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Parametric dependent Hamiltonians, wave functions, random matrix theory, and quantal-classica
correspondence
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We study a classically chaotic system that is described by a HamiltonianH(Q,P;x), where (Q,P) are the

canonical coordinates of a particle in a two-dimensional well, andx is a parameter. By changingx we can
deform the ‘‘shape’’ of the well. The quantum eigenstates of the system areun(x)&. We analyze numerically
how the parametric kernelP(num)5u^n(x)um(x0)&u2 evolves as a function ofdx[(x2x0). This kernel,
regarded as a function ofn2m, characterizes the shape of the wave functions, and it also can be interpreted as
the local density of states. The kernelP(num) has a well-defined classical limit, and the study addresses the
issue of quantum-classical correspondence. Both the perturbative and the nonperturbative regimes are ex-
plored. The limitations of the random matrix theory approach are demonstrated.
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I. INTRODUCTION

Consider a system whose total Hamiltonian isH(Q,P;x),
where (Q,P) is a set of canonical coordinates andx is a
constant parameter. This parameter may represent the e
of some externally controlled field. We assume that b
H05H0(Q,P;x0) and H5H(Q,P;x) generate classically
chaotic dynamics of similar nature. Moreover, we assu
thatdx[(x2x0) is classically small, meaning that it is pos-
sible to apply linear analysis in order to describe how
energy surfacesH(Q,P;x)5E are deformed as a result o
changing the value ofx. Quantum mechanically, we can us
a basis whereH05E0 has a diagonal representation, whil

H5E01dxB. ~1!

For reasonably small\, it follows from general semiclassica
considerations@1#, that B is a banded matrix. Generically,
this matrix looks random, as if its off-diagonal elements
were independentrandom numbers.

It was the idea of Wigner@2# 40 years ago, to study
simplified model, where the Hamiltonian is given by Eq.~1!,
and whereB is a randombanded matrix. This is known a
Wigner’s banded random matrix~WBRM! model. The appli-
cability of such a model is a matter ofconjecture. Obviously
this conjecture should be tested.1 The most direct way to tes

1To be more specific, one should be aware that there is a hiera
of challenges where the applicability of the RMT approach sho
be tested. Namely, the study of spectral statistics, the stud
eigenstates, and the study of quantum dynamics. In a previous
@11# we have argued that the RMT approach does not gene
apply to the study of wave-packet dynamics, since it leads t
contradiction with the quantal-classical correspondence~QCC!
principle. On the other hand, it is well known that spectral statis
are much more robust. In most of the RMT literature~including the
later works by Wigner himself!, it is assumed that for the purpos
of quantum chaos studies, one can consider full~rather than
banded! matrices, and the first term in Eq.~1! is generally ne-
glected. In spite of these enormous simplifications, it turns out
the so-called Gaussian invariant ensembles~GOE, GUE! provide a
valid description of some major spectral properties.
1063-651X/2001/63~3!/036203~7!/$15.00 63 0362
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it, which we are going to apply, is to take the matrixB of a
‘‘physical’’ Hamiltonian, and then to randomize the signs
its off-diagonal elements. The outcome of such operat
will be referred to as theeffectiveWBRM model that is
associated with thephysicalHamiltonian. One issue of this
paper is to make a comparison between the eigenstates o
physical Hamiltonian, and those of the associated effec
WBRM model.

ThestandardWBRM model~unlike the ‘‘effective’’ one!
involves an additional simplification. Namely, one assum
that B has a rectangular band profile. The theory of eige
states for the standard WBRM model is well known@2–4#.
Increasingx, starting fromdx50, the eigenstates of Eq.~1!
change their nature. The general questions to address a
follows.

~1! What are theparametric regimesin the parametric
evolution of the eigenstates?

~2! How does the structure of the eigenstates change
we go through the subsequent regimes?

