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We propose currently feasible experiments using small, isolated systems of ultracold atoms to investigate
the effects of dynamical chaos in the microscopic onset of irreversibility. A control parameter is tuned past a
critical value, then back to its initial value; hysteresis appears as a finite probability that the atoms fail to
return to their initial state even when the parameter sweep is arbitrarily slow. We show that an episode of
chaotic dynamics during part of the sweep time produces distinctive features in the distribution of final
states that will be clearly observable in experiments.
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In macroscopic systems, irreversible evolution involves
an increase of entropy. As, for example, in the rapid
expansion of a gas behind a moving piston, the system’s
phase-space ensemble spreads among instantaneous energy
surfaces, thereby spreading into a larger region of phase
space. Ergodization due to dynamical chaos is then invoked
to say that the ensemble effectively fills this larger region at
a reduced coarse-grained density, so that entropy increases
even though Liouville’s theorem forbids phase-space
volume change in isolated systems.
A striking form of irreversibility can be observed in

hysteresis experiments: A control parameter is slowly
changed and then changed back to its initial value, and
yet the system does not return to its initial state. Recent
experiments have studied hysteresis in dissipative open
systems [1,2]. In this Letter, we discover a new mechanism
for irreversibility in isolated systems, which we call
Hamiltonian hysteresis. This mechanism is related to
topological structure in phase space.
The standard mechanism for irreversibility, as in the

piston paradigm, is based on the linear response (Kubo)
theory for dissipation. For an isolated system, this theory
requires the assumption of chaos, as outlined by Ott and
co-workers [3–5], Wilkinson [6,7], and Cohen [8]. The
standard theory forbids quasistatic entropy growth, because
linear response, by definition, provides zero energy spread-
ing in the adiabatic limit. In contrast, Hamiltonian hyste-
resis can provide irreversibility even in the quasistatic limit.
Hamiltonian hysteresis can occur probabilistically even

without chaos [9]. Chaos does, however, greatly enhance
irreversibility and has observable signatures, as we dem-
onstrate in a small isolated system. We propose to extend
recently suggested experiments [9,10] to show these finger-
prints of chaos in irreversibility. In particular, we (i) explain
how irreversibility can arise even in quasi-integrable
dynamics, (ii) identify fingerprints of quasistatic passage

through chaos [10], and (iii) distinguish these from the
effects of Kubo-Ott energy spreading for nonzero
sweep rates.
Hamiltonian hysteresis.—A simple example of

Hamiltonian hysteresis is provided by a classical particle
in a double well, where the relative depths of the two wells
are slowly tuned over time. If the particle is initially
orbiting within the lowest well, it stays within this well
adiabatically until the slowly time-dependent well becomes
so shallow that the particle escapes over the interwell
potential barrier. When there is no dissipation from a
macroscopic reservoir to drag the particle down to the
bottom of the second well (as, for example, in [2]), the
particle continues flying above the barrier, back and forth
across both wells. If the relative depths of the two wells are
then slowly returned to their initial values, however, there is
a subtlety in adiabatic mechanics involving the breakdown
of adiabaticity around a separatrix even for an arbitrarily
slow change of parameters [11–15]. Whether the particle
ends up orbiting within the original well after this, or is
instead found in the other well, turns out to depend
sensitively on the phase of the particle in its initial orbit,
as well as on the timing of the potential change. If these are
not both controlled to high precision, it will be probabilistic
whether the particle ends up back in its initial state or in a
dramatically different one [9,16–20].
A system similar to the double well, but which can

include quantum many-body effects and also be realized
experimentally, is the two-mode Bose-Hubbard model
(“dimer”). In [9] we showed how probabilistic hysteresis
in such an integrable Hamiltonian system can be described
quantitatively in terms of expanding and filling phase-space
volumes, just as in the usual statistical mechanical theory,
showing that this simple hysteresis is truly a microscopic
limit of macroscopic irreversibility. To investigate the
role of dynamical chaos in the microscopic onset of
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irreversibility, we now turn to a class of realizable model
systems that can be tuned to be either integrable or chaotic:
the three-site Bose-Hubbard “trimer”.
Proposed experiments.—Our testing ground system

consists of N condensed bosons in an optical lattice with
three sites. In the tight-binding Bose-Hubbard limit, its
Hamiltonian is

Ĥ ¼ xðtÞ
2

ðn̂1 − n̂3Þ þ
U
2

X3

j¼1

n̂2j −
Ω
2

X2

j¼1

ðâ†jþ1âj þ H:c:Þ:

ð1Þ

Here n̂j ¼ â†j âj are the occupations of the jth site, U < 0 is
the attractive on site interaction, and Ω is the intersite
hopping frequency. The external parameter xðtÞ controls
the potential bias. Our hysteresis scenario is the forward-
and-back sweep

xðtÞ ¼ x0 þ ðxI − x0Þ
jtj
T
; −T < t < T: ð2Þ

The control parameter xðtÞ is swept from xI at the initial
time t ¼ −T to x0 at t ¼ 0, and then swept back to xI at
t ¼ þT, with a sweep rate _x ