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Abstract
Environmental perturbations and noise are source of mode mixing and interferences between the
propagating modes of a complex multi-mode fiber (MMF). Typically, they are characterized by
their correlation (paraxial) length, and their spectral content which describes the degree of
coupling between various modes. We show that an appropriate control of these quantities allows to
engineer Levy-type relaxation processes of an initial mode excitation. Our theory, based on
random matrix theory modeling, is tested against realistic simulations with MMFs.

1. Introduction

Multi-mode wave dynamics in the presence of noisy environmental perturbations has always been a topic of
interest for a variety of frameworks ranging from quantum and matter waves to classical waves. In typical
circumstances, noise is considered an evil, since it degrades the efficiency of the structures employed to
perform useful operations on these waves. For example, in the frame of quantum electronics, optics and
matter wave physics noise is responsible for decoherence effects, being damaging to emerging quantum
information and computation technologies [1–4]. In a similar manner, in classical wave technologies (e.g.
optics, microwaves or acoustics), noise pollutes the signal carried by a propagating wave, thus degrading the
transfer of information [5–7]. It is perhaps for this particular reason that researchers have explored, over
the years, various strategies to eliminate noise sources. An alternative approach would be to utilize its
presence, and via appropriate design use it in order to control the signal propagation.

An example where such strategy might be useful, comes from the area of fiber communication and data
processing, where single-mode fibers have reached their limitation as far as information capacity is
concerned [8, 9]. Instead, multi-mode fibers (MMFs) and/or multi-core fibers (MCF) offer new exciting
opportunities since their modes can be used as extra degrees of freedom for carrying additional
information—thus increasing further the information capacity [9, 10]. Unfortunately, MMF suffer from
mode coupling due to environmental perturbations (index fluctuations, fiber bending etc), occurring along
the paraxial direction of propagation which both cause crosstalk and interference between propagating
signals in different modes [10–17]. Under such conditions, one typically expects fast relaxation of an initial
mode excitation in the mode-space and thus degradation of the information carried by the signal.

In this arena, several studies [18–23] have highlighted the success of random matrix theory (RMT)
modeling which, within the framework of multiple input multiple output (MIMO) signal processing
techniques, provide a satisfactory description of modal cross-talking. Originally developed for the
description of wireless communications, the MIMO approach can be also adopted to MMF/MCF optics
settings by associating the multiple channels to the multiple modes and/or multiple cores in the fiber. In
this framework, the transmission channels were modeled as a random complex unitary matrix [18–20],
thus allowing for an analytical treatment of the statistical properties of the so-called MIMO mutual
information which provides the fundamental performance measure of the channel capacity.
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2. Outline

Below we develop a protocol that controls the relaxation process of an initial mode excitation towards its
ergodic limit ∼1/N, where N is the dimensionality of the mode space. The mode mixing is due to
quenched disorder associated with external perturbations along the propagation direction z of a MMF. The
proposed scheme is based on the manipulation of these dynamical perturbations that are responsible for the
mixing between the various modes. They are characterized by a spectral exponent s ∈ [−1, 1] and by a
correlation length zc. We show that the relaxation process is given by a generalized Levy-law with a power
exponent α ∈ [0, 2] that is dictated by the spectral content of the deformation. The generic prediction is
based on RMT modelling [13, 18–23], and then tested against simulations with a MMF. In the latter context
we provide a simple recipe for engineering the spectral content of the external perturbations, by designing
the roughness of the fiber cross-section. Although our analysis refers to MMFs, the proposed methodology
will have ramifications in other fields, ranging from decoherence management in quantum dots, matter
waves and quantum biology [24–29], to acoustics and control of mechanical vibrations [5–7].

