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Abstract

We introduce a semiclassical theory for strong local-
ization that may arise in the context of many-body ther-
malization. As a minimal model for thermalization we
consider a few-site Bose-Hubbard model consisting of two
weakly interacting subsystems that can exchange parti-
cles. The occupation of a subsystem (x) satisfies in the
classical treatment a Fokker-Planck equation with a dif-
fusion coefficient D(x). We demonstrate that it is pos-
sible to deduce from the classical description a quantum
breaktime t∗, and hence the manifestations of a strong
localization effect. For this purpose it is essential to take
the geometry of the energy shell into account, and to
make a distinction between different notions of phase-
space exploration.

Introduction

Equilibration in isolated bipartite systems is a ma-
jor theme in many-body statistical mechanics. Hamilto-
nian classical or quantum dynamics can emulate thermal-
ization between weakly-coupled constituent subsystems,
provided at least one of them is classically chaotic, re-
sulting in an ergodic evolution. The classical thermaliza-
tion is then described by a Fokker-Planck equation (FPE)
[1, 2] depicting a diffusive redistribution between the ac-
cessible states, with an implied fluctuation-dissipation
theorem.

While chaos can provide the required ergodicity in a
classical thermalization process, the corresponding quan-
tum mechanical thermalization scenario [3–10] is endan-
gered by the emergence of quantum localization [11–17].
Much effort has been invested in the study of many-body
localization of large disordered arrays [18–24], but the
physics of localisation in such large systems remain am-
biguous. Even the definitions are vague, and the role
of semiclassical phase-space structures with regard to
the determination of the mobility edge has not been ad-
dressed [25]. It is therefore essential to consider tractable
minimal models for thermalization, in which the origins
of localisation can be traced. Such models should in-
clude two weakly coupled subsystems, where the clas-
sical chaoticity requirement imposes a minimum of two
degrees of freedom on at least one of them.

One type of a model that is experimentally viable
[26, 27], is the few-site Bose-Hubbard system [28–31].
Since the N -boson system has a clear classical limit with
1/N serving as an effective Planck constant, it is ideal for

exploring many-body localization effects in a controlled
manner. The two-site Bose-Hubbard model, also known
as the bosonic Josephson junction, is excluded due to the
integrability of its classical phase-space. The three-site
system features low-dimensional chaos [28, 29], but it is
of a little interest for quantum localization studies, be-
cause the classical phase-space is divided into disjoint ter-
ritories by Kolmogorov-Arnold-Moser (KAM) tori. The
nature of localization in the three-site system is there-
fore always semiclassical: due to trapping either on a
quasi-integrable island, or inside a chaotic pond [29].
We therefore conclude that the smallest bi-partite Bose-
Hubbard model which may demonstrate a quantum lo-
calization effect in its thermalization, is a four-site system
[2] where the pertinent weakly-coupled subsystems are a
chaotic trimer and a single auxiliary site denoted here as
a ’monomer’, see Fig. 1a.

Preliminary numerical evidence for localization in the
dynamics of the four-site model has been obtained in [2].
In some phase-space regions localization is semiclassi-
cal: it originates from quasi-integrability and there-
fore persists in the classical limit. However, there are
other phase-space regions that are classically completely
chaotic, yet exhibit localization quantum mechanically.
This Anderson-type localization does not survive in the
classical limit.

Surprisingly, no semiclassical theory for strong local-
ization in such a minimal model is currently available.
The original view of Anderson [11] holds that strong
localization appears due to interference of trajectories.
This leads to the Anderson criterion which involves the
connectivity of space. In certain cases it is possible to
carry out a semiclassical summation, to identify families
of destructively interfering trajectories, see, for example,
Ref. [17]. However, this approach is a dead-end as far
as physical insight is concerned. A different paradigm,
namely, the scaling theory of localization [12], illuminates
the importance of dimensionality. But, clearly, such an
approach is designed for scalable disordered systems, and
not for our model of interest which contains finite sub-
systems with few freedoms, and where idealized chaos of
the random-matrix-theory-type cannot be assumed. We
would like to have a theory that will deduce quantum lo-
calization from semiclassical simulations, without having
to take the details of interference into account.

In this paper we argue that such a theory can be at-
tained by an extension of a neglected paradigm [32–35]
that regards quantum localization as the breakdown of
quantum-classical correspondence (QCC). The idea is to
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FIG. 1. Illustration of the system and its phase-space. (a) We consider N = 60 bosons in a four-site system that
is formed by weakly coupling a trimer and a monomer subsystems. The trimer consists of three strongly coupled sites. The
system is described by the Hamiltonian equation (9), see Methods. (b) The phase-space of the system is divided into cells that
are labeled by r = (x, ε). A given cell r0 (circled and colored in red) overlaps with energy surfaces E1 < E < E2, forming a
region that we call its “energy shell” (strictly speaking, we display the projection of a high-dimensional energy shell onto the
two-dimensional plane). Each surface E overlaps with many cells, as shown schematically for E1 (the white spaces between
the cells are for visual purposes only). Note that the width in ε of the energy surface shrinks to zero as x→ N , where the
trimer-monomer coupling term equation (10) vanishes. A single classical trajectory explores a zero-thickness energy surface E,
and can visit at most ΩE cells. To be precise, only a fraction Fcl is explored, because ΩE counts not only cells that belong to
the chaotic sea, but also cells that reside in quasi-integrable regions. A semiclassical cloud that starts at r0 explores a larger
volume that includes all the accessible cells within the (thick) energy shell. (c) An abstract illustration of the high-dimensional
energy surfaces. Each surface is associated with a quantum eigenstate Eα. The number of surfaces NE that participate in
the dynamics (overlaping with the red cell) might be much smaller than the number of cells ΩE that intersect a given energy
surface.

figure out a procedure that allows for the semiclassical de-
termination of a quantum breaktime. Such an approach
has been discussed in the past with regard to localiza-
tion in Anderson-type models in d = 1, 2, 3 dimensions
[34, 35], but its adaptation for the analysis of localiza-
tion in complex systems has not been explored. Here, we
construct the necessary semiclassical framework for a de-
tailed study of strong quantum localization and present
the necessary tools for its analysis. We are inspired by the
work of Heller regarding phase-space exploration [36, 37]
that has been used in the past mainly in the context of
weak localization, a.k.a. scar theory [38, 39]. We use the
four-site Bose-Hubbard model to benchmark this theory
and demonstrate its feasibility.

Let us first construct a naive theory. Let x be a co-
ordinate that describes the thermalization process. In
our four-site minimal model it is the occupation of the
trimer subsystem, with the monomer subsystem contain-
ing the remaining N − x particles. We assume that in
the classical description the system is chaotic within the
relevant energy range, and accordingly, we can derive
an FPE for the evolving probability distribution p(x; t),
as explained in [1]. This FPE requires the calculation
of a diffusion coefficient D(x). Inspired by the litera-
ture on Anderson localization in quasi-one-dimensional
arrays [32–35] we might deduce an emergent localization
length ξ = g(x)D(x), where g(x) is the density of states
(given x) at the region of interest. It turns out that such

an approach does not work. In fact, it should be obvious
in advance that it cannot be a generally valid procedure,
because the actual dimensionality of the system is com-
pletely ignored. Were it valid, it would have implied that
any diffusing coordinate is doomed to be localized in the
quantum treatment, irrespective of the existence of extra
coordinates.

We therefore have to trace back one step, and to re-
call the argument that leads to the semiclassical expres-
sion for ξ. The idea is to generalize the QCC condition
t < tH(Ω), where Ω indicates the volume of the system,
and tH = 2π/∆0 is the Heisenberg time, determined by
the mean level spacing ∆0. This generalization is per-
formed by replacing the total Ω by the classically ex-
plored volume Ωcl

t , such that the running Heisenberg time
is now related to the effective level spacing; hence, the
QCC condition becomes t < tH(Ωt). The breakdown of
this condition [32–35] determines the breaktime t∗, and
hence the localization volume.

The above is roughly the approach that we are going to
employ. The challenge is to provide a proper phase-space
formulation of the QCC condition, taking the non-trivial
geometry of the energy shell into account. It is important
to realize that the classical exploration volume, contrary
to the intuitive thinking, is not the same volume over
which the probability distribution p(x; t) spreads after
time t, henceforth named the spreading volume.
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Results
Outline.– We define a quantum localization mea-

sure F s and demonstrate the manifestation of strong lo-
calization in our model system. The objective is to pro-
vide a semiclassical theory for the breaktime. This goal
is attained in two stages: (a) The first step is to intro-
duce definitions for the classical phase-space exploration
function Ωcl

t , and for the quantum Hilbert-space explo-
ration functionN qm

t . Associated with it is the distinction
between ΩE that counts the cells that intersect a given
energy surface, and NE that measures the width of the
energy shell. This leads naturally to the definition of the
classical and the quantum ergodicity measures Fcl and
Fqm; (b) The second step is to formulate a phase-space
version for the QCC condition:

N sc
t < Fqm

erg

[
NE
ΩE

]
Ωcl
t (1)

Here N sc
t ≈ t/tE is the semiclassical estimate for the

quantum exploration, which depends crucially on a time
scale tE , determined by the width of the energy shell.
The quantum factor Fqm

erg = 1/3 is required to account
for universal quantum fluctuations.

We then demonstrate that the above phase-space ver-
sion of the QCC condition provides a reliable and accu-
rate estimate for the breaktime and for the localization
volume in our minimal model for many-body thermal-
ization. Additional technical details are provided in the
Methods section, and in the Supplementary.

Dynamical localization measure
Consider a system whose state-space is spanned by a

discrete basis of ’locations’ |r〉. In the quantum con-
text these locations are eigenstates of some unperturbed
Hamiltonian H0, while in the classical context they are
Planck cells of volume hd, where d is the number of free-
doms, and h is the Planck constant. A sketch of the
phase-space for our model system is displayed in Fig.1b,c.
The cells are labeled by r = (x, ε), where x is the occupa-
tion of the trimer and ε is the unperturbed energy in the
absence of coupling between the constituent subsystems.

The dynamics is generated by a different Hamil-
tonian H, either semi-classically (“sc”) or quantum-
mechanically (“qm”). The perturbation is the coupling
of the two subsystems. The system is launched at |r0〉. In
the quantum case this state is propagated using the uni-
tary evolution operator. The corresponding semiclassical
simulation refers to a cloud of classical trajectories initi-
ated within the cell r0 and propagated using the classical
equations of motion. If the motion is classically chaotic,
we typically observe a stochastic-like evolution. It is im-
portant to emphasize that ~ is implicit in the semiclassi-
cal context via the definition of the “volume” of a Planck
cell, but otherwise it has no effect on the classical dy-
namics.

After time t the state of the system is characterized by
a probability distribution Pt(r|r0). Such distributions are
illustrated in Fig. 2a,b, and projected onto x in Fig. 2c.
The plotted distributions clearly show that if the model
system is launched in a state with high trimer popula-
tion, it remains quantum mechanically localized despite
its classical ergodization.

For each initial state r0, one can define a spreading
volume Ωt that counts how many r-locations participate
in the Pt(r|r0) distribution. Optionally, one can define
for the same initial preparation the spreading volume Lt
in x. Results for the saturation value L∞ as a function
of the initial value of x are displayed in Fig. 2d.

We define a dynamical localization measure as the frac-
tion of the semiclassical spreading volume covered by the
quantum evolution, i.e.

F s ≡ Ωqm
∞

Ωsc
∞

(2)

Strong dynamical localization means that the quantum
distributions occupies a small fraction of the classical
spreading volume and hence F s � 1. In the Ander-
son model of localization, Ωsc

∞ corresponds to the total
volume Ld of a d-dimensional disordered lattice, while
Ωqm
∞ corresponds to some localization volume ξd. The

term “dynamical localization” has been introduced in the
quantum chaos literature in connection with the standard
map, a.k.a. the “kicked rotor”, where the explored “lo-
cations” are angular momentum states [13–16]. By now
it is recognized that both disorder or chaos can lead to
strong localization effect.

Space exploration
The notion of exploration, as opposed to spreading, is

a key concept in the formulation below. We treat this
notion on equal footing for both the classical and for the
quantum cases. The classical definition of “phase-space
exploration” is inspired by old works on random walk
on a lattice [40], while the quantum notion of “Hilbert-
space exploration” is adopted from [36]. The evolving
state of a system is described by a delta-distribution (a
point) in phase-space in the classical case (“cl”), or by a
cloud of points in the semiclassical case (“sc”), or by a
probability matrix in the quantum (“qm”) case. Either
way, we use the notations %(t) for the instantaneous state
of the system, and %(t) for its average during the time
interval [0, t], namely,

%(t) ≡ 1

t

∫ t

0

%(t′)dt′ . (3)

The explored space is then defined as,{
Ωcl
t

N qm
t

}
≡

{
trace

[
%(t)2

]}−1
(4)

These functions tell us what is the minimal number of
cells or basis-states that are required in order to describe
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FIG. 2. The quantum localization effect. Pan-
els (a) and (b) display the two-dimensional saturation profile
P∞(r|r0) for the semiclassical and the quantum simulations,
respectively. The initial condition r0 corresponds to having
all particles in the trimer (x0 = 60) with an energy ε = 1.181.
The color scale encodes the probability from low (blue) to
high (red). The semiclassical simulation in (a) provides the
determination of the energy shell. The quantum simulation
exhibits strong localization. In panel (c) the distribution is
projected onto x space. The quantum (red) simulation fea-
tures a peak at the initial x0, unlike the semiclassical (blue)
simulation that reflects phase-space ergodicity, as implied by
the great agreement with the (black) density of states g(x).
Panel (d) displays the spreading length L∞ for different val-
ues of x0. The low values of the semiclassical spreading (blue
symbols) for x0 = 23 and x0 = 24 indicate a lack of classical
ergodicity, and hence are of no interest for us. Our objective is
to provide a theory for the quantum spreading (red symbols),
where strong localization shows up in the range 24 < x0 < 30
and for x0 > 55.

the time-dependent dynamics up to time t. The classical
function Ωcl

t counts how many cells have been visited by
the trajectory, while the quantum function N qm

t counts
the number of states that participate in the dynamics
during this time. The latter is related to the survival
probability, see equation (17) of the Methods. From this
relation (see there) it follows that the short time dynam-
ics can be semiclassically approximated by N sc

t ≈ t/tE ,
where tE = 2π/∆E reflects the width of the energy shell.
On the other extreme, for long times N qm

t approaches a
limiting value N∞ that counts the total number of eigen-
states that participate in the time evolution.

It is now possible to define classical and quantum mea-
sures for ergodicity. The classical measure is

Fcl ≡ Ωcl
∞

ΩE
(5)

where ΩE is the total number of cells within the energy
shell. We get Fcl = 1 only if the energy shell is fully
chaotic without any quasi-integrable islands. The quan-
tum ergodicity measure that has been proposed by [36]
is defined in an analogous way:

Fqm ≡ N∞
NE

(6)

where NE is the number of states within the energy shell,
see Methods for its precise definition. For quantum-
ergodic dynamics of the GOE type one expects Fqm

erg =
1/3. This well-known value reflects the universal effect
of quantum fluctuations, and the statistical nature of the
quantum-ergodic distribution.

It should be clear from the illustration in Fig. 1c that
in general NE can be much smaller than ΩE . In fact,
NE is the volume of the local density of states (LDOS).
The quantum LDOS density ρ(E) (see Methods for its
precise definition) provides the weight of the perturbed
eigenstates Eα in the superposition that forms the ini-
tial state r0. Similarly, the classical LDOS is the overlap
of the initial Planck cell with various energy surfaces of
the perturbed system. Fig. 3 displays the quantum and
classical LDOS for representative preparations. Dynami-
cal localization is implied when the quantum LDOS does
not fill the classical LDOS envelope. This can be simply
due to it being narrower than the classical width (local-
ization in E) or due to its ’sparsity’ within the classical
envelope (localization in x). Fig. 4a displays the entire
spectrum of the unperturbed states |r0〉. For each r0
the LDOS is calculated, and Fqm is extracted. The red-
coded states are quantum-ergodic, while the blue-coded
states reside in region where the eigenstates are localized.
This is confirmed by Fig. 4a where the eigenstates |Eα〉
are color-coded according to their var(x)α.

It is important not to confuse the explored volume with
the spreading volume. The functions Ωsc

t and Ωqm
t count

how many r cells or states are occupied by the evolving
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distribution Pt(r|r0). The expected saturation value is

Ωsc
∞ ≈

√
N 2
E + Ω2

E (7)

where NE , unlike ΩE , is r0-dependent. If the energy
shell has a trivial “flat” geometry, such that NE unper-
turbed states mix into NE perturbed states in the same
energy range ∆E , then it follows that NE = ΩE , and
hence Ωsc

∞ ≈
√

2ΩE .
In Fig. 5 the explored and the spreading volumes are

plotted as a function of time for a representative initial
condition. The classical exploration that is described by
Ωcl
t is much slower compared to the semiclassical spread-

ing Ωsc
t . In fact, it does not even saturate during the

time interval that is displayed in the figure (though it
does reach the saturation value that is indicated in the
figure, but only after a much longer time). Irrespective of
that, we establish in Fig. 6a that the system is classically
ergodic for any x0 > 25. We note that the boundary of
the chaotic region in Fig.1b has been determined numer-
ically in [2] using a different method.

The slowness of the classical exploration constitutes
an indication for the high-dimensionality of phase-space,
and plays a major role in the determination of the break-
time. The quantum exploration and spreading volumes
Ωqm
t and N qm

t are also displayed in Fig. 5. In a sense,
our objective is to extract their time dependence from
the classical time dependence.

QCC, breaktime and localization
Our purpose is to deduce localization from QCC

considerations. For classical diffusive system the run-
ning Heisenberg time is determined by the number of
sites that are explored during a random walk process.
In the present context Ωcl

t counts cells in phase-space
that are visited by a chaotic trajectory. The stan-
dard Heisenberg time tH = 2π/∆0 is calculated for the
total volume, hence the running Heisenberg time is
tH(Ωcl

t ) = [Ωcl
t /ΩE ]tH . The time scale that is associated

with the width of the energy shell is tE = 2π/∆E , and
for the ratio we get tH/tE = NE , see Methods. It fol-
lows that the QCC condition t < tH(Ωcl

t ) can be written
as (t/tE) < (NE/ΩE)Ωcl

t . We identify the left hand side
as the semiclassical approximation for the Hilbert-space
exploration. We also know that for a quantum-ergodic
system in a “flat”, fully chaotic energy shell, the satura-
tion is attained onceN qm

t ≈ Fqm
ergNE , with Fqm

erg = 1/3 for
GOE statistics. We therefore conjecture that the general
QCC condition is equation(1) without any undetermined
prefactors.

The numerical determination of the breaktime t∗ for
our model system is demonstrated in Fig. 5 for a repre-
sentative initial condition. The results for other values
of x0 are presented in Fig. 6b. The quantum saturation
volume is estimates as follows:

Ωqm
∞

∣∣∣
predicted

= F s
erg Ωsc

t∗ (8)
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FIG. 3. Signatures of localization in the LDOS. Panels
(a,b,c) compare the quantum LDOS (red) with its semiclassi-
cal counterpart (blue). In the quantum case, the density ρ(E)
is smoothed over an energy scale that corresponds to 50 level
spacing. Quantum ergodicity is reflected in panel (b) where
the LDOS matches well the semiclassical envelope. Quantum
localization is reflected in panels (a) and (c). The vertical axis
has been zoomed in (a,c) and hence the peaks are chopped.
Note also the reduced range of the horizontal axis in panel (c).
Panel (d) provides a sharper view of panel (c). It displays the
bare probabilities pα instead of the smoothed density ρ(E),
and uses a non-linear scale (vertical axis) to resolve both high
and low values. The quantum symbols are color-coded ac-
cording to the value of 〈x〉α. The semiclassical LDOS is the
black line. We observe that localization is present both in E
and in x. The localization in x is reflected as sparsity: there
are many low lying blue points that correspond to small 〈x〉α
values, and few high-lying red points that correspond to large
values.

The ergodic value F s
erg ≈ 2/3 is used as a calibration

factor. Thus, using equation (8) we obtain a prediction
for the localization measure F s for any other value of x0.
The results are summarized in Fig.6c, and the agreement
with the quantum simulation is outstanding. For sake of
comparison, we also display the results for the quantum
ergodicity measure Fqm.

For completeness, we would like to reconstruct the re-
sults for the breaktime in the case of a homogeneous
diffusive system in d dimensions. In one dimension,
Ωcl
t ≈
√
D0t and therefore there is always a breaktime

at t∗ = t2ED0, which implies the well-known proportion-
ality between the diffusion coefficient and the localization
length. In d>2 dimensions the explored volume depends
linearly on the time, Ωcl

t ≈ c0 + v0t, which implies a mo-
bility edge. Namely, a breaktime exists, and hence local-
ization is observed, if g < gc, where g ≡ v0tE and gc = 1.
In the type of system that we have studied the phase-
space dynamics is complicated, and a simple diffusion
law does not apply. Still, by using the QCC condition
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FIG. 4. The quantum spectrum. (a) The unper-
turbed states |r〉 = |x, ε〉 are color-coded according to Fqm.
Red color implies quantum ergodicity as in the LDOS of
Fig.3b. By contrast, states with low Fqm (blue) exhibit strong
quantum localization. (b) The perturbed states |Eα〉 are
color-coded according to var(x)α, and positioned according to
(〈x〉α , 〈ε〉α). The low-variance states (blue) have significant
overlaps only with unperturbed states for which x ≈ 〈x〉α,
while the large-variance states (red) correspond to micro-
canonical states within the chaotic sea.

equation (1) we are able to deduce whether dynamical
localization shows up, and also to provide a very good
quantitative estimate for the localization measure.

Discussion

Most of the literature about strong localization, in-
cluding “quantum chaos” studies of periodically driven
systems (e.g. the Kicked Rotor), concerns Anderson-like
scalable models where the energy shell is “flat”, such
that transfer-matrix or scaling theory related methods
apply. In contrast, in the present work we have treated
a complex system that possesses a complicated phase-
space, where semiclassical localization in quasi-integrable
islands, as well as Anderson-type localization in some re-
gions of the chaotic sea, manifest themselves.

The trimer-monomer configuration that we have con-
sidered can be regarded as the building block for the
study of many-body thermalization in large arrays, as
discussed by [8]. We were able to determine the quantum
breaktime based on purely classical simulations. Further-
more, our procedure has provided predictions that were
in a remarkable agreement with the quantum localization
measures.

The proposed semiclassical procedure is relevant not
only for the thermalization problem. In recent works
[29, 30] it has been demonstrated that the stability of
the super-flow in a three-site Bose-Hubbard ring is de-

FIG. 5. Breaktime determination. The functions Ωcl
t ,

Ωsc
t , Ωqm

t , and N qm
t are plotted versus time (see legend). Each

simulation starts with x0 = 55 particles on the trimer. The
saturation values are indicated by dotted horizontal lines.
The semiclassical estimate for the breaktime, based on equa-
tion (1), is determined by the intersection of the dashed line
with Ωcl

t .

FIG. 6. Semiclassical prediction of strong localiza-
tion. (a) Our interest is focused in the range of x0 where
Fcl indicates a nearly ergodic classical motion. Note that
100% ergodicity cannot be reached because each energy sur-
face contains inaccessible quasi-regular regions. A secondary
test for ergodicity is the agreement between the exploration-
spreading ratio (squares) and it ergodic value (line) which is
implied by equation (7). (b) The scaled breaktime t∗/tH is
deduced from equation (1) via the procedure that has been
illustrated in Fig. 5. (c) The quantum ergodization measure
Fqm and the dynamical localization measure F s for different
initial conditions. The horizontal red and blue lines mark the
ergodic values Fqm

erg = 1/3 and F s
erg = 2/3, respectively, that

are attained for simulations with 30 < x0 < 55. The predic-
tion for F s is based on the semiclassical breaktime estimate.
Note that an outstanding agreement persists for values as
small as F ∼ 10−2. The deviation at small x0 is apparently
related to remnants of quasi-integrability.
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termined either by the Landau-criterion, or by KAM dy-
namical stability. But for circuits with more than three
sites, the KAM tori are not effective for the stabiliza-
tion of the super-flow due to Arnold diffusion (see Sup-
plementary). Thus the existence of dynamically-stable
superfluidity in such circuits has to do with dynamical
localization. The theoretical approach that we have pre-
sented allows, in principle, the determination of the su-
perfluidity regime diagram for such devices where the
high-dimensional chaos exhibits a slow exploration rate
in the classical (large N) limit.

