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We study a classically chaotic system that is described by a Hamilt@t{&h P;x), where Q,P) are the
canonical coordinates of a particle in a two-dimensional well, i&l a parameter. By changingwe can
deform the “shape” of the well. The quantum eigenstates of the systerméxg). We analyze numerically
how the parametric kerneP(n|m)=|(n(x)|m(x)}|? evolves as a function obx=(x—x,). This kernel,
regarded as a function of—m, characterizes the shape of the wave functions, and it also can be interpreted as
the local density of states. The kerr®e{n|m) has a well-defined classical limit, and the study addresses the
issue of quantum-classical correspondence. Both the perturbative and the nonperturbative regimes are ex-
plored. The limitations of the random matrix theory approach are demonstrated.
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. INTRODUCTION it, which we are going to apply, is to take the matBxof a
Consider a system whose total HamiltoniarQ, P;x), f‘physical” Hamiltonian, and then to randomize the signs pf
where Q.P) is a set of canonical coordinates ards a its off-diagonal elements. The_outcome of such operation
: wjll be referred to as thesffective WBRM model that is

constant parameter. This parameter may represent the effe& sociated with the@hysicalHamiltonian. One issue of this
of some externally controlied field. We assume that both,her is to make a comparison between the eigenstates of the
Ho="Ho(Q,P;Xo) and H=H(Q,P;x) generate classically ppysical Hamiltonian, and those of the associated effective
chaotic dynamics of similar nature. Moreover, we assumeygRrM model.
that ox=(X—Xo) is classically smallmeaning that it is pos-  The standardWBRM model(unlike the “effective” one
sible to apply linear analysis in order to describe how theinyolves an additional simplification. Namely, one assumes
energy surface${(Q,P;x) =E are deformed as a result of that B has a rectangular band profile. The theory of eigen-
changing the value of. Quantum mechanically, we can use states for the standard WBRM model is well knoja-4].
a basis wheré{,=E, has a diagonal representation, while Increasingx, starting froméx=0, the eigenstates of E¢L)

H=Ey+ SxB. (1) %}Er\nlgs their nature. The general questions to address are as
For reasonably smatl, it follows from general semiclassical (1) What are theparametric regimesn the parametric
considerationg1], that B is a banded matrix Generically, evolution of the eigenstates?
this matrix looks random as if its off-diagonal elements (2) How does the structure of the eigenstates change as
wereindependentandom numbers. we go through the subsequent regimes?

It was the idea of Wignef2] 40 years ago, to study a Recently some ideas have been introduded7] how to
simplified model, where the Hamiltonian is given by Et), 90 beyond Wigner’s theory in case of physical Hamiltonians.
and whereB is arandombanded matrix. This is known as It has been suggested that there are at least three generic
Wigner's banded random matri¢VBRM) model. The appli- parametric scale$x{ "< dx,< dxsc that control the para-
cability of such a model is a matter obnjecture Obviously ~ metric evolution of the eigenstates. We shall define these
this conjecture should be testt@he most direct way to test parametric scales later. Accordingly one should distinguish

between the standard perturbative regingx<oxJ"), the

core-tail regime §xd"< 6x< 6x,), and the semiclassical re-

To be more specific, one should be aware that there is a hierarchyime (8x> 6Xg().

of challenges where the applicability of the RMT approach should The purpose of this paper is not just to numerically estab-
be tested. Namely, the study of spectral statistics, the study dish (for the first timg the existence of the parametric re-
eigenstates, and the study of quantum dynamics. In a previous woiimes suggested in Ref&—7], but mainly to address ques-
[11] we have argued that the RMT approach does not generallyion (2) above[8]. Namely, we would like to study how the
apply to the study of wave-packet dynamics, since it leads to atructure of the eigenstates changes as we go through the
contradiction with the quantal-classical correspondefQEC) subsequent regimes. In particular we would like to under-
principle. On the other hand, it is well known that spectral statisticsstand the significance of random matrix thedBMT) as-
are much more robust. In most of the RMT literatdirecluding the  sumptions in the general theoretical considerations. The lat-
later works by Wigner himself it is assumed that for the purpose ter issue has been left unexplored in the “quantum chaos”
of quantum chaos studies, one can consider fudther than literature.(Note, however, that literally the same question is
bandedl matrices, and the first term in Eql) is generally ne- addressed in numerous publication once spectral statistics of
glected. In spite of these enormous simplifications, it turns out thaeigenvalues, rather than eigenstate structure, is concgrned.
the so-called Gaussian invariant ensemif@®E, GUEB provide a  We also suggest a procedure for “region analysis” of the
valid description of some major spectral properties. eigenstate structure. We are going to distinguish between
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FIG. 1. Left: equipotential contours of the model Hamiltonian g

