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Imperfections in multimode systems lead to mode-mixing and interferences between propagating
modes. Such disorder is typically characterized by a finite correlation time (in quantum evolution)
or correlation length (in paraxial evolution). We show that the long-scale dynamics of an initial
excitation that spread in mode space can be tailored by the coherent dynamics on short-scale.
In particular we unveil a universal crossover from exponential to power-law ballistic-like decay of
the initial mode. Our results have applications to various wave physics frameworks, ranging from
multimode fiber optics to quantum dots and quantum biology.

Introduction.– The prevalence of wave coherent trans-
port in multimode systems in the presence of noisy envi-
roments is a research theme, with relevance to a range of
physics frameworks. For example, in the frameworks of
quantum electronics, optics or matter waves the quest to
develop methods that control coherence in many-particle
systems at the quantum limit has inspired new quan-
tum computation and information technologies that are
emerging the last years [1–4]. Recently, in the seem-
ingly remote field of quantum biology [5–11], researchers
have also provided experimental evidence of wavelike (co-
herent) energy transfer in “warm, wet and noisy” en-
viroments. Prominent example is the establishment of
the important role of coherence in optimizing photosyn-
thesis. Such findings triggered a number of tantalizing
questions like the possible role of coherent (quantum)
physics in brain functions, etc. It is natural, therefore,
to ask weather there are universal designed principles
that enforce coherence dynamics in various wave trans-
port settings where dynamical disorder (noise) cannot be
ignored.

The same basic question emerges, yet, in classical wave
transport in the framework of fiber optics [12]. Opti-
cal fibers have revolutionize many modern technologies
ranging from medical imaging and information-transfer
technologies to modern communications. Along these
lines, multi-mode fibers (MMFs) [13–16] have recently
been exploited as alternatives to single mode fibers– the
latter experiencing information capacity limitations, im-
posed by amplifier noise and fiber non-linearities. What
makes MMFs attractive is the possibility to utilize the
multiple modes as extra degrees of freedom in order to
carry additional information – thus increasing the infor-
mation capacity of a single fiber. On the counter-side,
MMF suffer from mode coupling due to external pertur-
bations (index fluctuations and fiber bending and twist-
ing) and from polarization scrambling effects due to fiber
imperfections (core ellipticity and eccentricity, bending
etc.). Both effects cause crosstalk and interference be-
tween propagating signals in different modes/ polariza-
tions. To make things worst, the fiber imperfections vary

FIG. 1. (Color online) Schematics of various multi-mode sys-
tems in the presence of noisy environment: (a) A MMF ex-
periencing twists, bendings, and other forms of perturbations
along the propagation direction z; (b) A multi-mode quantum
dot (or a multi-mode opto-mechanical cavity) with an incoher-
ently moving wall; (c) random network of coupled mechanical
oscillators (slow envelope approximation) in the presence of
noisy environment.

with the propagation distance z (aka quenched disorder).
It is, therefore, imperative to develop theories that take
into consideration the role of disorder in the modal (and
polarization) mixing and provide a quantitative descrip-
tion of light transport in MMFs.

Outline.– In this paper we utilize a Random Matrix
Theory (RMT) approach in order to unveil a physical
mechanism that shields wave coherent effects in the pres-
ence of disorder. The RMT approach typically uncovers
the most universal properties of wave transport in com-
plex systems, and it can therefore serve as a good starting
point for the understanding of designing schemes that
protect the wave nature of propagation against noise.
Specifically, we analyze the decay of an initial mode exci-
tation (labeled n0) in MMF that consist of N modes with
propagation constants βn = n∆ where n = 1, · · · , N .
The main objective is to study the decay of the sur-
vival probability P(z) towards its ergodic limit ∼ 1/N .
The mode mixing is due to quenched disorder associated
with external perturbations along the propagation direc-
tion z of the MMF. It is characterized by its strength ε
and by a correlation length zc. From practical as well
as physical point of view the interest is mainly in weak
disorder (ε <

√
N∆), that can be characterized by a

Fermi-Golden-Rule rate

Γ =
4π

∆
ε2 (1)
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Consequently we distinguish between two length scales:

z∆ ≡
2π

N∆
; zΓ ≡

1

Γ
(2)

The former is the short length scale over which the band-
width is resolved, while the latter characterizes the non-
stochastic coherent decay of an excitation. We distin-
guish between short correlation length (zc < z∆) and
long correlation length (zc > zΓ). In the latter regime
we find ballistic-like decay P(z) ∼ 1/z as opposed to the
exponential decay for shorter zc. In the concluding para-
graph we emphasize that the results of our study are
relevant for a wide range of multi-mode or multi-level
physical settings (see Fig. 1), appearing in areas as di-
verse as mesoscopic optics, and matter waves to quantum
electronics and quantum biology.

