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Percolation, sliding, localization and relaxation in topologically closed circuits

Daniel Hurowitz, Doron Cohen
Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva, Israel

Consideringrandom walk in random environmentin a topologically closed circuit, we explore the implica-
tions of the percolation and sliding transitions for its relaxation modes. A complementary question regarding
the “delocalization” of eigenstates of non-hermitian Hamiltonians has been addressed by Hatano, Nelson, and
followers. But we show that for a conservative stochastic process the implied spectral properties are dramati-
cally different. In particular we determine the threshold for under-damped relaxation, and observe “complexity
saturation” as the bias is increased.

The original version of Einstein’s Brownian motion prob-
lem is essentially equivalent to the analysis of a simple
random walk. The more complicated version ofrandom
walk on a disordered lattice, features a percolation-related
crossover to variable-range-hopping, or to sub-diffusionin
one-dimension [1]. In fact it is formally like a resistor-
network problem, and has diverse applications, e.g. in the
context of “glassy” electron dynamics [2, 3]. But more gen-
erally one has to consider Sinai’s spreading problem [4–7],
aka random walk in a random environment, where the tran-
sition rates are allowed to be asymmetric. It turns out that
for any small amount of disorder an unbiased spreading in
one-dimension becomes sub-diffusive, while for bias that ex-
ceeds a finite threshold there is asliding transition, leading
to a non-zero drift velocity. The latter has relevance e.g. for
studies in a biophysical context: population biology [8, 9],
pulling pinned polymers and DNA denaturation [10, 11] and
processive molecular motors [12, 13].

The dynamics in all the above variations of the random-
walk problem can be regarded as a stochastic process in which
a particle hops from site to site. The rate equation for the site
occupation probabilitiesp = {pn} can be written in matrix
notation as

dp
dt

= Wp, (1)

involving a matrixW whose off-diagonal elements are the
transition rateswnm, and with diagonal elements−γn such that
each column sums to zero. Assuming near-neighbor hopping
theW matrix takes the form

W =









−γ1 w1,2 0 ...
w2,1 −γ2 w2,3 ...

0 w3,2 −γ3 ...
... ... ... ...









(2)

In Einstein’s theoryW is symmetric, and all the non-zero
rates are the same; In the resistor-network problem the rates
have some distributionP(w) that features (see SM)

P(w) ∝ wα−1 (for smallw) (3)

But in Sinai’s problemW is allowed to be asymmetric. Ac-
cordingly the rates at thenth bond can be written aswne±En/2

for forward and backward transitions respectively. For the
purpose of presentation we assume that the stochastic fieldE

is box distributed within[s−σ ,s+σ ]. We refer tos as the

bias: it is the pulling force in the case of depinning polymers
and DNA denaturation; or the convective flow of bacteria rel-
ative to the nutrients in the case of population biology; or the
affinity of the chemical cycle in the case of molecular motors.

Our interest is in the relaxation dynamics of finiteN-site
ring-shaped circuits, that are described by the stochasticequa-
tion Eq. (1). TheN sites might be physical locations in some
lattice structure, or can represent steps of some chemical-
cycle. For example, in the Brownian motor contextN is the
number of chemical-reactions required to advance the motor
one pace. We are inspired by the study of of non-Hermitian
quantum Hamiltonians with regard to vortex depinning in type
II superconductors [14–16]; molecular motors withfinitepro-
cessivity [17, 18]; and related works [19–21]. In both exam-
ples conservation of probability is violated. In the first exam-
ple the bias is the applied transverse magnetic field; andN is
the number of defects to which the magnetic vortex can pin.

Scope.– In this article we report how the spectral prop-
erties of the matrixW depend on the parameters(α,σ ,s),
as defined afterEq. (2). These parameters describe respec-
tively the resistor-network disorder, the stochastic-field disor-
der, and the average bias field. The eigenvalues{−λk} of W
are associated with the relaxation modes of the system. Due to
conservation of probabilityλ0 = 0, while all the other eigen-
values{λk} have positive real part, and may have an imagi-
nary part as well. Complex eigenvalues imply that the relax-
ation is not over-damped: one would be able to observe an os-
cillating density during relaxation, as demonstrated inFig.1.
The first row ofFig.2 provides some representative spectra.
As the biass is increased a complex bubble appears at the bot-
tom of the band, implying delocalization of the eigenstates.
Our results for the complexity thresholdsc are summarized in
TableI, and demonstrated inFig.3. The number of complex
eigenvalues grows as a function of the bias, as demonstrated
in Fig.4, but asymptotically only a finite fraction of the spec-
trum becomes complex. Our objective below is to explain an-
alytically the peculiarities of this delocalization transition, to
explain how it is affected by the percolation and by the sliding
thresholds, and to analyze the complexity-saturation effect.

Stochastic spreading.–We first consider an opened ring,
namely a disordered chain. The asymmetry can be gauged
away, andW becomes similar to a symmetric matrixH (see
SM). The statistics of its off-diagonal elements is character-
ized byα, while the statistics of the diagonal elements is also
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Type of disorder Parameters sc Remarks

Resistor-network α< 1
2 , σ=0 sc = ∞ non-percolating

Resistor-network1
2<α<1, σ=0 sc ∼ (1/N) residual percolation

Sparse (M/N)≪ 1 sc ∼ (1/N) both disorder types

Stochastic field α>1, σ 6=0 sc ≈ s1/2 percolating

TABLE I. The complexity threshold for different types of disorder
(aka delocalization transition). We distinguish between resistor net-
work disorder and stochastic field disorder. The thresholds1/2 re-
flects the strengthσ of the latter. It is smaller than thes1 threshold
of the sliding transition. Note that the thresholdssµ depend neither
onN nor onα.

FIG. 1. Simulated trajectory of a particle on a disordered-ring. The
number of sites isN=100 and the disorder strength isσ=5. The
radial direction is time and the angle is the position. For small s (left
panels=0.88) the dynamics is over-damped, while for larges (right
panels=2.97) the dynamics is under-damped. The outer thick line is
the steady-state distribution (see SM).

affected byσ ands. The eigenvalues{−ǫk} of H are real.
In the absence of disorder they form a band[ǫs, ǫ∞] where
ǫs,∞ = 2[cosh(s/2)∓1]. For sparse disorder withM (≪ N)
disordered bonds, a few additional isolated eigenvalues might
appear in the gap[0, ǫs]. With full disorder it is possible to get
a gapless spectrum. This is the case for Gaussian white-noise
stochastic-field disorder as analyzed in [6]. In this case there
is an analytical expression for the spectral density in terms of
Bessel functions. The expression features

ρ(ǫ) ∝ ǫµ−1 (for smallǫ) (4)

with no gap. The exponent is related to the bias via
s= (1/2)σ2µ. In the present work we assume the more phys-
ically appealing log-box disorder for which (see SM)

s = sµ =
1
µ

ln

(

sinh(σ µ)
σ µ

)

(5)

Unlike Gaussian disorder the range of possible rates is
bounded, and we see that a finite thresholds∞ = σ is deduced.
Fors> s∞ a gap opens up. Using the above spectral properties
it is deduced that the spreading of a distribution along an infi-
nite chain goes likex∼ tµ for s< s1, while fors> s1 we have
a non-zero drift velocity. This is known as the “sliding tran-
sition”. As for the second moment, forµ < 1/2 the diffusion
coefficient is zero.

The introduction of resistor-network-disorder modifies the
spectral density at higher energies (seeFig.5 of the SM for il-

lustration). Forα > 1, in the absence of bias, the continuum-
limit approximation featuresµ = 1/2. This reflects a nor-
mal diffusive behavior as in Einstein’s theory of Brownian
motion. Below the percolation threshold, namely forα < 1,
normal diffusion is suppressed, and the spectral exponent is
µ = α/(1+α)< 1/2. But for large bias, the diagonal disor-
der inH dominates, leading to trivially localized eigenstates.
Hence for large bias we simply haveµ = α irrespective of the
percolation aspect.

Relaxation.– We close anN-site chain into a ring. The
ring is characterized by its so-called affinity,

S	 ≡ N s (6)

Now a topological aspect is added to the problem, and one
wonders what are the relaxation modes of the system. The
starting point of our analysis is the secular equation for the
eigenvalues ofW . Assuming that we already know what are
the eigenvalues of the associated symmetric matrixH , the
secular equation takes the form [22]

∏
k

(

z+ ǫk(s)
w

)

= 2

[

cosh

(

S	
2

)

−1

]

(7)

wherew is the geometric average of all the rates. The biass
affects both theǫk and the right hand side. This equation has
been analyzed in [16] in the case of a non-conservative ma-
trix W whose diagonal elementsγn arefixed, hence theǫk(s)
there do not depend ons. Consequently, ass of Eq. (6)) is
increased beyond a threshold valuesc, the eigenvalues in the
middle of the spectrum become complex. Ass is further in-
creased beyond some higher threshold value, the entire spec-
trum becomes complex. As already stated in the introduction,
this is not the scenario that is observed for our conservative
model. Furthermore we want to clarify how the percolation
and sliding thresholds are reflected.

Already at this stage one should be aware of the immediate
implications of conservativity. First of allz= λ0 = 0 should
be a root of the secular equation. The associated eigenstate
is the non-equilibrium steady state (NESS), which is an ex-
tended state (see SM). In fact it follows that the localization
length has to diverge asλ → 0. This is in essence the dif-
ference between the conventional Anderson model (Lifshitz
tails at the band floor) and the Debye model (phonons at the
band floor). It is the latter picture that applies in the case of a
conservative model.

Electrostatic picture.– In order to get an insight into the
secular equation we define an “electrostatic” potential by tak-
ing the log of the left hand side ofEq.(7). Namely,

Ψ(z) = ∑
k

ln(z− ǫk) ≡ V(x,y)+ iA(x,y) (8)

wherez= x+ iy. Note that we have flipped the sign conven-
tion (z 7→ −z), and also we set the time units such thatw= 1.
The constantV(x,y) curves correspond to potential contours,
and the constantA(x,y) curves corresponds to stream lines.
The derivativeΨ′(z) corresponds to the field, which can be
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FIG. 2. The emergence of complexity in the relaxation spectrum. The upper panels display representative examples of relaxation spectra.
The{λk} are indicated by green points in the complex plane. The ring hasN=500 sites withσ=5, and (from left to right)s= 1.24,2.43,10.
The calculated threshold values ares1/2 = 1.77 ands1 = 2.7 ands∞ = 5. In the left hand columns< s1/2 and the spectrum is real. In the
middle columns1/2 < s< s∞ and the spectrum is with several complex bubbles separated by real segments. In the right columns> s∞ and the
real spectrum has a gap, while the complex spectrum is a fullydeveloped complex bubble, tangent to the origin (no gap). The “electrostatic
field” that is associated with the secular equation is represented by a few field-lines, while the background color provides visualization of the
corresponding electrostatic potential. The spectrum is obtained by looking for the intersections of the field lines with the equipotential line
V(z) =V(0) that goes through the origin (indicated in white). The lowerpanels plot the potentialV(ǫ) along the real axis. The horizontal
dashed line isV(0).

regarded as either electric or magnetic field up to a 90deg rota-
tion. Using this language, the secular equation takes the form

V(x,y) =V(0); A(x,y) = 2π ∗ integer (9)

Namely the roots are the intersection of the field lines with the
potential contour that goes through the origin (Fig.2). We want
to find what are the conditions for getting a real spectrum from
Eq. (9), and in particular what is the thresholdsc for getting
complex eigenvalues at the bottom of the spectrum. We first
look on the potential along the real axis:

V(ǫ) =

∫

ln
(

|ǫ− x′
∣

∣)ρ(x′)dx′ (10)

In regions where the{ǫk} form a quasi-continuum, one can
identify (1/N)V(ǫ) as the Thouless expression for the inverse
localization length [16]. The explicit value ofV(0) is im-
plied by Eq. (7), namelyV(0) = ln[2(cosh(S	/2)−1)]. For
a charge-density that is given byEq.(4), with some cutoffǫc,
the derivative of the electrostatic potential at the originis (see
SM)

V ′(ǫ)≈ ǫµ−1

ǫ
µ
c

πµ cot(πµ) (11)

One observes that the sign changes from positive to negative
at µ = 1/2. Some examples are illustrated inFig.2. Clearly,

if the envelope ofV(ǫ) is above theV = V(0) line, then the
spectrum is real, and theλk are roughly the same as theǫk,
shifted a bit to the left.

From the above it follows that the thresholdsc for
the appearance of a complex quasi-continuum is either
V(ǫs)<V(0) or V ′(0)< 0, depending on whetherρ(ǫ) is
gapped or not. In the latter case it follows fromEq. (11)that
sc = s1/2. We note that for the Gaussian model of [6] one
obtainsV(ǫ→ ∞) = const, implying that the entire spectrum
would go from real to complex ats= s1/2. In general this is
not the case: the complex spectrum typically forms a “bubble”
tangent to the origin, or possibly one may find some additional
bubbles as inFig.2b.