(2) with x=x,=1. Right: A Poincaresection of a long trajectory -8 -6
(0<t<1300) that we have picked in order to get the fluctuating FIG. 2. The band profile (2/A)-|Byn)2 vs 0= (E,—E,)/h

quantity F(t). The initial conditions are @;,Q,,P;,P,) is com : .
v . _ . : ‘ . pared with the classical power spectr@fw). Inset An
=(1,0,1,2) corresponding t&= 3. The trajectory is quite ergodic. image of a piece of th& matrix.

It avoids some small quasiintegrable islaftih® main one is around

(.01 The variance of the fluctuations@0)={(F—F)?). The

first-order tail regions(FOTR's), higher-order far-tail re- Correlation time will be denoted by . Note that with our
gions, and a nonperturbativeore region. Our main conclu- choice of un|t37c|~1.9, within the energy range of interest.
sion is going to be that RMT is inadequate for the analysis offhe power spectrunC(w) of the fluctuatingF(t), is ob-
any features that go beyond first-order perturbation theory.tained via a Fourier transform @ (7). See Fig. 2. The av-
erageF and the varianc&€(0) determine just the first two

Il. THE MODEL HAMILTONIAN moments of theF distribution. The probability density ofF
o will be denoted byP((F).
We study the Hamiltonian All the required information for the subsequent semiclas-

1,02 ™2 2 2 2 2 sical analysis is contained in the functioB$7) and P(F)
H(Q.Px)=2(P1+P3+Q1+Q5) +xQiQ; ) as defined above. All we have to do in order to numerically
determine them is to generate one very long ergodic trajec-
tory (see Fig. 1, to compute the respectivE(t), and from it

to extract the desired informatiafsee Figs. 2 and)31t is
convenient to expresBg(F) in terms of a scaling function

as follows:

with x=Xg+ éx andxy,=1. This Hamiltonian describes the
motion of a particle in a two-dimensionéD) well (see Fig.

1). The units are chosen such that the mass is equal to on
the frequency for small oscillations is one, and =0 the
coefficient of the anharmonic term is also one. The en&rgy
is the only dimensionless parameter of the classical motion.

Our numerical study is focused on an energy window around 1 a F—F
E~3 where the motion is mainly chaotic. Pe(F)= C(O)rd - c)) ®)

In the classical analysis there is only one parametric scale,
which is 8xZ~1. This scale determines the regime(olas- _ o . _
sica) linear analysis. Fosx< ox¢ the deformation of the _By this definition the scaled dlstr|but_|dﬁc|('f) is chzaracter—
energy surfacé{,(Q,P;x)=E can be described as a linear i2€d by a zero averaggf()=0), a unit variance () =1),
process. Later we are going to give a precise mathematica&nd it is properly normalized. Note thRt,(—f) rather than
formulation of this idea. From now on assume that we are irfacl(f) corresponds td(F). This has been done for later
the classical linear regime. convenience.

Let us pick a very long ergodic trajectol(t),P(t))
that covers densely the energy surfé&ceSee Fig. 1. Let us
define the fluctuating quantity

F(t)=—(9HIox) = — Q3Q3. (3)

For the later analysis it is important to know the distribution
of the variableF, and to characterize its temporal correla-
tions. The average value I=(F). The angular brackets
stand for microcanonical average ou€J(0),P(0)), which
should be the same as tinfie average(due to the assumed

ergodicity. The autocorrelation function of{(t) is FIG. 3. The scaled classical profig,(). One unit on the hori-
zontal axis corresponds to energy differeriite,~0.38*5x. Note
C(n)=([Ft)—-F][Ft+71)—F]). (4)  thatr=0 implies[E,(x)—Emn(xo)]>0. The caustic is located at

o [En(X)—En(X0)]=0, while the anticaustic is located at
Note thatC( ) is independent of, and that the average over [E (x)—En(xo)]=1.65*x. The “forbidden regions” are defined

t should give the same result as a microcanonical averagss those regions wheke,(r)=0. They are located to the left of the
over (Q(0),P(0)). caustic and to the right of the anticaustic.
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lll. THE QUANTIZED HAMILTONIAN file P(r). Alternatively, fixing n, the vectorP(n|m) de-