Methods

The model
The trimer-monomer of Fig. 1a is described by the

Bose-Hubbard Hamiltonian H = H0 +Hc, where

H =
U

2

3∑
j=0

n̂2j −
K

2
(â†1â2 + â†1â3 + h.c.) +Hc (9)

and the trimer-monomer coupling term is

Hc = −Kc

2

3∑
j=1

(â†0âj + h.c.) (10)

The operators â†j , âj and n̂j = â†j âj create, destroy and
count particles at site j. The parameter U is the on-
site interaction, while K and Kc � K,UN are the hop-
ping frequencies (~ = 1). In the absence of coupling the
Hamiltonian H0 conserves the total trimer population
x̂ ≡ n̂1 + n̂2 + n̂3, hence x is a good quantum number
for the unperturbed eigenstates. Another good quantum
number is the scaled energy ε = 〈H0〉/(NK), hence we
use the notation |r〉 = |x, ε〉. Similarly scaled perturbed
eigenenergies are Eα = 〈H〉/(NK). The classical limit is
obtained by replacing the bosonic operators with c num-
bers, namely âj →

√
nj exp(iϕj). Standard rescaling

implies that the dimensionless classical parameters are
u = NU/K and k = Kc/K, while the effective Planck
constant is 1/N . In the simulations we set u = 6.3 and
k = 0.1, and the time units are chosen such that K = 1.

Basic definitions
The overlaps between the eigenstates |r〉 of H0 and the

eigenstates |Eα〉 of H form a probability kernel

ρ(r|Eα) = |〈r|Eα〉|2 (11)

Within the semiclassical framework, this kernel is calcu-
lated via a phase-space integral over the product of Li-
ouville distributions that represent the Planck-cell r and
the microcanonical shell Eα. For a given r0 we define

the notation pα = ρ(r0|Eα). The local density of states
(LDOS) is the associated distribution

ρ(E) =
∑
α

pα 2πδ(E − Eα) (12)

It is normalized with respect to the measure dE/(2π).
The semiclassical LDOS, denoted ρsc(E), is the distribu-
tion of energies of the points within a Planck cell. The
classical width of the energy shell is

∆E = 2π

{∫ ∞
−∞

[
ρsc(E)

]2 dE
2π

}−1
≡ 2π

tE
(13)

The total number of energy eigenstates that participate
in the evolution of the state |r0〉 is

N∞ =

[∑
α

p2α

]−1
(14)

The total number of energy eigenstates within the energy
shell is possibly larger. In order to determine this volume
we set pscα = [∆0/(2π)]ρsc(Eα) and get

NE =
∆E

∆0
=

tH
tE

(15)

where the Heisenberg time is defined as tH = 2π/∆0.
The measure for quantum ergodicity equation (6) is the
fraction of eigenstates within the energy shell that “par-
ticipate” in the dynamics.

The Fourier transform of the LDOS yields the survival
probability:

P(t) =

∣∣∣∣∫ ∞
−∞

ρ(E) e−iEt
dE

2π

∣∣∣∣2 (16)

The semiclassical approximation Psc(t) is obtained via
the Fourier transform of the semiclassical LDOS, and
features an initial decay within the time tE , which re-
flects the width of the classical envelope. The quantum
P(t) departs after a longer time, and approaches 1/N∞,
which reflects the number of participating eigenstates.
The Hilbert-space exploration function is deduced from

N qm
t =

[
2

t

∫ t

0

(
1− τ

t

)
P(τ)dτ

]−1
(17)

This relation [36] follow from the definition equation (4)
based on the observation that trace[%(t′ + τ)%(t′)] is in-
variant with respect to t′, and hence equals P(τ). An
analogous relation does not hold in the semiclassical
case, where %sc(t) becomes irreversible due to the coarse-
graining that is implied by the partitioning of the phase-
space into cells. If we substituted %sc(t) into equation(4),
we would get Ωsc

t , and not an approximation for the
Hilbert space exploration function. However, we still
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can obtain a semiclassical approximation N sc
t from equa-

tion(17) using Psc(t). After a transient, and disregarding
recurrences, one obtains

N sc
t ≈

[
2

t

∫ t

0

Psc(τ)dτ

]−1
=

t

tE
(18)

In the other extreme, for long times, the semiclassical
approximation is not applicable, and N qm

t reaches the
saturation value N∞ of equation (14).

The phase-space spreading is described by the proba-
bility kernel Pt(r|r0). In the semiclassical case it is the
fraction of the cloud that occupies the cell r at time t.
In the quantum case it is |〈r| exp(−iHt) |r0〉|2. The sat-
uration profile can be obtained via convolution from the
LDOS, namely

P qm
∞ (r|r0) =

∑
α

ρ(r|Eα) ρ(r0|Eα) (19)

The phase-space spreading is evaluated as follows

Ω
qm/sc
t =

{∑
r

[
Pt(r|r0)

]2}−1
(20)

The semiclassical saturation value Ωsc
∞ measures the ac-

cessible volume of the energy shell. Projecting the distri-
bution onto x space, one can define in the same manner
the “spatial” spreading Lt, and its saturation value L∞.
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In this supplementary we first provide an expanded pedagogic narrative for the figures of the main manuscript.
Next, we explain a few important details regarding the model system. Finally, we give a detailed description of the
different types of simulation (classical, semiclassical and quantum).

Expanded description of the figures

Fig.1.– The unperturbed spectrum is schematically presented in Fig. 1b. From a semiclassical perspective, each
unperturbed eigenstate represents a single cell in the classical phase-space, while each perturbed eigenstate represents
an energy surface.

Fig.2.– Numerical results showing quantum localization are presented in Fig. 2. The system is launched in a single
cell r0 = (x0, ε0) (quantum mechanically, in a single eigenstate of the unperturbed Hamiltonian H0). Evolving in time
according to H, transitions are induced by the coupling Hc, leading to a time dependent probability Pt(r|r0) of finding
the system at time t in each of the cells r, given it was initiated in the cell r0. When the classical dynamics is chaotic,
this distribution is expected to spread until it becomes uniform, and an equilibrium is reached. Panels 2a and 2b,
show the long time saturation profiles of the distribution, P∞(r|r0), as obtained from semiclassical (propagation of an
ensemble of classical trajectories) and full quantum calculations, respectively. The initial cell has all particles in the
trimer subsystem, i.e., x0 = N . This region of the (x, ε) space exhibits fully chaotic dynamics [2] and thermalization is
therefore anticipated. While this expectation is fulfilled by the semiclassical distribution which has ergodically spread
out, the corresponding quantum distribution remains localized around high x values.