The identification of thesc with s1/2 holds for full disor-
der, but not for sparse disorder. In the latter casesc ∝ 1/N,
or we may better look onSc = Nsc. The reasoning that leads
to this conclusion is as follows: We start with a clean ring.
Recall thatρ(ǫ) feature a gap[0, ǫs]. If we haveM uncor-
related defected bonds with someσ disorder the condition
V(ǫs)<V(0) implies Sc =

√
Mσ (see SM). The handling of

weak links is a bit more complicated (see SM) but leads to the
same conclusion, where the role ofσ is played by the disper-
sion of the defectedwn. Smallα is conceptually like having
sparsely distributed weak links, so similar dependence is ex-



4

10
−2

10
−1

10
010

−3

10
−2

10
−1

10
0

M/N

s
c
/
s
1
/
2

0 0.5 1 1.5

10
0

10
1

10
2

α

N
s
c

 

 

N=100
N=500

0 0.5 1 1.5

10
0

10
1

10
2

α

N
s
c

 

 

N=100
N=500

0 0.5 1 1.5

10
0

10
1

10
2

α

N
s
c

 

 

N=10
N=100
N=500

0 0.5 1 1.5

10
0

10
1

10
2

α

N
s
c

 

 

N=10
N=100
N=500

FIG. 3. The complexity threshold. Top panel: The threshold value
sc for delocalization versus the number of stochastic field defects
M. The number of sites isN=100 and the disorder strength (of the
defected sites) isσ=5. Blue dots correspond to different realizations,
while red dots are the average (perM). For a fully disordered lattice
we expectsc = s1/2, hence the scaling of the axes. The black line is

sc =
√

Mσ/N. Bottom panel: The threshold valuesc versusα. The
dots are for different realizations, while the lines are thestatistical
average. Forα < 1/2 thesc diverges asN is increased. Data points
for eachN are slightly shifted for clarity.

pected. InFig.3 we demonstrate numerically the dependence
of sc on M/N and onα, confirming the observations above.
In the non-percolating regime we expectsc to diverge asN
is increased. In fact we see that it happens only ifα < 1/2,
and can be explained on the basis ofEq. (11)with µ that is
determined byα as discussed earlier.

Complexity saturation.– The secular equation for the
eigenvalues is given byEq. (7). In the nonconservative case,
the eigenvalues ofH do not depend ons, thus raisings will
eventually make the entire spectrum complex. For a con-
servative matrix, however,V(ǫ) is also a function ofs, so
increasings raisesV(ǫ) at the same rate. Takings to be
as large as desired, the eigenvalues ofH become trivially
ǫn ≈ γn ≈ wneEn/2, and the equationV(ǫ)=V(0) for the upper
cutoff ǫc of the complex energies takes the form

ln
[

ǫ−weE /2
]

= s/2 (12)

It is natural to write the stochastic field asE = s+ ς , such
thatς ∈ [−σ ,+σ ]. For the purpose of presentation we assume
thatw=1. Then the spectrum stretches fromǫs = e(s−σ)/2 to
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FIG. 4. Complexity saturation. The number of complex eigenvalues
is counted for a ring withN=100 sites, for various values of the
affinity s. Each red line corresponds to a different realization of field
disorder withσ=3 (red) andσ=5 (blue). The vertical lines are the
corresponding values ofs1, at which the sliding transition occurs. We
see that the asymptotic fraction of complex eigenvalues saturates.
The horizontal dashed line are the analytical estimates ofEq. (14).
If the lattice were continuous with Gaussian disorder, the number
of complex eigenvalues would go to 100%. In the background a
disordered resistor network withα = 0.9 is shown. The crossover is
blurred and the saturation value is lower compared toEq.(14).

ǫc = e(s+σc)/2, whereσc is the solution of
∫ σ

−σ
ln
∣

∣

∣
eς/2−eσc/2

∣

∣

∣
dς = 0 (13)

It follows that the fraction of complex eigenvalues is

fraction=
1
N

∫

ǫc

ǫs

ρ(ǫ)dǫ=
1
σ

ln

(

ǫc

ǫs

)

=
σc+σ

2σ
(14)

We demonstrate the agreement with this formula inFig.4. We
plot there also what happens if resistor-network disorder is in-
troduced. We see that for smallα the crossover is not as sharp
and the saturation value is lower thanEq. (14) as expected
from Eq.(12).