Upon quantization we have a second dimensionless paicribes the shape of thh eigenstate in thet, representa-
rametersi. For obvious reasons we are considering a desymtion. By averagingP(n|(n—r)) over few eigenstates one
metrized (1/8) well with Dirichlet boundary conditions on ©obtains the average shape of the eigenstA®OB). The
the linesQ,=0, Q,=0, andQ;=Q,. The matrix represen- A_SOE is justP(—r). Thu_s the ASOE and the LDOS are
tation of H="H(Q,P;x) in the basis, which is determined by 9iven by the same function. One would have to be more
H(Q,P;0), is very simple. The eigenstates£1,2,3 . ..) _carefu_l with these definitions if{, were integrable whilé{
of the chaotic Hamiltoniart{,=H(Q,P;1) has been found IS nonintegrable. .
numerically. ~The kernel P(n|m) gives the overlap between theth

The phase-space volume@dP integra) which is en- ~ €igenstate of{ and themth eigenstate of{,. For 5x=0 we
closed by an energy surfadé(Q,P;x)=E, is given by a have S|mpIyP_(n|rT_1)=5nm._ For 6x>0 the kernel develops a
function n=Q(E,x). It is convenient to measure phase- Structure, which is described by the LDOS profi¢r). If
space volume in units of (%)%, whered=2 is the dimen- X is very small then evidentl{(r) consists of Kronecker
sionality of our system. Upon guantization the phase-spac@€lta(atr=0) and tail regions|¢|>0). Later we are going
volume n corresponds to the level indexn€1,2,3...). to distinguish between first-order tail regioffSOTR’s), and
This is known as the Weyl law. It follows thag(E) h|gher-order far-tayl regions. A8x becomes larger a nonper-
=dgQ(E,x) corresponds to the density-of-states, ahd tyrbatlvg core region appears around0. Namely, the pro-
=1/g(E)x#49 is the mean level spacing. file exhibits a bungh of state@ather than onethat sharg

In the following presentation we are going to assume thénost of the probability. lféx becomes even larger, the dis-
our interest is restricted to an energy window which is “clas-tinction between core and tail regions become meaningless,
sically small” but “quantum-mechanically large.” In the and the LDOS profile becomes purely nonperturbative. We
numerical analysis of our model Hamiltonian the energy@r€ going to explaln_that the nonperturbative profile reflects
window was 2.8 E<3.1, where the classical motion is pre- the underlying classical phase space structure.
dominantly chaotic. The mean level spacing tr3 is
given approximately by the formuld~4.3*%% Our nu- v, THE CLASSICAL APPROXIMATION FOR THE LDOS
merical analysis has been carried out #cr 0.03 and fora . o
—0.015. Smaller values of were beyond our numerical ~ The classical approximatiof®,5-7 for P(n|m) follows
capabilities since the maximal matrix that we can handle igaturally from the definition Eq(7). It is obtained if we
of size 5000x 5000. approximatep,(Q,P) by a microcanonical distribution that

The representation @?Q3, in the basis, which is deter- 1S supported by the energy surfade(Q,P:x)=En(X).
mined by the chaotic HamiltoniaH,, gives the matrig of ~ Namely,
Eq. (1). The banded matriB and the band profile are illus-
trated in Fig. 2. The band profile is implied by the semiclas-

1
sical relation[1]: pn(Q,P)= —= 6(H(Q,P;X) —En(X))

9(E)

, A ~(En—Em> = o(Q(H(Q,P;x))—n) 8
|Bnm| ’“m 5 . (6)

and a similar expressiotwith x=xg) for p,,(Q,P). In the
As we see from Fig. 2 the agreement with this formula isclassical limitn is the phase-space volume by which we label
remarkable. For the bandwidth E@6) implies thatA, energy surfaces. Each energy surface associated with a

=2mhl7y. Itis common to defind=A,/A. microcanonical state,(Q,P). The classical LDOS profile

will be denoted byP(r). The x regime, where the classi-

IV. DEFINITION OF THE LOCAL DENSITY-OF-STATES cal approximatiorP(r)~P¢(r) applies, will be discussed in
PROEILE a later section.