All the initial conditions in our simulations lie on the same “horizontal” line ε0 = 1.181. Thus, we omit ε0 for
simplicity, and identify each initial cell solely by its x0. Correspondingly, we focus the discussion on the macroscopic
trimer population x and extract the probability Pt(x|x0) of finding x trimer particles at time t, given the system
was launched at x0 (with implicit fixed initial energy ε0). This is done by simply binning together all cells which
have the same x, i.e., Pt(x|x0) =

∑
r∈x Pt(r|r0) with r0 = (x0, ε0). The resulting semiclassical and quantum trimer-

particle-number distributions at saturation are plotted in Panel 2c. The semiclassical distribution has approached its
equilibrium limit which is in excellent agreement with the density of states g(x) at the pertinent energy (the small
deviations at low x0 are explained by the semiclassical localization in this region, see below). However, the quantum
distribution shows a clear localization of particles in the trimer subsystem. By comparison, if the system is launched
in the range 30 ≤ x0 ≤ 55 thermalization is obtained both semiclassically and quantum mechanically (see Ref. [2]).

Panel 2d summarizes the results of propagation with various initial values of x0 (e.g., in panels a–c the semiclassical
and the quantum results correspond to the rightmost � and � symbols, respectively, in panel d). For each initial
condition x0 we plot the spreading width L∞ of the saturation distribution P∞(x|x0) (see equation (S-4) in the
Methods). Quantum localization despite fully chaotic dynamics is clearly evident at large initial trimer populations.
Lower x0 values give thermalization of both semiclassical and quantum distributions. Finally, at very low initial trimer
population (near the lowest allowed value for the pertinent energy) localization is again observed for both classical and
quantum distributions. This low-x localization is semiclassical in nature, i.e., it is attributed to integrable classical
phase-space structures [2].

Fig.3.– The LDOS for three representative cells lying in the semiclassical-localization, ergodic, and quantum-
localization regions, respectively, is shown in Fig. 3. In the ergodic case (panel 3b) the quantum LDOS fills the
available classical energy shell volume, giving a high Fqm values. By contrast, localization (panels 3a,c) is indicated
by a partial filling, resulting in a low Fqm. We note that, contrary to the usual expectation, a small value of
Fqm arises not only when the quantum LDOS is sparse (as happens for low x0, see Fig. 3a), but also when the
quantum LDOS is much narrower than the classical envelope (happens for x0 ≈ N , see Fig. 3c). We also see that
the LDOS-based ergodization measure Fqm is correlated with the “spatial” localization of the perturbed eigenstates
(i.e., within a narrow x range), as seen in the color-coding of Fig. 3d. Additionally, there is a correlation with the
dynamical localization that is demonstrated in Fig. 2. The y-scale in panels a–c is actually the integrated LDOS
(2π/∆)

∫
ρ(E) dE/2π, where ∆ = 50∆0. This scaling significantly improves the resolution of the figure.
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Fig.4.– The unperturbed eigenstates |r〉 = |x, ε〉 are displayed in Fig. 4a. Each is color coded according to its value
of Fqm. High values Fqm ∼ 1/3 correspond to ergodizing states, whereas low values indicate localization. The low-
energy and high-energy regions with low Fqm lie outside the classically chaotic region, indicated in Fig. 1b. Similarly,
localization on the low-x side of the wide central energy region is also attributed to integrability and proliferation
of regular (quazi-periodic) structures in the classical phase-space (i.e., semiclassical localization). However, focusing
on the high x part of the central energy region we see a zone of low Fqm despite a very high chaoticity; this
situation corresponds to many-body localization. To complete the picture, the exact eigenstates |Eα〉 of the perturbed
Hamiltonian H are displayed in Fig. 4b. The eigenstates are positioned according to x = 〈x̂〉α and ε = 〈H0〉α, and
color-coded according to their x-variance. The low variance near 〈x̂〉α ≈ N is again a clear indication of these
eigenstates being close to the trimer number states |r〉 = |x, ε〉 of the unperturbed system.

Fig.5.– The different functions of phase-space exploration and spreading are compared in Fig. 5 for one of the
strongly localized cells x0 = 55. The quantum exploration, or the participation number N qm

t , initially grows like
t/tE . The linear phase ends quickly, resulting in a low saturation value N∞ � NE , indicating that only a small
fraction of energy states within the energy shell participate in the dynamics of the quantum wavepacket. We see an
early breakdown of QCC, apparent in the almost-immediate departure of the quantum and semiclassical spreading
volumes, Ωqm

t and Ωsc
t . We also observe the expected difference between the volume explored by a classical trajectory

(Ωcl
t ) and the volume occupied by the spreading cloud of trajectories (Ωsc

t ). The breaktime t∗, indicated by the arrow,
is extracted from the time when the QCC condition of equation (1) breaks down, at the intersection of the classical
exploration Ωcl

t and the (appropriately scaled) semiclassical approximation N sc
t to the quantum exploration N qm

t .
Fig.6.– In Fig. 6 we summarize the analysis for all the allowed values of x0 (along the line ε0 = 1.181). In Fig. 6a

we plot the classical ergodicity measure Fcl (blue). For ergodic dynamics we would expect to get the same value for
all x0, since if a trajectory visits the entire energy surface equally, it should make no difference where it is started.
Indeed, we see a uniform value for almost all initial cells. A perfect ergodicity (Fcl = 1) is not possible by definition,
since every energy surface contains both chaotic and regular regions. For the low x0 values a significant portion of
the cell becomes occupied by regular structures, and hence a smaller part of the energy surface is explored, leading
to a lower Fcl (the points x0 = 24 and x0 = 23, where it is indicated by Fig. 2d that almost no spreading takes place,
and hence any analysis is bound to fail, were removed from this figure.) We also plot the exploration-spreading ratio
Ωcl
∞/Ω

sc
∞ with its ergodic estimate based on equation(7) (black line). The good agreement despite imperfect ergodicity

indicates that semiclassical clouds are effectively ergodic relative to the volume of the chaotic window in Fig. 1b (even
though parts of each energy surface, where regular structures proliferate, remain unexplored).

In Fig. 6b we show the breaktime which was deduced from the classical simulation using equation(1). In Fig. 6c the
quantum ergodization measure Fqm (red, and its ergodic value, red line) is compared to the dynamical localization
measure F s (blue, and its ergodic value, blue line). We again see that there are two types of localization in this model:
For small x0 the localization reflects a lack of ergodicity, while for large x0, where chaos prevails, it is apparently
of the Anderson, or many-body, type. The semiclassical estimate for the localization volume F s

ergΩsc
t∗ (black) shows

a great agreement with the true value Ωqm
∞ across a range of two orders of magnitude. Note that this semiclassical

estimate involves only the results of the classical simulations without any quantum data or interference corrections.
Thus, while many-body localization is not explicitly present in the classical simulations, it can nevertheless be inferred
from them through the semiclassical determination of the quantum breaktime.