Recently some ideas have been introduced@5–7# how to
go beyond Wigner’s theory in case of physical Hamiltonia
It has been suggested that there are at least three ge
parametric scalesdxc

qm!dxprt!dxSC that control the para-
metric evolution of the eigenstates. We shall define th
parametric scales later. Accordingly one should distingu
between the standard perturbative regime (dx!dxc

qm), the
core-tail regime (dxc

qm!dx!dxprt), and the semiclassical re
gime (dx@dxSC).

The purpose of this paper is not just to numerically est
lish ~for the first time! the existence of the parametric re
gimes suggested in Refs.@5–7#, but mainly to address ques
tion ~2! above@8#. Namely, we would like to study how the
structure of the eigenstates changes as we go through
subsequent regimes. In particular we would like to und
stand the significance of random matrix theory~RMT! as-
sumptions in the general theoretical considerations. The
ter issue has been left unexplored in the ‘‘quantum chao
literature.~Note, however, that literally the same question
addressed in numerous publication once spectral statistic
eigenvalues, rather than eigenstate structure, is concern!
We also suggest a procedure for ‘‘region analysis’’ of t
eigenstate structure. We are going to distinguish betw
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first-order tail regions~FOTR’s!, higher-order far-tail re-
gions, and a nonperturbative~core! region. Our main conclu-
sion is going to be that RMT is inadequate for the analysis
any features that go beyond first-order perturbation theo

II. THE MODEL HAMILTONIAN

We study the Hamiltonian

H~Q,P;x!5 1
2 ~P1

21P2
21Q1

21Q2
2!1xQ1

2Q2
2 ~2!

with x5x01dx and x051. This Hamiltonian describes th
motion of a particle in a two-dimensional~2D! well ~see Fig.
1!. The units are chosen such that the mass is equal to
the frequency for small oscillations is one, and fordx50 the
coefficient of the anharmonic term is also one. The energE
is the only dimensionless parameter of the classical mot
Our numerical study is focused on an energy window aro
E;3 where the motion is mainly chaotic.

In the classical analysis there is only one parametric sc
which is dxc

cl;1. This scale determines the regime of~clas-
sical! linear analysis. Fordx!dxc

cl the deformation of the
energy surfaceH0(Q,P;x)5E can be described as a line
process. Later we are going to give a precise mathema
formulation of this idea. From now on assume that we are
the classical linear regime.

Let us pick a very long ergodic trajectory„Q(t),P(t)…
that covers densely the energy surfaceE. See Fig. 1. Let us
define the fluctuating quantity

F~ t ![2~]H/]x!52Q1
2Q2

2 . ~3!

For the later analysis it is important to know the distributi
of the variableF, and to characterize its temporal correl
tions. The average value isF5^F &. The angular brackets
stand for microcanonical average over„Q(0),P(0)…, which
should be the same as time~t! average~due to the assume
ergodicity!. The autocorrelation function ofF(t) is

C~t!5^@F~ t !2F#@F~ t1t!2F#&. ~4!

Note thatC(t) is independent oft, and that the average ove
t should give the same result as a microcanonical ave
over „Q(0),P(0)….

FIG. 1. Left: equipotential contours of the model Hamiltonia
~2! with x5x051. Right: A Poincarésection of a long trajectory
(0,t,1300) that we have picked in order to get the fluctuat
quantity F(t). The initial conditions are (Q1 ,Q2 ,P1 ,P2)
5(1,0,1,2) corresponding toE53. The trajectory is quite ergodic
It avoids some small quasiintegrable islands@the main one is around
(0,0)#.
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The variance of the fluctuations isC(0)5^(F2F)2&. The
correlation time will be denoted bytcl . Note that with our
choice of unitstcl;1.0, within the energy range of interes
The power spectrumC̃(v) of the fluctuatingF(t), is ob-
tained via a Fourier transform ofC(t). See Fig. 2. The av-
erageF and the varianceC(0) determine just the first two
moments of theF distribution. The probability density ofF
will be denoted byPF(F ).