] ) _ By definition, for 6x< 5x§' the deformed energy surfaces
The quantum eigenstates of the Hamiltonl(Q,P;X)  geparts linearly from thex=0 surfaces. As already stated
are|n(x)>, and the ordered eigenenergies Br¢x). We are i, the Introduction, being in this classical linear regime is a
interested in the parametric kernel fixed assumption of this paper. Now we want to explain the
consequences of this assumption. One may consider these
P(n|m)=[(n(x)|m(xo))|*=tracpppm). () q P Y

consequences as giving an operational definition for the clas-
In the equation abov P) and 'P) are the Wigner sical linear regime. The dispersigaquare root of the vari-
functionqs that correggf)(r?d go thelz)nt(a%en)staltﬂf}{xo» gnd ance of the classical profile in the classical linear regime is
In(x)), respectively. The trace stands ® dP/(27#)% in-
tegration. SE¢=+C(0) X 6. 9

We can identifyP(n|m) as the local density of states
(LDOS), by regarding it as a function of, wherem is  (This should be divided by if we want the dispersion in
considered to be a fixed reference state. An average gifroperr units. See Eq(11) below) For our model Hamil-
P((m+r)|m) over severam states leads to the LDOS pro- tonian, for energiesE~3, we have found thatsE
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~0.38*6x. Equation(9) can be regarded as a special conse-
guence of the following scaling relation, which we are going
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8x=0.00131

to derive below:

A n A-r
P.(r)= p . 10
of1) C(0) 6% °'( C(O)&() (19

The scaling function has already been defined in(Bg.and

it is illustrated in Fig. 3. The classical profiley(r) is in
general nonsymmetric, but it follows from E(LO) that it
must be characterized Ky)=0. [By definition the scaling
function of Eq. (5) gives zero averade Another obvious
feature is having sharp cutoffs, beyond whiek(r)=0. The
existence of these outer “classically forbidden” regions fol-
lows from the observation that for large enougthere is no

longer classical overlap between the energy surfaces that cor-

respond tdm(xy)) and|n(x)), respectively.

The rest of this section is dedicated to technical clarifica-

tions of Eq.(10), and it can be skipped in first reading. The

derivation is done in two steps. The first step is to establish a

relation betweenPg(r) and its trivially related version
Pe(e). The second step is to demonstrate tRafe) is re-
lated to Pe(F) of Eqg. (5). It is also possible to make a
one-step derivation that relat€s(r) to P(F), but we find
the derivation below more physically appealing.

By differentiation ofn=((E,x), keepingn constant, we
get the relation S6E=-F(x)éx, where F(x)
=9, Q(E,x)/g(E) is known as thggeneralizedl conserva-

tive force. Using the latter expression it is a straightforward

exercise to prove thd(x) =(F)=F. Alternatively, we can
eliminateE from the relationn=Q(E,x), and write the re-
sult asE=E,(x). Accordingly F(x) = —[ dE(X)/dx]. Now
we can write the following relation:

OX+ 7E
n an

JE
En(X)—Em(XO)=5 (n—m),

which can be rewritten in the following form:

e=—F(X)ox+[1/g(E)]r. (11
Whenever we regard the kernBl(njm) as a function of
n—m, we use the notatioR(r). But sometimes it is conve-
nient to regard®(n|m) as an energy distributioRg(€). Due
to the change of variabled1) we have the following rela-
tion:

P(r)= r—F(x)dx|. (12)

1 b ( 1
9(E) Flg(E)
The energy distributiorPg(€) can be formally defined as
follows:

PE<e>=§ P(n|m)8(e—[En(X) —En(X0)]). (13

In the classical limit the summation ovarshould be inter-
preted as aln integral. ForP(n|m) in the above expression

i 8x=0.0709
) .

; 0.04 -

1 | 'll L | 1 1

-300 -200 -100 O 100

FIG. 4. The quantal profil@(r) is compared withP(r) and
with Pgyr(r). We are using here the=0.015 output. The insets
are normal plots while the main figures are semilog plots. In the
lower plot (6x=0.2123) the classical LDOS profiley(r) is rep-
resented by a heavy dashed line.

200 300

we can substitute the definitioiEq. (7)] with p,, and p,,
approximated as in Ed8). A straightforward manipulation
leads to the result

Pe(€)=(8(e—[H(Q,P;x) = H(Q,P;x0)]))

1
= (8(e+ XF(1))) = 5&(

— €

Together with Eqs(5) and(12), we get Eq.(10) along with
the implied special resul®).

