. After integration by parts thetede
static potential along the real axis is given by

V(e = —/()'/V—(X)

X—¢€
While calculating the derivative we assum& ¢, hence tak-
ing the upper limit of the scaled integral as infinity:

dx (18)

7 oozufl
Vi(e) = Eﬂue“ 1/0 Z dz (19)
C
= L Bu(,0) (20)
C

whereBy(a,b) is the Incomplete Euler Beta function. Taking
the Cauchy principal part we get

Bw(H,0) = gLnO[Blffs(u,O) — By 5(1—u,0)]

— Y(1— ) — (p) = rrcot(my)

wherey(z) is the digamma function, and the last equality has
been obtained by the reflection formula.

(21)
(22)
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30- ficient Do = wa? and drift velocityvp = swa The weak link
---N =10 e corresponds to a segment where the diffusion coefficient is
—N =22 e D1 <« Dg. Using transfer matrix methods we find the secular

equation

cos(k)+$@sin(k) = cosh(%) (23)

wherek? = (L?/D)z— (S+/2)?, andg = (D1 /a)/(Do/L). We
have taken here the limé— 0, keeping(L,g,S+) constant.
The equation is graphically illustrated Fig[@. All the roots
are real solutions provided the envelope of the left-hadd-s
-10b ‘ ‘ (LHS) lays above the right-hand-side (RHS). The minimum
0 500 1000 of the envelope of the LHS is obtainedat S% /2. Conse-

¢ qguently we find that the thresho®& obeys

FIG. 6. Graphical illustration of the the secular equationd ring
with a weak link. The red line i¥(0). The blue line isV(e) as S _ Cosh[%} (24)

deduced from the LHS oEq. [23)with L =1, andg= 10" and 29
S+ =20. The yellow line is an attempted reconstructionVdt)

from the firstN = 22 roptSek of theSQ.:O equation. The green line providedS- > g, which is self-justified for smaly. The
is a proper reconstruction that takes into account an iryptaimeg.

The deviation from the blue line for lard@s due to finite truncation: solution is given in ter.ms of the Lambert function, namely
compare théd=10 line with theN=22 line. S = —2W(-g/2), leading tos; = &/N.
The secular, equatioBq. (23) parallels the discrete ver-
sion Eq. (@) with a small twist that we would like to point
Finding s due to a biased-link.— We consider a clean out. Naively one would like to identify [2(LHS — 1)], up
ring. We assume that the stochastic field over one bond i® a constant, witty _; In(e — k), where they are the roots
exceptionally large compared to all other bonds. Then theref Eq. (23) with S+=0 in the RHS. This is tested iRig6,
is an extra “impurity” levele; =~ y1 ~ exp/(s+0)/2] that and we see that there is a problem. Then one realizes that in
is located above the continuum of extended modes. Théct an additionak = 0 term with 0< ¢g < ¢ is missing. Go-
contribution of this impurity toV(es) is In(es— y1). The  ing back to the discrete version it corresponds to an impurit
contribution of the continuum can be neglected due to thdevel that is associated with a mode which is located at the
Thouless relation. Hence the conditidifes) >V (0) implies  weak-link. While taking the limita — 0 this level becomes
s~ og/N. excluded. Adding it back we we see that the agreement be-
tweenEq. (1) andEq. (23)is restored. The residual system-
Finding s due to a weak-link.— We consider a clean ring atic error ak becomes larger is due to finite truncation of the
of lengthL = Na with lattice spacinga and identical bonds number of roots used in the reconstruction. Making the ap-
(Wnh = 1). We change one bond into a weak linky(< 1).  proximation Ir(es — o) ~ In[(s/2)?], and noting thay [ N, it
This setup can be treated exactly in the continuum limit,is verified that the equatiovi(es) =V (0) for the complexity
whereEg. (1) corresponds to a diffusion equation with coef- threshold is consistent withq. (24)
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