All the required information for the subsequent semicla
sical analysis is contained in the functionsC(t) andPF(F )
as defined above. All we have to do in order to numerica
determine them is to generate one very long ergodic tra
tory ~see Fig. 1!, to compute the respectiveF(t), and from it
to extract the desired information~see Figs. 2 and 3!. It is
convenient to expressPF(F ) in terms of a scaling function
as follows:

PF~F!5
1

AC~0!
P̂clS 2

F2F

AC~0!
D . ~5!

By this definition the scaled distributionP̂cl( f ) is character-
ized by a zero average (^ f &50), a unit variance (̂f 2&51),
and it is properly normalized. Note thatP̂cl(2 f ) rather than
P̂cl( f ) corresponds toPF(F ). This has been done for late
convenience.

FIG. 2. The band profile (2p\/D)•uBnmu2 vs v5(En2Em)/\
is compared with the classical power spectrumC(v). Inset: An
image of a piece of theB matrix.

FIG. 3. The scaled classical profileP̂cl(). One unit on the hori-
zontal axis corresponds to energy differencedEcl'0.38*dx. Note
that r 50 implies @En(x)2Em(x0)#.0. The caustic is located a
@En(x)2Em(x0)#50, while the anticaustic is located a
@En(x)2Em(x0)#51.65*x. The ‘‘forbidden regions’’ are defined
as those regions wherePcl(r )50. They are located to the left of th
caustic and to the right of the anticaustic.
3-2
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III. THE QUANTIZED HAMILTONIAN

Upon quantization we have a second dimensionless
rameter\. For obvious reasons we are considering a des
metrized ~1/8! well with Dirichlet boundary conditions on
the linesQ150, Q250, andQ15Q2. The matrix represen
tation ofH5H(Q,P;x) in the basis, which is determined b
H(Q,P;0), is very simple. The eigenstates (n51,2,3, . . . )
of the chaotic HamiltonianH05H(Q,P;1) has been found
numerically.

The phase-space volume (dQdP integral! which is en-
closed by an energy surfaceH(Q,P;x)5E, is given by a
function n5V(E,x). It is convenient to measure phas
space volume in units of (2p\)d, whered52 is the dimen-
sionality of our system. Upon quantization the phase-sp
volume n corresponds to the level index (n51,2,3, . . . ).
This is known as the Weyl law. It follows thatg(E)
5]EV(E,x) corresponds to the density-of-states, andD
51/g(E)}\d is the mean level spacing.

In the following presentation we are going to assume
our interest is restricted to an energy window which is ‘‘cla
sically small’’ but ‘‘quantum-mechanically large.’’ In the
numerical analysis of our model Hamiltonian the ener
window was 2.8,E,3.1, where the classical motion is pr
dominantly chaotic. The mean level spacing forE;3 is
given approximately by the formulaD'4.3*\2. Our nu-
merical analysis has been carried out for\50.03 and for\
50.015. Smaller values of\ were beyond our numerica
capabilities since the maximal matrix that we can handle
of size 500035000.

The representation ofQ1
2Q2

2, in the basis, which is deter
mined by the chaotic HamiltonianH0, gives the matrixB of
Eq. ~1!. The banded matrixB and the band profile are illus
trated in Fig. 2. The band profile is implied by the semicla
sical relation@1#:

uBnmu2'
D

2p\
C̃S En2Em

\ D . ~6!

As we see from Fig. 2 the agreement with this formula
remarkable. For the bandwidth Eq.~6! implies that Db
52p\/tcl . It is common to defineb5Db /D.

IV. DEFINITION OF THE LOCAL DENSITY-OF-STATES
PROFILE

The quantum eigenstates of the HamiltonianH(Q,P;x)
areun(x)&, and the ordered eigenenergies areEn(x). We are
interested in the parametric kernel

P~num!5u^n~x!um~x0!&u25trace~rnrm!. ~7!