VI. NUMERICAL DETERMINATION OF LDOS PROFILES

Given 6x we can determine numerically the LDOS profile
P(r). Representative profiles are displayed in Fig. 4. For the
purpose of further discussion we introduce the following
definitions:
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(1) The classical LDOS profil@®(r). 200 T T ' ' o1
(2) The quantum-mechanical LDOS profi(r). 100 | M elllliZEassssssse--mmEEEEEERToo oo ]
(3) The effective WBRM LDOS profiléPgyr(r). right FOTR -
(4) The first-order perturbative profil,(r). 0 e 1
We have already discussed the classical LDOS profile. Be~100 - left FOTR L ez |
low we explain how we numerically determine the quantum- _ygq |/~ vo-==""""""""""""""""77"7"""""
mechanical LDOS profile®(r) and Pryr(r), and we also /
define the profileP y(r). 300 - : : = =
The numerical procedure for finding(r) is straightfor- 0.08 ' . P
ward. For a givensx we have to diagonalize the matr(g). 0.06 - T o pretle ]

The columns of the diagonalization matfiy,, are the eigen- I ~—= quantal (RMT)
states of the Hamiltonian, and by definition we have .04 -
P(n|m)=|T%. ThenP(r) is computed by averaging over

roughly 300 reference states that are located within the clas 0.02
sically small energy window 28E<3.1. Figure 4 displays

- perturbative profile
~——— FOTR contribution
~ FOTR contribution (RMT)

. . 0 1 1 x L 1 L L n 1 n x L 1
typical profiles. 0 0.05 0.1 0.15 0.2

The effective WBRM Hamiltonian is obtained by ran- ) ) )
domizing the signs of the off-diagonal elements in Be FIG. 5. The results of region analysis. The common horizontal

axis is ox. Theupper figurepresents the boundaries as a function
of &x. The dotted lines+ b, define the core region|<b,). The
solid lines define the region in which 50% of the probability is
concentrated. The dashed lines drdleft] and bq[right]. The
FOTR’s are the regions whetlgy<|r|<b;. The light-solid lines
and the light-dashed lines are for the effective WBRM model. The
2 2 lower figuredisplays the dependence 8E, OEgy anddE,; on
OX?(Bnnl (14) 6X. The quantal and the classical results are almost indistinguish-
2+ (E,— Em)2' able, whereasE,; approaches saturation. The contribution of the
FOTR's to 6E 4, is also displayed.

matrix. For the effective WBRM Hamiltonian exactly the
same procedurfas forP(r)] is applied leading t®®gyr(r).

In order to analyze the structure of eith&(r) or
Prut(r), we have defined the first-order perturbative profile
as follows:

Pprt(r) =

It is implicit in this definition that E,—E,,) and |B,n/?

should be regarded as a functionrofTher =0 value of the tailed discussion of this analysis. For the convenience of the

band profile should be redefined by an interpolation. Thaeader we summarize: (1) bo= border of the core region;

parametel’=byA is determinedfor a givendx) such that  (2) b;= border of the FOTR. Having,<1 implies a stan-

the Pyy(r) has a unit normalization. Note that Wigner's dard perturbative structure. Having<by<b, implies that

Lorentzian would be obtained if the band profile were flat. we have a well-developed core-tail structure. Having

~b, implies a purely nonperturbative structure. In the latter
VIl. REGION ANALYSIS FOR THE QUANTAL LOCAL case the distinction between core and tail regions become
DENSITY OF STATES meaningless.

By comparing P(r) to Pp(r) as in Fig. 4, we can
determiné the rangeb,[ left]<r <b,[ right], whereP,(r) is VIIl. THE STANDARD PERTURBATIVE REGIME
a reasonable approximation fdP(r). Loosely speaking ) , am )
(avoiding the distinction between the “left” and the “right” The standard perturbative reging< 6x " is defined by
sides of the profilewe shall say thaP,(r) is a reasonable the requirementb,(6x)<1. This condition implies that
approximation forr|<b,. The core is defined as the region P(n|m)~ﬁnm- For numerical purpose it is convenient to
Ir|<bo. The FOTR’s areb,<|r|<b,. The far-tail regions define xI™ as the value ofx for which P(r =0)~0.5. The
are|r|>b;. theoretical considerations of Ref5] imply that oxi™