In conclusion.– we have shown that the relaxation proper-
ties of a closed circuit (or chemical-cycle), whose dynamics is
generated by a conservative rate-equation, is dramatically dif-
ferent from that of a biased non-hermitian Hamiltonian. The
transition to complexity depends on the type of disorder as
summarized inTable I. Surprisingly it happens forα > 1/2
before the percolation transition, and forµ > 1/2 before the
sliding transition, and diminishes as 1/N for sparse disorder.
Further increasing the bias does not lead to full delocalization,
instead a “complexity saturation” is observed.
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Supplementary Material

The percolation threshold.– An example where the per-
colation issue arises is provided by the analysis of relaxation
in “glassy” networks [2, 3], where the sites are distributed
randomly in space, and the rates depend exponentially on
the inter-site distance, namelyw ∝ exp(−r/ξ ). In such type
of model there is a percolation-related crossover to variable-
range-hopping [23]. But in one-dimension there is a more
dramatic crossover to sub-diffusion [1]. The statistics ofthe
inter-site distances is Poisson Prob(r) ∝ exp(−r/a), wherea
is the mean spacing, and thereforeα = ξ/a in Eq. (5). The
diffusion coefficient is the harmonic average overw, reflect-
ing serial addition of connectors. It becomes zero forα < 1.

The percolation control-parameterα is reflected in the
exponentµ that characterizes the spectral functionEq.(4). As
explained in the main text, the exponentµ is further affected
by the biass. SeeFig.5 for illustration.

The NESS formula.– Following the derivation in [24] the
explicit formula for the NESS is

pn ∝
(

1
w−→n

)

s
e−(U(n)−Us(n)) (15)

whereU(n) is the stochastic potential that is associated with
the stochastic field such thatEn =U(n)−U(n−1). The
transitions in the drift-wise direction arew−→n = wneEn/2, and
the subscripts indicates drift-wise smoothing over a length

10
−12

10
−10

10
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10
0
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N
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µ s

ǫ
µα

Bessel

FIG. 5. The spectrum of the associated hermitian matrix. We calcu-
late numerically the integrated density, which counts the eigenvalues
{ǫk < ǫ} of H for a ring with N=3000 sites. The system is char-
acterized by a percolation exponentµ = µα = 1/3, and by a scaled
affinity µ = µs = 1. The stochastic-field distribution is withσ=2.
The blue points are are results of numerical diagonalization. There is
a crossover from density that corresponds toµs (dashed black line),
to density that corresponds toµα (dashed green line). The red line is
the Bessel expression of [6].

scale 1/s. In the absence of bias the smoothed functions are
constant and we get the canonical equilibrium state.

The similarity transformation.– Define the diagonal ma-
trix U = diag{U(n)}. The stochastic field can be made uni-
form, as in [16], by performing a similarity transformation
W̃ = eU/2We−U/2, leading to

W̃ = diagonal
{

− γn

}

+offdiagonal
{

wne±
S	
2N

}

(16)

where the ”±” are for the forward and backward transitions
respectively. Note that thes-dependent statistics of theEn

is still hiding in the diagonal elements. The associated
symmetric matrixH is defined by settingS	 = 0. Then one
can define an associated spectrumǫk. For an open chain
settingS	 = 0 can be regarded as a gauge transformation of
an imaginary vector potential. For a closed ringS	 is like an
imaginary Aharonov-Bohm flux, and cannot be gauged away.

Finding sµ .– The cummulant generating function of the
stochastic field can be written asg(µ) = (s−sµ)µ , where the
sµ are defined via the following expression:

〈

e−µE

〉

≡ e−(s−sµ )µ (17)

If the stochastic field has normal distribution with standard
deviationσ , thensµ = (1/2)σ2µ . For our log-box distribu-
tion Eq. (5)applies. The finite value ofs∞ reflects thatE is
bounded.