In the equation aboverm(Q,P) andrn(Q,P) are the Wigner
functions that correspond to the eigenstatesum(x0)& and
un(x)&, respectively. The trace stands fordQ dP/(2p\)d in-
tegration.

We can identifyP(num) as the local density of state
~LDOS!, by regarding it as a function ofn, where m is
considered to be a fixed reference state. An average
P„(m1r )um… over severalm states leads to the LDOS pro
03620
a-
-

ce

e
-

y

is

-

s

of

file P(r ). Alternatively, fixing n, the vectorP(num) de-
scribes the shape of thenth eigenstate in theH0 representa-
tion. By averagingP„nu(n2r )… over few eigenstates on
obtains the average shape of the eigenstate~ASOE!. The
ASOE is justP(2r ). Thus the ASOE and the LDOS ar
given by the same function. One would have to be m
careful with these definitions ifH0 were integrable whileH
is nonintegrable.

The kernelP(num) gives the overlap between thenth
eigenstate ofH and themth eigenstate ofH0. For dx50 we
have simplyP(num)5dnm . Fordx.0 the kernel develops a
structure, which is described by the LDOS profileP(r ). If
dx is very small then evidentlyP(r ) consists of Kronecker
delta~at r 50) and tail regions (ur u.0). Later we are going
to distinguish between first-order tail regions~FOTR’s!, and
higher-order far-tail regions. Asdx becomes larger a nonpe
turbative core region appears aroundr 50. Namely, the pro-
file exhibits a bunch of states~rather than one! that share
most of the probability. Ifdx becomes even larger, the dis
tinction between core and tail regions become meaningl
and the LDOS profile becomes purely nonperturbative.
are going to explain that the nonperturbative profile refle
the underlying classical phase space structure.

V. THE CLASSICAL APPROXIMATION FOR THE LDOS

The classical approximation@9,5–7# for P(num) follows
naturally from the definition Eq.~7!. It is obtained if we
approximatern(Q,P) by a microcanonical distribution tha
is supported by the energy surfaceH(Q,P;x)5En(x).
Namely,

rn~Q,P!5
1

g~E!
d„H~Q,P;x!2En~x!…

5d~V„H~Q,P;x!…2n! ~8!

and a similar expression~with x5x0) for rm(Q,P). In the
classical limitn is the phase-space volume by which we lab
energy surfaces. Each energy surfacen is associated with a
microcanonical statern(Q,P). The classical LDOS profile
will be denoted byPcl(r ). Thedx regime, where the classi
cal approximationP(r )'Pcl(r ) applies, will be discussed in
a later section.

By definition, fordx!dxc
cl the deformed energy surface

departs linearly from thedx50 surfaces. As already state
in the Introduction, being in this classical linear regime is
fixed assumption of this paper. Now we want to explain t
consequences of this assumption. One may consider t
consequences as giving an operational definition for the c
sical linear regime. The dispersion~square root of the vari-
ance! of the classical profile in the classical linear regime

dEcl5AC~0!3dx. ~9!

~This should be divided byD if we want the dispersion in
proper r units. See Eq.~11! below.! For our model Hamil-
tonian, for energiesE;3, we have found thatdEcl
3-3
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'0.38*dx. Equation~9! can be regarded as a special con
quence of the following scaling relation, which we are goi
to derive below:

Pcl~r !5
D

AC~0!dx
P̂clS D•r

AC~0!dx
D . ~10!

The scaling function has already been defined in Eq.~5!, and
it is illustrated in Fig. 3. The classical profilePcl(r ) is in
general nonsymmetric, but it follows from Eq.~10! that it
must be characterized bŷr &50. @By definition the scaling
function of Eq. ~5! gives zero average#. Another obvious
feature is having sharp cutoffs, beyond whichPcl(r )50. The
existence of these outer ‘‘classically forbidden’’ regions fo
lows from the observation that for large enoughr there is no
longer classical overlap between the energy surfaces that
respond toum(x0)& and un(x)&, respectively.