The results of this region analysis are summarized by Figx%®* 9”2, The prefactor is a classical quantity whose precise
5. In the following sections we are going to present a devalue depends on the operational definitiondf™. With
the operational definition given above we have extracted the
result 5xIM~ 3.8+ %2,

In the standard perturbative regime we can write sche-

The determination ob; has been done using the following nu- .
matically

merical procedure. We define relative error function RE(
=(P—Pp/(P+ P,y and then cumulative error function CRE(
=|=({RE(r")|. Note that by this definition “positive” relative error P(n|m)~ &+ Tail. (15)

can be compensated by “negative” relative error. As we go away

fromr =0, the function CREK() fluctuates, and later shoots up. The

regime |r|<b; has been determined by the conditon CRE( The “Tail” is composed of FOTR’s and far-tail regions. The
<threshold. The threshold has been determined using an adaptiveiprmer are given by Eq14), while the latter are determined
procedure. by higher orders of perturbation theory. Note that for the
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standardWBRM we have by constructioh,;=b, and more becomes purely nonperturbative. As an example for nonper-
generallynth order perturbation theory becomes essential foturbative profile let us consider the lower plot of Fig. 4,
(n—1)xb<|r|<nXb. In case of our physical Hamiltonian, corresponding ta5x=0.2123. We see that there is poor re-
as well as for the associatezffective WBRM model, the semblance betweeR(r) and P(r). The LDOS profile
boundaryb; is x dependent. P(r) no longer contains a predominant FOTR’s. This claim
By comparingP(r) with Pgy7(r) we can see that RMT can be quantified using the analysis in Fig. 5. The lower
cannot be trusted for the analysis of the far tails, becausBgure there displays the FOTR contribution to the disper-
system-specific interference phenomena becomes importasion. Foréx> X, the dispersion is no longer determined by
there. Namely, the RMT profil®gyr(r) is almost indistin-  the FOTR contribution.
guishable fromP(r). In contrast to that, the far tails of The complete disappearance of FOTR’s is guaranteed
P(r) are dominated by either destructive interferefiiedt ~ only for ox>dx,,. Evidently, for 6x>6x,, the FOTR’s

tail), or by constructive interferendeight tail). must disappear, becaud®(r) goes on expanding, while
Pori(r) saturates. This is not captured by our numerics, since
IX. THE CORE-TAIL REGIME for 7=0.015, we cannot satisfy the strong inequaliy

_ _ . _ > 0Xp, @and have a classically smafk at the same time.
The core-tail regimesxd"< 8x< 6x, is defined by the

requirement ¥by<b,. The theoretical considerations of
Ref. [5] imply that 6x,=%. The prefactor is a classical
quantity whose precise value depends on the operational Looking back at the lower plot of Fig. 4, we see that
definition of 6x,. In our numerical analysis we have de- detailed (QCC) with the classical profile(represented by
fined &xp: as the ox for which the contribution of the heavy-dashed linestarts to develop. The right far tail con-
FOTR’s to the variance becomes less than 80%. With thisains a component wheie(r) andP(r) are indistinguish-
operational definition we have extractédsing the lower able. This detailed QCC obviously does not hold for the

XIl. THE SEMICLASSICAL REGIME

subplot of Fig. % the resultéx,~5.3*%. RMT profile.
In the core-tail regime we can write schematically Being in the nonperturbative regime does not imply de-
, tailed QCC[10,5,6. Detailed QCC means th&t(r) can be
P(n|m)~ Coret Tail. (16)  approximated byP(r). Having éx> SXprt IS @ necessary

. . i . _ . ather than sufficient condition for detailed QCC. A suffi-
Disregarding the far-tail regions, the large-scale behavior Of:ient condition for detailed QCC x> dxsc. The paramet-

P(r) can be approximated by that Bf,(r). As in the stan- . . X
dard perturbative regime one observes that the far tails ardC scaledxscis defined in Ref[5], and for our Syztggm we

. i . Ak
dominated by either destructive interfereritadt tail), or by car|1 obtain the(thgonlatmta] drough estlrrdate$xtsc e I
constructive interferencgight tail). N our numerical study we could not make sma