Arnold diffusion

An isolated M -site Bose-Hubbard system has f = M−1 classical degrees of freedom. Its 2f coordinate phase-space
is filled by dE = 2f − 1 dimensional energy surfaces, and additionally contains many dT = f dimensional invariant
surfaces, so-called KAM tori. One wonders whether these KAM tori can serve as separatrices that completely separate
different regions of the energy surface, and block any motion between them. The answer is that this is not the case
if dE > dT + 1, which implies M > 3. It follows that in our M = 4 site model a typical classical trajectory can move
between the chaotic and the regular regions, and the motion tend to be globally ergodic. However, this process, called
Arnold diffusion, might be extremely slow, and cannot be observed on realistic simulation times. For example, our
results show that the semiclassical localization for x0 = 23 persists beyond t = 20, 000.
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General remarks on the four-site model

Quantization of the classical phase-space
In our four-site N -particle model system, quantum dynamics proceeds within a Hilbert-space of dimension DN ∼

N3. By contrast, classical dynamics happens in a much smaller phase-space defined by the canonically conjugate
variable pairs, for example, the population nj and the phase ϕj for each site j = 0, 1, 2, 3. However, of the four
populations only three are independent, because the total number of particles is constant. Additionally, in the
classical limit the Hamiltonian equation (9) contains only the relative phases between pairs of different sites, and of
these, again, merely three are independent. Hence the system has a six-coordinate d = 3 dimentional classical phase
space.

To generate a correspondence between a unitary quantum evolution and a classical motion we must assign a phase-
space cell r to each unperturbed state |r〉. The unperturbed spectrum is resolved on a grid |x, εm〉, where the index
m = 1, 2, . . . counts the states within a given x band. Therefore, it is reasonable to define the cell r as the phase-space
region bounded by the four surfaces (x − 1, x; εn, εn+1). Here we are motivated by the standard description of a
chaotic eigenstate in terms of a microcanonical energy shell of thickness hd. Applying the same idea to all |r〉 states
regardless of their chaoticity, we conclude that the volume hd of each cell is determined by the “Planck constant”
h = V/DN , where V is the total phase-space volume.

The assymetry apparent in our definition becomes insignificant at the high values of N where a quantum-classical
correspondence is expected. However, it should be noticed that these cells are improper, as the product of lengths
along each pair of conjugate coordinates is not equal to h. To explain this statement, consider a generic d = 2 phase-
space with four coordinates (qx, px, qy, py). A proper Planck cell is one which has equal lengths for all coordinate
pairs, meaning dqx dpx = h and dqy dpy = h, and therefore its volume is (dqx dpx)(dqy dpy) = h2 = hd. In an improper
cell the total volume is correct, but the lengths are different; for example, dqx dpx = (1/100)h and dqy dpy = 100h,
but still (dqx dpx)(dqy dpy) = h2. For our cells, since the energy ε is a complicated function of the conjugate pairs nj
and ϕj , it is highly unlikely that we would get the correct product dnjdϕj = h for each cell. The only thing we know
for certain is the total cell volume, hd, since it is implicit in the definition.

Identifying chaotic phase space regions
Consider the unperturbed spectrum with its banded structure. The energies within each x band are identical to

those of an isolated trimer containing x particles, plus a constant U/2(N − x)2 contributed by the monomer. Since
the classical trimer has two degrees of freedom (three contributed by the three sites, but one eliminated due to
conservation of particles), but only one constant of motion (its energy), any nonlinearity present in the equations of
motion will generate phase-space regions where the dynamics is chaotic. The nonlinearity of the trimer is quantified
by the ratio Ux/K. Coming back to the unperturbed tetramer spectrum, for x ≈ 0 the classical energy surfaces are
regular because the nonlinearity is too small. At higher x values, the central parts of each band become chaotic, while
both the upper and the lower parts remain regular. That is because at the highest trimer energies the coupling is
negligible, and so the individual site populations become additional constants of motion, whereas at low energies it is
the nonlinear interaction which becomes negligible.

To summarize, the unperturbed spectrum of the tetramer system should contain a chaotic window, whose exact
size and shape is determined by both N and UN/K (the latter being the maximum value of the trimer nonlinearity
Ux/K). For our choice of parameters, this window is shaped like a wide curved wedge (see Fig. 1b). According to the
KAM theorem, under a weak perturbation most of the regular phase-space structures (KAM tori) survive, acquiring
only small deformations. Therefore the unperturbed spectrum can accurately predict the energy range where the
dynamics generated by the perturbed Hamiltonian is chaotic.
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Numerics and analysis of the simulations

The energy shell
The geometry of the energy shell is characterized by the semiclassical kernel ρsc(r|E) that measures the overlap

between phase-space regions occupied by a cell r and by an energy surface E. Regarded as a function of E for a
given r = r0, it is known as the local density of states (LDOS). From the LDOS we can evaluate a constant NE that
quantifies the size of the energy shell by counting the number of energy surfaces E overlapping with the initial cell r0.
In a similar way, we define the constant ΩE that counts the number of cells overlapping a typical energy surface E,
which lies within the energy range where the LDOS is finite and significant. For a classically ergodic system, ΩE = Ωcl

∞
is the phase-space volume that is explored by a very long, ergodic trajectory. In such systems, the accessible volume
of the energy shell (as measured by the infinite-time spreading volume Ωsc

∞) is expected to satisfy equation (7). Since
each cell has a unique LDOS, NE depends on r0. By contrast, ΩE is a generic value independent of r0, since a trully
ergodic trajectory simulated for an infinite time should yield the same value regardless of its starting location.

In practice, our system is not ergodic by definition due to the presence of KAM surfaces, and therefore ΩE cannot
be determined from Ωcl

∞ even for trajectories initiated within the chaotic window. However, we can employ the
equipartition theorem that equates the equilibrium probability to occupy a phase-space region with the volume of
that region. Thus for an ergodic trajectory moving on an energy surface E, the total probability to reside within a
cell r should be proportional to the overlap ρsc(r|E) between this cell and the energy surface.

Classical exploration
Consider a classical trajectory, initially (at t = 0) located within the phase-space region belonging to some cell r0.

As the dynamics is initiated, the trajectory will move within the boundaries of r0, until at some later time t it would
have crossed over to a different cell r. At yet later time the trajectory may either continue to a third cell r′, or return
back to r0. Proceeding in this manner, and using short time steps dt, we can track its entire history and calculate the
probability to visit a given cell up to time t. A function of this probability, the classical explored volume Ωcl

t counts
the number of cells visited by the trajectory during time t.