3. Modeling

We assume that imperfections induce coupling only between forward propagating modes (paraxial
approximation). Furthermore, these perturbations vary with the propagation distance z. The z-dependent
Hamiltonian H that describes the field propagation along the MMF can be written as H = H0 + V(z) where
H0 describes the unperturbed fiber, and V(z) is a spatial-dependent potential characterized by a correlation
function 〈V(z′)V(z′′)〉 = C[(z′ − z′′)/zc]. We assume that the correlation function does not have heavy tails,
and therefore, in practice, the fiber can be regarded as a chain of L uncorrelated segments, indexed by
t = 1 . . . L. The paraxial Hamiltonian that describes the field propagation within the t segment is
H(t) = H0 + εB(t), where ε indicates the strength of the perturbation. In the mode-basis of the unperturbed
system, the N × N matrix H0 is diagonal, with elements (H0)nm = δnmβn, where β1 < β2 < . . . βN are the
propagation constants of the modes n = 1, 2, . . . , N. In this basis, the constant perturbation matrix

B(t) =
(
B(t)

)†
is responsible for the mode mixing. We assume that the perturbations associated with each

concatenated segment are uncorrelated with one-another, namely, for t �= t
′

the correlation 〈B(t)
n,mB(t′)

n′,m′ 〉 is
zero. The statistical dependence of 〈|Bn,m|2〉 on |n − m|, aka lineshape of the band profile, reflects the
spectral content of the perturbations. Specifically we consider below an engineered bandprofile that is
characterized by power-law tails

|Bn,m|2 ∼
2

|n − m|s , where − 1 < s < 1. (1)

The field propagation in each section is described by the unitary matrix

U(t) = e−i(H0+εB(t))zc . (2)

The modal field amplitudes Ψn(z) ≡ 〈n|Ψ(t)〉 at distance z = t × zc along the MMF are obtained by
operating on the initial state Ψn(0) = δn,n0 with a sequence of U(t) matrices. This multi-step dynamics
generates a distribution Pz(n|n0) = |Ψn(z)|2.

RMT considerations (that we outline below) imply that for large correlation length, the relaxation
process is formally like a Levy-flight, for which the survival probability exhibits a power-law decay

P(z) ≡ Pz(n0|n0) ∼
(

1

z

)1/α

; where α = 1 + s. (3)

The overbar indicates an average over different disorder realizations and initial conditions n0. The different
initial conditions were taken within a small energy window n0 ∈ [N/2 − N/100, N/2 + N/100] in order to
ensure that the chosen initial preparations have the same statistical properties. In all our simulations the
system size was taken to be N > 500. The evolving profile was then re-centered at n0 = N/2 and processed
for averaging. In all cases, we have average more than 100 different realizations of the generated dynamics.
Note that α = 1 is equivalent to the traditional RMT case, where B can be regarded as a random matrix
realization of a Gaussian ensemble, otherwise we are dealing here with a so-called banded random matrix.
However, we allow negative values of s, for which the size of the off-diagonal elements grows up as a
function of |n − m|. We impose s > −1 for the following reason: as explained later α � 0 implies a
spreading kernel that has infinite norm and the model becomes formally ill-defined. An RMT
demonstration of this decay is provided in figure 1, and further discussed later. In the RMT simulations the
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Figure 1. We consider here an RMT-modelled propagation of a pulse in a MMF with N = 5000 modes. Namely, Bn,m is a
random banded matrix, with a band profile given by equation (1), and the βn are equally spaced. The results are averaged over
more than 50 disorder realizations. The upper row shows the decay of the survival probability for bandprofile with (a) s = 0.5;
(d) s = 0; and (g) s = −0.5. The values of ε and zc are indicated in the figures. The decay is described by a power-law (red line)
with power exponents α = s + 1, given by equation (17). The black dashed lines indicate the ergodic limit 1/N. Panels
(b), (e) and (h) the waveprofile after a propagation distance z = zc. The red dashed lines represent the theoretical prediction
equation (14). Panels (c), (f) and (i) the waveprofile for z/zc = 100, 10, 10 respectively. In all cases, the black solid lines represent
simulation data and the red dashed lines represent the theoretical predictions.

βn are equally spaced. The units of time are chosen such that the spacing is Δ = 1. The band profile
(off-diagonal terms) are given by equation (1), where the units of ε are chosen such that the pre-factor
equals unity.