Finding V ′(0).– To deriveEq. (11) we assume an inte-
grated density of states that corresponds toEq. (4), namely,
N (ǫ) = (ǫ/ǫc)

µ , whereǫc is some cutoff that reflects the dis-
creteness of the lattice. After integration by parts the electro-
static potential along the real axis is given by

V(ǫ) = −
∫

ǫc

0

N (x)
x− ǫ

dx (18)

While calculating the derivative we assumeǫ≪ ǫc, hence tak-
ing the upper limit of the scaled integral as infinity:

V ′(ǫ) =
µ
ǫ

µ
c
ǫµ−1

∫ ∞

0

zµ−1

z−1
dz (19)

=− µ
ǫ

µ
c
ǫµ−1 B∞(µ ,0) (20)

whereBu(a,b) is the Incomplete Euler Beta function. Taking
the Cauchy principal part we get

B∞(µ ,0) = lim
δ→0

[B1−δ (µ ,0)−B1−δ(1− µ ,0)] (21)

= ψ(1− µ)−ψ(µ) = π cot(πµ) (22)

whereψ(z) is the digamma function, and the last equality has
been obtained by the reflection formula.
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FIG. 6. Graphical illustration of the the secular equation for a ring
with a weak link. The red line isV(0). The blue line isV(ǫ) as
deduced from the LHS ofEq. (23)with L = 1, andg= 10−3 and
S	 = 20. The yellow line is an attempted reconstruction ofV(ǫ)
from the firstN = 22 rootsǫk of theS	=0 equation. The green line
is a proper reconstruction that takes into account an impurity termǫ0.
The deviation from the blue line for largek is due to finite truncation:
compare theN=10 line with theN=22 line.

Finding sc due to a biased-link.– We consider a clean
ring. We assume that the stochastic field over one bond is
exceptionally large compared to all other bonds. Then there
is an extra “impurity” level ǫ1 ≈ γ1 ≈ exp[(s+σ)/2] that
is located above the continuum of extended modes. The
contribution of this impurity toV(ǫs) is ln(ǫs − γ1). The
contribution of the continuum can be neglected due to the
Thouless relation. Hence the conditionV(ǫs)>V(0) implies
sc ≈ σ/N.

Finding sc due to a weak-link.– We consider a clean ring
of lengthL = Na with lattice spacinga and identical bonds
(wn = 1). We change one bond into a weak link (w1 ≪ 1).
This setup can be treated exactly in the continuum limit,
whereEq. (1)corresponds to a diffusion equation with coef-

ficient D0 = wa2 and drift velocityv0 = swa. The weak link
corresponds to a segment where the diffusion coefficient is
D1 ≪ D0. Using transfer matrix methods we find the secular
equation

cos(k)+
1
g

k2+
(

S	
2

)2

2k
sin(k) = cosh

(

S	
2

)

(23)

wherek2 = (L2/D)z− (S	/2)2, andg= (D1/a)/(D0/L). We
have taken here the limita→ 0, keeping(L,g,S	) constant.
The equation is graphically illustrated inFig.6. All the roots
are real solutions provided the envelope of the left-hand-side
(LHS) lays above the right-hand-side (RHS). The minimum
of the envelope of the LHS is obtained atz= S2

	/2. Conse-
quently we find that the thresholdSc obeys

S	
2g

= cosh

[

S	
2

]

(24)

providedS	 ≫ g, which is self-justified for smallg. The
solution is given in terms of the Lambert function, namely
Sc =−2W(−g/2), leading tosc = Sc/N.

The secular, equationEq. (23), parallels the discrete ver-
sion Eq. (7), with a small twist that we would like to point
out. Naively one would like to identify ln[2(LHS− 1)], up
to a constant, with∑∞

k=1 ln(ǫ− ǫk), where theǫk are the roots
of Eq. (23)with S	=0 in the RHS. This is tested inFig.6,
and we see that there is a problem. Then one realizes that in
fact an additionalk= 0 term with 0. ǫ0 < ǫs is missing. Go-
ing back to the discrete version it corresponds to an impurity-
level that is associated with a mode which is located at the
weak-link. While taking the limita→ 0 this level becomes
excluded. Adding it back we we see that the agreement be-
tweenEq. (7)andEq. (23)is restored. The residual system-
atic error ask becomes larger is due to finite truncation of the
number of roots used in the reconstruction. Making the ap-
proximation ln(ǫs− ǫ0)≈ ln[(s/2)2], and noting thatg ∝ N, it
is verified that the equationV(ǫs) =V(0) for the complexity
threshold is consistent withEq.(24).