The rest of this section is dedicated to technical clarifi
tions of Eq.~10!, and it can be skipped in first reading. Th
derivation is done in two steps. The first step is to establis
relation betweenPcl(r ) and its trivially related version
PE(e). The second step is to demonstrate thatPE(e) is re-
lated to PF(F ) of Eq. ~5!. It is also possible to make
one-step derivation that relatesPcl(r ) to PF(F ), but we find
the derivation below more physically appealing.

By differentiation ofn5V(E,x), keepingn constant, we
get the relation dE52F(x)dx, where F(x)
5]xV(E,x)/g(E) is known as the~generalized! conserva-
tive force. Using the latter expression it is a straightforwa
exercise to prove thatF(x)5^F &[F. Alternatively, we can
eliminateE from the relationn5V(E,x), and write the re-
sult asE5En(x). Accordingly F(x)52@]En(x)/]x#. Now
we can write the following relation:

En~x!2Em~x0!5
]E

]x Undx1
]E

]nU
x

~n2m!,

which can be rewritten in the following form:

e52F~x!dx1@1/g~E!#r . ~11!

Whenever we regard the kernelP(num) as a function of
n2m, we use the notationP(r ). But sometimes it is conve
nient to regardP(num) as an energy distributionPE(e). Due
to the change of variables~11! we have the following rela-
tion:

P~r !5
1

g~E!
PES 1

g~E!
r 2F~x!dxD . ~12!

The energy distributionPE(e) can be formally defined a
follows:

PE~e!5(
n

P~num!d„e2@En~x!2Em~x0!#…. ~13!

In the classical limit the summation overn should be inter-
preted as adn integral. ForP(num) in the above expressio
03620
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we can substitute the definition@Eq. ~7!# with rn and rm
approximated as in Eq.~8!. A straightforward manipulation
leads to the result

PE~e!5^d„e2@H~Q,P;x!2H~Q,P;x0!#…&

5^d„e1dxF~ t !…&5
1

dx
PFS 2

1

dx
e D .

Together with Eqs.~5! and~12!, we get Eq.~10! along with
the implied special result~9!.

VI. NUMERICAL DETERMINATION OF LDOS PROFILES

Givendx we can determine numerically the LDOS profi
P(r ). Representative profiles are displayed in Fig. 4. For
purpose of further discussion we introduce the followi
definitions:

FIG. 4. The quantal profileP(r ) is compared withPprt(r ) and
with PRMT(r ). We are using here the\50.015 output. The insets
are normal plots while the main figures are semilog plots. In
lower plot (dx50.2123) the classical LDOS profilePcl(r ) is rep-
resented by a heavy dashed line.
3-4
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PARAMETRIC DEPENDENT HAMILTONIANS, WAVE . . . PHYSICAL REVIEW E 63 036203
~1! The classical LDOS profilePcl(r ).
~2! The quantum-mechanical LDOS profileP(r ).
~3! The effective WBRM LDOS profilePRMT(r ).
~4! The first-order perturbative profilePprt(r ).

We have already discussed the classical LDOS profile.
low we explain how we numerically determine the quantu
mechanical LDOS profilesP(r ) and PRMT(r ), and we also
define the profilePprt(r ).

The numerical procedure for findingP(r ) is straightfor-
ward. For a givendx we have to diagonalize the matrix~1!.
The columns of the diagonalization matrixTmn are the eigen-
states of the Hamiltonian, and by definition we ha
P(num)5uTmnu2. ThenP(r ) is computed by averaging ove
roughly 300 reference states that are located within the c
sically small energy window 2.8,E,3.1. Figure 4 displays
typical profiles.

The effective WBRM Hamiltonian is obtained by ran
domizing the signs of the off-diagonal elements in theB
matrix. For the effective WBRM Hamiltonian exactly th
same procedure@as forP(r )# is applied leading toPRMT(r ).