4. Engineered bandprofile

We consider a cylindrical fiber with core radius a. We assume TM propagating waves in the fiber. The
solutions of the Helmholtz equation, under the requirement that the eigenmodes are finite at r → 0, take
the form

Ψν,�(r, θ, z) = Cν,�Jν
(xν,�

a
r
)

eiνθ eiβν ,�z, (4)

where Ψ(r, θ, z) is the electric field of the TM mode, ν is the azimuthal mode index, � is the radial mode
index, Jν(·) is the first-type Bessel function of order ν and Cν,� is a normalization constant. The argument
xν,� indicates the zeroes of the Bessel functions and for simplicity we only considered right-hand
polarization. In case of a metal -coated core, the electric field satisfies the boundary conditions
Ψ(a, θ, z) = 0 and ∂

∂θ
Ψ(a, θ, z) = 0. These lead to the following quantization for the propagation constants

for forward propagating waves in the (ν, �) channel

βν,� =

√(ω
c

)2
−
(xν,�

a

)2
, (5)

where c is the speed of light in the fiber medium. In our simulations below, the core-index is n̄ = 1.5, and
the incident light has λvac = 1.55 μm.

Next, we enforce a pre-designed mode-mixing between the modes of the cylindrical (perfect) fiber via
engineered boundary deformations. It turns out that a boundary deformation D(θ) due to e.g. surface
roughness of the fiber, is related to the perturbation matrix Bnn′ via a ‘wall’ formula [33, 34]

Bn,n′ =

∮
∂Ψn(θ)∂Ψ∗

n′(θ)D(θ)dθ, (6)

where the sub-index indicates n ≡ (ν, �). In equation (6) the integration is along the boundary, and ∂

indicates the normal derivative. Substitution of the eigenmodes of the unperturbed fiber equation (4) in
equation (6) leads to the following expression for the matrix elements of the B-matrix

〈ν, �|B|ν ′, �′〉 = cν,�cν′ ,�′bν,ν′ , (7)
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Figure 2. The matrix elements |Bν�,ν0�0 |2 for an N = 1031 MMF with core radius a = 15 μm, calculated using equation (7) for
s = −0.5. The red symbols are for the � = �0 = 1 block. The other symbols are the couplings to the � �= �0 modes. The solid
lines indicate the ∝ |ν − ν0|−s lineshape that is implied by equation (10). If all the � modes are included (brown symbols) the
averaged bandprofile (black line) features seff = 0 lineshape.

where cν,� = Cν,�J ′n( xν ,�
a r)|r=a. The matrix elements within each �-block are essentially the Fourier

transform (FT) of the azimuthal deformation D(θ) i.e.

bν,ν′ =

∮
D(θ)ei(ν−ν′)θ dθ

π
. (8)

From equation (8) it is straightforward to identify the appropriate deformations D(θ) whose FT lead to
perturbation matrices B with a desired power-law bandprofile, see equation (1). A simple recipe is to
introduce D(θ) as a cosinus-Fourier series with coefficients that are random phases [35]. Namely,

D(θ) =
N∑

q=1

√
Qq cos(qθ + ϕq) (9)

with Qq = q−s, while ϕq is a random phase in the interval [0, 2π). Substitution of the above deformation
families back to equation (8) leads to the following band-profile for the �th block sub-matrix

|bν,ν′ |2 = |Q|ν−ν′|| =
1

|ν − ν ′|s . (10)

The band profile that is implied by equation (7) with equation (10) is illustrated in figure 2 for an MMF
with core radius a = 15 μm, and perturbation that features s = −0.5. The standard way to plot a band
profile is a scatter plot of the squared elements | 〈ν, �|B|ν0, �0〉 |2 versus the off-diagonal coordinate
ω = βν,� − βν0,�0 . In standard RMT models the β-s are equally spaced, and therefore ω is like the n − m in
equation (1). Here we have composite indexes, but nevertheless, in view of equation (5), there is a
monotonic relation between β and ν . Therefore, if we keep a single � block (say �0 = 1) the band profile
features power-law tails as a function of ν − ν0, which is implied by equation (10). But if we include all the
� modes, we get an averaged bandprofile that is not singular at βν,� ∼ βν0,�0 , meaning an effective exponent
seff = 0.

5. RMT framework

The disordered nature of the perturbations allows RMT modeling for the matrix B(t), see
[10, 13, 15, 16, 18–23]. Within the RMT framework, the matrix elements are not calculated but generated
artificially. Specifically, we assume that the elements are uncorrelated random numbers drawn from a
normal distribution centered at zero. We further assume, dogmatically, that they have variance in
accordance with the power law lineshape of equation (1), and that the mode propagation constants are
equally spaced, namely, βn = nΔ, where n = 1, . . . , N. We will use the RMT modeling as a benchmark
against which we shall compare the results from MMF simulations that use engineered bandprofiles.