It is important to distinguish between the exploration of phase-space, referring to the volume covered by a single
classical trajectory, and a spreading in phase-space, referring to the combined exploration by a semiclassical cloud of
trajectories. A clear distinction between the two is crucial because high-dimensional spreading is reflected in having
Ωcl
t � Ωsc

t during the time evolution. The two volumes become identical only in one dimension.

Quantum exploration
The notion of quantum exploration was introduced by Heller [36] in connection with the dynamics of the survival

probability, and its definition bears a strong resemblence to the classical exploration function Ωcl
t . We define N qm

t

as the number of perturbed quantum states |E〉 that participate in the dynamics of an unperturbed state |r0〉 up to
time t. Thus, while the classical function Ωcl

t explores cells lying on an energy surface E, the quantum function N qm
t

explores energy states contributing to the time-evolved wavepacket initiated in |r0〉. The saturation value N∞ ≡ N qm
∞

can be derived directly from the quantum LDOS ρqm(r0|E) = |〈r0|E〉|2.
The different notations Ω and N for the classical and the quantum simulations emphasize that the former explores

the r cell-space, while the latter explores the E state-space. When proper Planck cells are used, N qm
t and Ωcl

t should
coincide for a very short time, namely up to the Eherenfest time (∼ ln(1/~)), and then depart.In the idealized picture
of a strong chaos, the classical count of cells then climbs very quickly to the ergodic value ΩE , while the quantum
count of states behaves roughly linearly until it saturates at the Heisenberg time tH (or, more correctly, at ∼ tH/3,
see equation (1)) to the value N∞.

Simulations
The quantum dynamics is generated by the unitary propagation |ψt〉 = exp(−iHt) |ψ0〉, where the initial state is

|ψ0〉 = |r0〉.
The classical simulation is supposed to arise from a single phase-space trajectory initiated within r0. At the same

time, it should be representative of the entire phase-space region belonging to r0. To overcome this complication we
perform a cell-averaging procedure. First, we select at random a set of 5, 000 points located within the boundaries
of r0. Second, by tracking the location of each trajectory at subsequent time instances 0, dt, 2dt . . . we generate the
classical distribution P cl

t (r|r0) that assigns a probability to visit a cell r during the time t. Next, for each trajectory
we calculate Ωt using equation (20). Finally, we average over the entire set of Ω to get the cell-typical exploration
function Ωcl

t .
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The semiclassical simulation is generated by a cloud of 50, 000 trajectories, which are all initiated in random positions
within the phase-space region belonging to cell r0. Each trajectory is separately propagated by the Hamiltonian
equations of motion. The combined positions of all the trajectories at time t form the probability distribution
P sc
t (r|r0). Semiclassical functions such as Ωsc

t and ρ(E) should by definition have a smooth dependence on their
argument. Small fluctuations that may arise when the cloud size is insufficient can be removed by a local averaging
(i.e., over a short time period for Ωsc

t , or over a short energy range for ρ(E)).
When a cell contains large regions of quazi-periodic dynamics, a significant portion of the trajectories initiated in

that cell lie on a KAM tori, and therefore during their history visit only a small number of cells. As a result, the
exploration rate for such a cell will be significantly smaller than for one of the chaotic cells, and accordingly, the
spreading rate will also become small.

For our analysis it is necessary to know the saturation values of the different time dependent functions. Due to
computational limitations, a full saturation is not reachable: the weak perturbation induces slow exploration rates,
which are further depressed by localization effects. As a compromise, we proceed the simulations up to the time
when the growth rate of the various Ω functions becomes very slow, such that any cutoff tails are deemed to give
a negligible contribution. In terms of actual numbers, we stop the quantum and the semiclassical simulations after
t = 10, 000 (except for x0 = 25 and x0 = 26, where the final times are t = 25, 000 and t = 20, 000, respectively), while
the significantly slower classical simulation is stopped at t = 20, 000.

Time averaging and the quantum saturation values
In general, due to its quantum nature, the dynamics of the spreading function Ωqm

t always displays fluctuations. For
the nonlocalized states, which have a wide LDOS, those fluctuations are relatively weak, and a well-defined saturation
value Ωqm

∞ can be derived by a local smoothing of Ωqm
t , (i.e., by averaging over a short time period following a

sufficiently long simulation time). However, for the nonlocalized states those fluctuations are much stronger, remaining
significant even after extremely long simulation times, A logical solution is to define the saturation values as

Ωqm
∞ ≡ lim

t→∞
Ωqm
t (S-1)

where the bar above Ω indicates a time average. The same reasoning applies also in the case of the probability
distribution P qm

t (r|r0). In fact, the saturation profile of equation (19) is exactly equal to the infinite-time average of
P qm
t (r|r0). It is tempting to conclude that the value Ωqm

∞ can be found directly from the saturation profile through
the application of equation (20). However, it is easy to see that this is not the case:

lim
t→∞

Ωqm
t = lim

t→∞

1

t

∫ τ

0

Ωqm
τ dτ = lim

t→∞

1

t

∫ τ

0

dτ

{∑
r

[
Pτ (r|r0)

]2}−1
6=

{∑
r

[
P∞(r|r0)

]2}−1
(S-2)

For the sake of consistency, the infinite-time averaging must be applied for all quantum simulations, even those which
do not localize. However, this creates no problems: by definition, a function that saturates retains forever the same
value, and hence an averaging over a sufficiently long time yields back the saturation value.

One-dimensinal spreading in x
The two-dimensional distribution Pt(r|r0) gives the probability to move from cell r0 to cell r after a time t.

Contracting along the “vertical” energy axis we obtain the one-dimensional distribution Pt(x|x0). It describes the
overall probability to move from the initial “horizontal” position x0, with r0 = (x0, ε0), and some other position x.

Pt(x|x0) =
∑
r∈x

Pt(r|r0) (S-3)

The sum is performed over all cells r = (x, ε) belongind to the same x band. In the spirit of equation (20) we define
the spreading length in x,

Lt =

{∑
x

[
Pt(x|x0)

]2}−1
(S-4)

Its saturation value L∞ determines the maximum range of x accessible to the dynamics, and thus the ratio
Lqm
∞ /Lsc

∞ < 1 serves as an indicator of quantum localization in the x coordinate.
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