In order to analyze the structure of eitherP(r ) or
PRMT(r ), we have defined the first-order perturbative profi
as follows:

Pprt~r !5
dx2uBnmu2

G21~En2Em!2
. ~14!

It is implicit in this definition that (En2Em) and uBnmu2
should be regarded as a function ofr. The r 50 value of the
band profile should be redefined by an interpolation. T
parameterG[b0D is determined~for a givendx) such that
the Pprt(r ) has a unit normalization. Note that Wigner
Lorentzian would be obtained if the band profile were fla

VII. REGION ANALYSIS FOR THE QUANTAL LOCAL
DENSITY OF STATES

By comparing P(r ) to Pprt(r ) as in Fig. 4, we can
determine2 the rangeb1@ left#,r ,b1@right#, wherePprt(r ) is
a reasonable approximation forP(r ). Loosely speaking
~avoiding the distinction between the ‘‘left’’ and the ‘‘right’
sides of the profile! we shall say thatPprt(r ) is a reasonable
approximation forur u,b1. The core is defined as the regio
ur u,b0. The FOTR’s areb0,ur u,b1. The far-tail regions
are ur u.b1.

The results of this region analysis are summarized by F
5. In the following sections we are going to present a

2The determination ofb1 has been done using the following nu
merical procedure. We define relative error function RE(r )
5(P2Pprt)/(P1Pprt) and then cumulative error function CRE(r )
5u(0

r RE(r 8)u. Note that by this definition ‘‘positive’’ relative error
can be compensated by ‘‘negative’’ relative error. As we go aw
from r 50, the function CRE(r ) fluctuates, and later shoots up. Th
regime ur u,b1 has been determined by the condition CRE(r )
,threshold. The threshold has been determined using an adapt
procedure.
03620
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tailed discussion of this analysis. For the convenience of
reader we summarize: ~1! b05 border of the core region
~2! b15 border of the FOTR. Havingb0!1 implies a stan-
dard perturbative structure. Having 1!b0!b1 implies that
we have a well-developed core-tail structure. Havingb0
;b1 implies a purely nonperturbative structure. In the lat
case the distinction between core and tail regions beco
meaningless.

VIII. THE STANDARD PERTURBATIVE REGIME

The standard perturbative regimedx!dxc
qm is defined by

the requirementb0(dx)!1. This condition implies that
P(num);dnm . For numerical purpose it is convenient
definedxc

qm as the value ofdx for which P(r 50)'0.5. The
theoretical considerations of Ref.@5# imply that dxc

qm

}\ (11d)/2. The prefactor is a classical quantity whose prec
value depends on the operational definition ofdxc

qm. With
the operational definition given above we have extracted
resultdxc

qm'3.8*\3/2.
In the standard perturbative regime we can write sc

matically

P~num!'dnm1Tail. ~15!

The ‘‘Tail’’ is composed of FOTR’s and far-tail regions. Th
former are given by Eq.~14!, while the latter are determine
by higher orders of perturbation theory. Note that for t

y

ely

FIG. 5. The results of region analysis. The common horizon
axis isdx. Theupper figurepresents ther boundaries as a function
of dx. The dotted lines6b0 define the core region (ur u,b0). The
solid lines define ther region in which 50% of the probability is
concentrated. The dashed lines areb1@ left# and b1@right#. The
FOTR’s are the regions whereb0,ur u,b1. The light-solid lines
and the light-dashed lines are for the effective WBRM model. T
lower figuredisplays the dependence ofdEcl , dEqm, anddEprt on
dx. The quantal and the classical results are almost indistingu
able, whereasdEprt approaches saturation. The contribution of t
FOTR’s todEqm is also displayed.
3-5
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DORON COHEN AND TSAMPIKOS KOTTOS PHYSICAL REVIEW E63 036203
standardWBRM we have by constructionb1[b, and more
generallynth order perturbation theory becomes essential
(n21)3b,ur u,n3b. In case of our physical Hamiltonian
as well as for the associatedeffectiveWBRM model, the
boundaryb1 is dx dependent.