The present section provides the analysis that explains the anomalous decay that has been demonstrated,
using simulations, for an artificial RMT model in figure 1, in agreement with the predicted power law of
equation (3) (dashed red lines). The artificial RMT model involves a random banded matrix Bn,m with a
well-defined band profile, as opposed to the rather complex structure of 〈ν, �|B|ν ′, �′〉 of a realistic MMF. In
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Figure 3. The MMF has core radius a = 100 μm, and N = 593 modes. All the modes are confined within the � = 1 subgroup,
and re-labeled by a running index n, such that the initial mode is n0 ∼ N/2. The results are averaged over ∼100 realizations of
the rough surface. The results are averaged over initial conditions and realizations of the rough surface. The decay of the survival
probability follows the power-law prediction equation (17) with (a) s = 0.5; (d) s = 0; and (g) s = −0.5 (red dashed lines).
Panels (b), (e) and (h) the waveprofile after a propagation distance z = zc. Panels (c), (f) and (i) the waveprofile for
z/zc = 10, 5, 5 respectively. The solid lines represent simulation data and the red dashed lines represent theoretical predictions.

Figure 4. The same as in figure 3 for disorder that features zc < zΓ. Consequently an intermediate exponential stage appears
(blue lines). Panels (b), (e) and (h) the waveprofile after a propagation distance z = zc. Panels (c), (f) and (i) the waveprofile for
z/zc = 1000, 100, 25.

the subsequent sections we clarify whether such anomalous decay emerges in the latter case. The artificial
RMT analysis provides a way to anticipate and to interpret the actual z dependence of the signal.

The correlation length zc plays a major role in the decay of the survival probability. It has been argued
[13] on the basis of analogy with Fermi-golden-rule that the strength ε of the perturbation translates into a
length scale zΓ = (ε2/Δ)−1. If we have zc < zΓ there is an intermediate stage during which the decay is
exponential P(z) ∝ e−λz, see details in [13]. Otherwise the decay is power law (see details below). Stand
alone power-law decay for z > zc > zΓ is demonstrated in figure 1 for representative values of s.

Following an argument that extends first-order perturbation theory [13, 30–32] the spreading kernel
will saturate, for long enough zc, to a generalized-Lorentzian line shape Prob(n|n0) = W(n − n0) that is
characterized by a power law tail, namely,

W(n − n0) ∼ ε2|Bn,n0 |2
[(n − n0)Δ]2

∼ (ε/Δ)2

|n − n0|1+α
, (11)

5



New J. Phys. 24 (2022) 053012 Y Li et al

Figure 5. The N = 1031 modes for different �-groups are mixed together via the perturbation matrix B. A ballistic decay with
α = 1 (blue dashed line) is observed irrespective of the s-value. The core radious is a = 15 μm.

where α = 1 + s. In order to calculate the spreading profile after a propagation distance z, one has to
perform t = z/zc successive convolutions. If the kernel has finite second-moment, which is the case for
α > 2, one obtains Gaussian spreading, as implied by the central limit theorem. This would lead to
P(z) ∝

√
1/z decay of the survival probability. Our interest below is in 0 < α < 2, which leads to an

anomalous so-called Levy-process.
For the purpose of successive convolutions, the W(r) kernel can be approximated as the FT of

w(κ) = exp(−|γκ|α), where γ is a fitting constant. Generally, these type of distributions do not have
analytic expressions. However, assuming that the kernel obeys one-parameter scaling, it follows from
normalization that

γ = C
( ε

Δ

)2/α
, (12)

where C is a numerical prefactor of order unity. Successive convolutions lead to the Levy α-stable
distribution. Namely, after t steps Probt(n|n0) will be the FT of [w(κ)]t. This means that the width
parameter evolves as γ �→ γt1/α. The survival probability is simply the area of exp(−t|γκ|α), and
accordingly we get

P(z) =
1

γ

( zc

z

)1/α
. (13)

Note the special cases α = 1, 2 that correspond to Lorentzian spreading and normal diffusion respectively.
This result was our starting point equation (3), where it has been illustrated in figure 1. The practical
determination of the pre-factor γ is further clarified in the following subsection.