RMT modeling.– We presume that the perturbations
along the propagation distance of the fiber induce only
coupling between forward propagating modes (paraxial
approximation). Furthermore, we consider that the fiber
can be described in terms of concatenated segments of
length zc which are associated with statistically indepen-
dent fiber perturbations. Based on these assumptions
we can write a paraxial Hamiltonian H(k) = H0 + εB(k)

that describes the field propagation within the k-th seg-
ment. Here H0 describes the unperturbed fiber and

B(k) =
(
B(k)

)†
represents the perturbation of the k-th

segment that is responsible for the mode mixing. In the
mode representation the N × N matrix H0 is diagonal

with elements H
(0)
nm = βnδn,m. For simplicity we assume

that the mode propagation constants are equally spaced,
namely βn = n∆ where n = 1, · · · , N . The perturbation
matrix B(k) is modeled as a GUE random matrix. For
such matrix 〈|B|2〉 = 2, hence the off diagonal terms of
the Hamiltonian have dispersion 2ε2 and zero average.
Note that this factor of 2 is reflected in the definition of
Eq.(1).

The field propagation in each section k is described by
the unitary matrix

U (k) = e−i(H0+εB(k))zc (3)

In the analysis below, we do not consider polarization
degrees of freedom. It can be shown that their presence
does not alter the general picture (appart from an abrupt
drop in the survival probability during the first evolution
step), and therefore we omit them for a better clarity
of the presentation. Below, unless stated otherwise, we
assume that the paraxial distances are measured in units
of mean propagation constant spacing ∆.

The one step dynamics is characterized by a stochastic
kernel

P (n|n0) =
∣∣〈n∣∣U (k)

∣∣n0

〉∣∣2 (4)

≡ (1−λ)δn,n0 + λW (n− n0) (5)

Here we averaged the one-step dynamics over realizations
of the random matrix B(k). The parameter λ is defined

as the probability that is drained from the initial mode
after one step. The function W (n−n0) describes the dis-
tribution of the probability over the other modes. The
modal field amplitudes Ψn(z) at distance z along the
MMF are determined by operating on the initial state
Ψn(0) = δn,n0

with an ordered sequence of U (k) matri-
ces (k = 1, 2, · · ·). This multi-step dynamics generates a
distribution Pz(n|n0) = |Ψn(z)|2. Below we discuss how
Pz(n|n0) is related to P (n|n0), and what are the impli-
cations regrading the survival probability

P(z) ≡ Pz(n0|n0) (6)

Short correlation length.– For short segment (z < z∆)
the probability that is transferred to each of the N modes
is 2ε2z2

c hence the total probability that is drained from
the initial mode is

λ = N × 2ε2z2
c =

z2
c

zΓz∆
(7)

As long as the first term in Eq.(5) dominates, successive
convolutions lead to exponential decay, namely, after t
steps (1−λ)t ≈ exp(−λt), with t = z/zc, hence

P(z) = exp

[
− zc
z∆zΓ

z

]
, for zc < z∆ (8)

The above has been tested numerically and was found to
reproduce nicely the results of our simulations for various
N -values, see Fig. 2a. At the same figure we also display
the single step P (n|n0), and the Pz(n|n0) distribution
after 100 steps, see Fig. 2b and Fig. 2c respectively.
In both instances the shape of the evolving distribution
is dominated by a delta peak around the initial mode
(n0 = N/2). This delta peak is gradually drained, until
it attains the ergodic value P(z) ≈ 1/N .

Large correlation length.– For zc > zΓ it is well known
from the study of the coherent dynamics [18, 19] that the
initial delta peak completely dissolves, and one obtains
Eq.(5) with λ ∼ 1 and Lorentzian line shape

W (n− n0) =
∆

π

Γ

[(n− n0)∆]2 + Γ2
(9)

This line shape is obtained after distance zΓ. After a
larger distance zc > zΓ the line shape does not change,
but the phases of the wavefunction are further random-
ized. It follows that the coherent evolution over succes-
sive segments can be approximated as a convolution of
W (n′−n′′) kernels. We therefore get effectively stochas-
tic evolution. But this stochastic evolution does not obey
the central limit theorem. It is of the Levy-flight type
because the Lorentzian does not have a finite second mo-
ment. Successive convolutions of t = z/zc Lorentzians
give a wider Lorentzian of width Γt. It follows from
Eq.(9) that the survival provability decays in a ballistic-
like fashion:

P(z) = 2
zΓzc
Nz∆

1

z
, for zc > zΓ (10)
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FIG. 2. (Color online) (a) The decay of the survival prob-
ability for short correlation lengths zc = 0.005, and pertur-
bation strength ε = 0.5. The units are chosen such that
∆ = 1. The various colored curves indicate MMFs with differ-
ent number of modes N = 30, 100, 1000. The colored horizon-
tal dashed lines indicate the ergodic value P(z) ≈ 1/N . The
black dashed lines indicate Eq.(8); (b) The coherent spread-
ing P (n|n0) for z = zc; (c) The spreading profile Pz(n|n0) for
z = 100zc.

FIG. 3. (Color online) (a) The decay of the survival prob-
ability for large correlation length zc = 0.32. The various
colored curves indicate MMFs with different parameters as
indicated in the figure legend. The horizontal dashed lines
indicate the ergodic limit P(z) ≈ 1/N . The blue dashed line
indicates Eq.(10). (b) The coherent spreading P (n|n0) for
z = zc; (c) The spreading profile Pz(n|n0) for z = 5zc. In
both (b,c) the parameters are ∆ = 0.5, ε = 1 and N = 2000
while the red dashed line indicates the Lorentzian of Eq.(9).