By comparingP(r ) with PRMT(r ) we can see that RMT
cannot be trusted for the analysis of the far tails, beca
system-specific interference phenomena becomes impo
there. Namely, the RMT profilePRMT(r ) is almost indistin-
guishable fromPprt(r ). In contrast to that, the far tails o
P(r ) are dominated by either destructive interference~left
tail!, or by constructive interference~right tail!.

IX. THE CORE-TAIL REGIME

The core-tail regimedxc
qm!dx!dxprt is defined by the

requirement 1!b0!b1. The theoretical considerations o
Ref. @5# imply that dxprt}\. The prefactor is a classica
quantity whose precise value depends on the operati
definition of dxprt . In our numerical analysis we have d
fined dxprt as the dx for which the contribution of the
FOTR’s to the variance becomes less than 80%. With
operational definition we have extracted~using the lower
subplot of Fig. 5! the resultdxprt'5.3*\.

In the core-tail regime we can write schematically

P~num!'Core1Tail. ~16!

Disregarding the far-tail regions, the large-scale behavio
P(r ) can be approximated by that ofPprt(r ). As in the stan-
dard perturbative regime one observes that the far tails
dominated by either destructive interference~left tail!, or by
constructive interference~right tail!.

The core is a nonperturbative region. It means, that un
the far tail, it cannot be obtained from any finite-order p
turbation theory. Once the core appears, the validity of fi
order perturbation theory becomes a nontrivial matter.
Ref. @5# a nonrigorous argument is suggested in order
support the claim that, disregarding the smoothing effect,
local mixing of neighboring levels does not affect the grow
of the tail. An important ingredient in this argumentation
the ~self-consistent! assumption that most of the probabili
is well-contained in the core region. Indeed the analy
which is presented in Fig. 5, is in agreement with this
sumption.

The observation that the local mixing of neighboring le
els does not affect the growth of the tail, implies that the
grows asdx2 and not like saydx. ~The latter type of depen
dence is implied by an oversimplified argumentation.! Hav-
ing indeeddx2 behavior is implied by observing thatP(r )
'Pprt(r ) for the FOTR’s.

Finally, it should be emphasized that the local mixing
levels on the small scaleb0 is not reflected by Eq.~14!. In
particular, one should not expect Eq.~14! to be literally valid
within the core region (ur u,b0).

X. THE NONPERTURBATIVE REGIME

In the nonperturbative regime (dx@dxprt) one may say
that the core spills over the FOTR’s and thereforeP(num)
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becomes purely nonperturbative. As an example for nonp
turbative profile let us consider the lower plot of Fig.
corresponding todx50.2123. We see that there is poor r
semblance betweenP(r ) and Pprt(r ). The LDOS profile
P(r ) no longer contains a predominant FOTR’s. This cla
can be quantified using the analysis in Fig. 5. The low
figure there displays the FOTR contribution to the disp
sion. Fordx.dxprt the dispersion is no longer determined b
the FOTR contribution.

The complete disappearance of FOTR’s is guarant
only for dx@dxprt . Evidently, for dx@dxprt the FOTR’s
must disappear, becauseP(r ) goes on expanding, while
Pprt(r ) saturates. This is not captured by our numerics, si
for \50.015, we cannot satisfy the strong inequalitydx
@dxprt , and have a classically smalldx at the same time.

XI. THE SEMICLASSICAL REGIME

Looking back at the lower plot of Fig. 4, we see th
detailed ~QCC! with the classical profile~represented by
heavy-dashed line! starts to develop. The right far tail con
tains a component whereP(r ) andPcl(r ) are indistinguish-
able. This detailed QCC obviously does not hold for t
RMT profile.