5.1. Generalized Lorentzian
In practice we have to handle in our formulas the whole bandprofile. In the standard case α = 1, and it is
common to fit equation (11) into a Lorentzian. In general α �= 1, and we use for fitting a generalized
Lorentzian (GL), namely,

W(n − n0) ≈ 1

π

γα

|n − n0|1+α + γ1+α
(14)

�→ 2ε2|Bn,n0 |2
|βn − βn0 |2 +Δ1−αΓ1+α

GL

, (15)

where in the second line we have manipulated the second term in the denominator: this term acts as a
regularization parameter for the n ∼ n0 singularity, while at the tails it is negligible; therefore, for numerical
purpose, only its near-diagonal value is important. For a smooth bandprofile the regularization parameter is

ΓGL = γΔ =

(
2πε2

Δ2−α

)1/α

(16)
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and

P(z) =
1

π

Δ

ΓGL

(zc

z

)1/α
; α = 1 + s. (17)

The convention we use for ΓGL is such that for α = 1 the Lorentzian (ballistic-like) decay of [13] is
recovered. For a general bandprofile we determine ΓGL via normalization of equation (15). We demonstrate
in all our figures that this practical numerical procedure is a valid approximation.

6. Levy relaxation for a graded-index MMF

Coming back to the MMF, we have to realize that the band profile of equation (1) is not a valid model for
the description of the actual matrix 〈ν, �|B|ν ′, �′〉. In order to design an MMF that features the desired
power law decay of equation (3), we have to effectively eliminate transitions to � �= �0 modes, where �0

indicates the initial radial excitation. The latter constraint is achieved in case of graded-index MMFs [36].
The grading of the refraction index is like a radial potential. Such potential does not affect the form of
equation (7), but it does shift ‘horizontally’ the branches of equation (5) that are illustrated in figure 2.
Thus, effectively, only modes that belong to the same radial mode-group (� = �0) are mixed, with
perturbation matrix that is proportional to bν,ν′ of equation (10).

In our computational example we chose to focus on a low-� radial group (e.g. � = 1) in order to
minimize the effects of radiative losses. In figure 3 we have considered three representative values of s. Power
law decay is demonstrated for a disordered MMF that has a correlation scale zc > zΓ. The survival
probability follows a Levy-type relaxation given by equation (17) with powers α = 1 + s. Moreover, the
probability distribution can be approximated by the GL of equation (15).

For completeness we have performed simulations for a MMF with disorder that has a correlation length
zc < zΓ, see figure 4. As expected form the analysis in [13], an intermediate exponential stage appears. This
exponential decay reflects Fermi’s golden rule. However, the long time decay becomes power law, as in
figure 3, until the waveform reaches an ergodic distribution.

7. Universal relaxation

Having established that an RMT-like power law decay can be engineered for graded-index MMFs, we turn
to consider an ungraded-index MMF. Transitions between modes that correspond to different �-groups
cannot be neglected, and therefore the bandprofile of the perturbation matrix B becomes effectively flat, see
figure 2, irrespective of the spectral content of the deformation D(θ). Namely, the information about s is
washed out once the propagation constants are ordered by magnitude and the ν indices are shuffled.
Consequently, the survival probability P(z) for large correlation lengths (and large propagation distances)
decays with αeff = 1 irrespective of the value of s. The numerical demonstration is displayed in figure 5.

8. Summary

The interplay between the short time coherent evolution and the long time stochastic spreading in
multimode systems is an intriguing theme. In this paper, we have demonstrated exponential and power law
decay for pulse propagation in MMF. The latter is due to a Levy-type spreading. Specifically we find that
general α Levy decay can be engineered for graded-index ring-core MMF, while universal αeff = 1 is
observed for MMFs with ungraded-index.

Our results have been benchmarked using an RMT perspective. The RMT toolbox facilitates studies
whose aim is to design coupling schemes for which the coherent evolution leads to tailored anomalous
decay of the signal. Specifically, the results of MMF simulations are benchmarked using an RMT perspective
that involves banded random matrices.

It will be interesting to extend this line of study to cases where mode-dependent losses are also taken
into consideration. We expect that the non-Hermitian nature of the dynamics, will lead to unexpected new
phenomena. Another research direction is related to the effects of non-linearities in the mode-mixing.
These questions are currently under investigation.
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