The core is a nonperturbative region. It means, that unlik@nough sugh thadxsc< 5)(2" Therefqre, the lower profile in
the far tail, it cannot be obtained from any finite-order per-Fig- 4 is neither reasonably approximatedy(r), nor by
turbation theory. Once the core appears, the validity of firstPd("). However, we have verifiedby comparing the
order perturbation theory becomes a nontrivial matter. Ir=0-03 output to then=0.015 output that detailed QCC
Ref. [5] a nonrigorous argument is suggested in order td*&tweenP(r) and P(r) is easily improved by making
support the claim that, disregarding the smoothing effect, thémaller. Comparing>(r) to P¢(r) on the one hand, and
local mixing of neighboring levels does not affect the growth Prur(r) 10 P¢(r) on the other hand, leaves no doubt regard-
of the tail. An important ingredient in this argumentation is iNg the manifestation of underlying classical structures.
the (self-consistentassumption that most of the probability ~ USing a phase-space pictUi6] it is evident that larger
is well-contained in the core region. Indeed the analysiséX leads to better QCC. The WBRM model does not have a

which is presented in Fig. 5, is in agreement with this as<lassical limit, and one finds a quite different scendfd

sumption. For large enougldx the eigenstates of Hd) become Ander-
The observation that the local mixing of neighboring lev-Son localized. This localization shows up in the AS(ie-

els does not affect the growth of the tail, implies that the tailvided the eigenstates are properly centered prior to averag-

grows aséx? and not like saydx. (The latter type of depen- Ng. In the(nonaveragedLDOS, localization manifests itself

dence is implied by an oversimplified argumentatiddav- s sparsity, and therefore the various moments of the LDOS

ing indeedsx? behavior is implied by observing th&(r) profile are not affected. This latter remark should be kept in

~Pp(r) for the FOTR's. mind while reading the next section.
Finally, it should be emphasized that the local mixing of
levels on the small scall, is not reflected by Eq(14). In XIl. RESTRICTED QCC
particular, one should not expect Ed4) to be literally valid o o ) )
within the core region|¢|<bo). It is important to distinguish between detailed QCC and

restricted QCC. Let us denote the dispersion of the quantal

LDOS profile bydE,. The corresponding classical quantity

is given by Eq.(9). The two types of QCC are defined as
In the nonperturbative regimesx> dx,;) one may say follows:

that the core spills over the FOTR’s and therefé@|m) (1) Detailed QCC meanB(r)~Pg(r).

X. THE NONPERTURBATIVE REGIME
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(2) Restricted QCC meansE ,~ oE. Eqg. (17) is only the lowest-order approximation, which
would imply that restricted QCC should become worséxas

Obviously restricted QCC is a trivial consequence of detailedgrows. However, the latter speculation turns out to be wrong.
QCC, but the converse is not true. It turns out that restricted \We already saw that restricted QCC is implied on the one
QCC is much more robust than detailed QCC. In Fig. 5 wenand(for small 5x) by first-order perturbation theory, and on
see that the dispersiodE,, of either P(r) or Pryr(r) is  the other handfor large 6x) by detailed QCC. Now we
almost indistinguishable fromiE. This is quite remarkable would like to argue that restricted QCC holds in general. It
because the corresponding LDOS profilesiantal versus — simply follows from the observation th@E,, is determined
classical are very different! just by the band profile. The proof is very simdlg]. The

It is important to realize that restricted QCC is implied by variance ofP(n|m) is determined by the first two moments
first-order perturbation theory. If we use E44) and take of the Hamiltonian in the unperturbed basis. Namely,
into account the FOTR dominace, which is implied 8y
< OXpnt, then we get simply SEZ = (m|H 2| m)—(m|H|m)?

= ox*((m[B?m)—(m|B|m)?).
SEqm= 2 P(NM)(Ep—Em)?= 02 '[Bonl? (17) . ,
n n Thus, we get the same result as in first-order perturbation
theory without invoking any special assumptions regarding
where prime indicates omission of the=m term. Using Eq.  the nature of the profile. HavingE,, that is determined
(6) one realizes that this result is in complete agreement witlynly by the band profile, is the reason for restricted QCC,
Eq. (9). In contrast to that, higher moments of the perturba-and is also the reason why restricted QCC is not sensitive to
tive profile are vanishingly small compared with the corre-the RMT assumption.
sponding classical result. The latter fact is just a reflection of
the absence of detailed QCC.
One may wonder what happens with Ety7) if we try to
do a better work, taking into account the core width, as well The authors thank Felix Izrailev for suggesting to study
as higher-order far-tails contributions. One may think thatmodel(2). We also thank ITAMP for their support.
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