Being in the nonperturbative regime does not imply d
tailed QCC@10,5,6#. Detailed QCC means thatP(r ) can be
approximated byPcl(r ). Having dx@dxprt is a necessary
rather than sufficient condition for detailed QCC. A suf
cient condition for detailed QCC isdx@dxSC. The paramet-
ric scaledxSC is defined in Ref.@5#, and for our system we
can obtain the~theoretical! rough estimatedxSC'4*\2/3.

In our numerical study we could not make\ small
enough such thatdxSC!dxc

cl . Therefore, the lower profile in
Fig. 4 is neither reasonably approximated byPprt(r ), nor by
Pcl(r ). However, we have verified~by comparing the\
50.03 output to the\50.015 output! that detailed QCC
betweenP(r ) and Pcl(r ) is easily improved by making\
smaller. ComparingP(r ) to Pcl(r ) on the one hand, and
PRMT(r ) to Pcl(r ) on the other hand, leaves no doubt rega
ing the manifestation of underlying classical structures.

Using a phase-space picture@5,6# it is evident that larger
dx leads to better QCC. The WBRM model does not hav
classical limit, and one finds a quite different scenario@3#.
For large enoughdx the eigenstates of Eq.~1! become Ander-
son localized. This localization shows up in the ASOEpro-
vided the eigenstates are properly centered prior to ave
ing. In the~nonaveraged! LDOS, localization manifests itsel
as sparsity, and therefore the various moments of the LD
profile are not affected. This latter remark should be kep
mind while reading the next section.

XII. RESTRICTED QCC

It is important to distinguish between detailed QCC a
restricted QCC. Let us denote the dispersion of the qua
LDOS profile bydEqm. The corresponding classical quanti
is given by Eq.~9!. The two types of QCC are defined a
follows:

~1! Detailed QCC meansP(r )'Pcl(r ).
3-6
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~2! Restricted QCC meansdEqm'dEcl .

Obviously restricted QCC is a trivial consequence of deta
QCC, but the converse is not true. It turns out that restric
QCC is much more robust than detailed QCC. In Fig. 5
see that the dispersiondEqm of either P(r ) or PRMT(r ) is
almost indistinguishable fromdEcl . This is quite remarkable
because the corresponding LDOS profiles~quantal versus
classical! are very different!

It is important to realize that restricted QCC is implied
first-order perturbation theory. If we use Eq.~14! and take
into account the FOTR dominace, which is implied bydx
!dxprt , then we get simply

dEqm5(
n

P~num!~En2Em!25dx2(
n

8uBnmu2, ~17!

where prime indicates omission of then5m term. Using Eq.
~6! one realizes that this result is in complete agreement w
Eq. ~9!. In contrast to that, higher moments of the perturb
tive profile are vanishingly small compared with the cor
sponding classical result. The latter fact is just a reflection
the absence of detailed QCC.

One may wonder what happens with Eq.~17! if we try to
do a better work, taking into account the core width, as w
as higher-order far-tails contributions. One may think th
.

,

.

.
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-
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Eq. ~17! is only the lowest-order approximation, whic
would imply that restricted QCC should become worse asdx
grows. However, the latter speculation turns out to be wro

We already saw that restricted QCC is implied on the o
hand~for smalldx) by first-order perturbation theory, and o
the other hand~for large dx) by detailed QCC. Now we
would like to argue that restricted QCC holds in general
simply follows from the observation thatdEqm is determined
just by the band profile. The proof is very simple@3#. The
variance ofP(num) is determined by the first two momen
of the Hamiltonian in the unperturbed basis. Namely,

dEqm
2 5^muH 2um&2^muHum&2

5dx2~^muB2um&2^muBum&2!.

Thus, we get the same result as in first-order perturba
theory without invoking any special assumptions regard
the nature of the profile. HavingdEqm that is determined
only by the band profile, is the reason for restricted QC
and is also the reason why restricted QCC is not sensitiv
the RMT assumption.
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