The above picture is nicely confirmed by our detailed
numerical analysis. In Fig. 3a we report our findings for
the survival probability for various mode sizes N , and
perturbations strengths ε. In Fig. 3b we also report the
Lorentzian waveform at the end of the coherent evolution
z = zc. The robustness of the Lorentzian shape Eq. (9)
against the dynamical disorder is further confirmed in
Fig. 3c where we plot Pz(n|n0) after 5 segments.

Intermediate correlation length.– Consider z∆ < zc <
zΓ. In this case, the initial spreading is dictated by a
Fermi-Golden-Rule (FGR) type picture. Namely, the
probability that is transferred to each of the modes within
the unresolved bandwidth 2π/zc is (εzc)

2, hence the total
probability that is drained from the initial mode is

λ = Γzc (11)

The analysis proceeds as in the discussion of short cor-
relation scale, just with this different expression for λ.
Namely, as long as the first term in Eq.(5) dominates, suc-
cessive convolutions lead to exponential decay exp(−λt)
with t = z/zc. Consequently we obtain a result that is
independent of zc, namely,

P(z) = exp

[
− 1

zΓ
z

]
, for z∆ < zc < zΓ (12)

Equation (12) compares nicely with the numerical sim-
ulations, see Fig. 4a. Notice that as opposed to Eq.
(8), now the decay rate does not involve the number of
modes of the system N and neither depends on zc. At
the same time the envelope of the evolving waveform ac-
quires Lorentzian-like tails spilled all over the N modes,
see Fig. 4b. Nevertheless, the dominant component of
the waveform is centered at the initial mode n0. For
larger propagation distances z > zΓ, the FGR decay law
Eq. (12) cease to apply. Instead, either the waveform
reach an ergodic distribution (see the black line in Fig.
4a, corresponding to N = 10) or (in the case of large
number of modes N) it continues spreading; albeit with
a different form. Specifically, the previous argument as-
sociated with the robustness of the Lorentzian waveform
against noise takes over, and we recover the physics that
led us to Eqs. (9,10), see Fig. 4a,c.

Strong disorder, diffusive decay.– So far we have dis-
cussed weak disorder. We now turn to discuss briefly
the strong disorder regime (ε >

√
N∆). The scenario for

short zc is formally the same as that of the “short correla-
tion” analysis, leading to an exponential decay. But if zc
exceeds zN = 1/(

√
Nε) the probability is drained from

the initial mode, and the distribution becomes ergodic
with P(z) ≈ 1/N . At this stage one wonders why the
naively expected diffusive decay does not appear. Are
we missing something in the analysis? The answer is
that the analysis so far has assumed B that looks like a
full GUE matrix. But in more general circumstance B
might have a finite bandwidth b� N . The analysis for
the weak disorder regime still holds but with N replaced
by b. In contrast, in the strong disorder regime, it is well
known [18] that the saturation profile is not a Lorentzian.
Rather, if zc is long enough, the saturation profile is ex-
ponentially localized over ξ = b2 modes. Such saturation
profile has a finite second moment. Consequently, the
same argumentation as in the “long correlation regime”
implies that the width of the distribution evolves as ξ

√
t,
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FIG. 4. (Color online) (a) The decay of the survival prob-
ability for intermediate correlation length zc = 1, and per-
turbation strength ε = 0.05. The units are chosen such that
∆ = 1. The various colored curves indicate MMFs with dif-
ferent number of modes N = 10, 100, 1000. The color hor-
izontal dashed lines indicate the ergodic limit P(z) ≈ 1/N .
The brown dashed line indicates the FGR exponential decay
Eq.(12), while the blue dashed line indicates the power-law de-
cay Eq.(10). (b) The coherent spreading P (n|n0) for z = zc;
(c) The spreading profile Pz(n|n0) for z = 1000zc. In both
(b,c) the parameters are ∆ = 1, ε = 0.05 and N = 1000 while
the red dashed line indicates the Lorentzian of Eq.(9).

where t = z/zc is the number of steps. This leads to
the conclusion that the survival provability decays in a
diffusive-like fashion:

P(z) ≈ 1

b2

√
zc
z

(13)

Because of lack of space, we defer a more detail discussion
of other results and a thorough analysis of the decay of
the survival probability for the more realistic case where
b� N to a later publication [20].

Summary – We have illuminated the interplay be-
tween the short time coherent evolution and the long time
stochastic spreading in multimode systems. The corre-
lation scale zc of a disordered environment determines
the crossover from an exponential-decay to diffusive- like
or ballistic-like decay. The latter is due to a Levy-type
spreading which is implied by convolution of Lorentzian
kernels. Our results have been formulated using a univer-
sal RMT modeling. A future direction that we currently
pursue [20] is to design other coupling schemes for which
the one-step coherent evolution leads to tailored anoma-
lous decay of the survival probability.
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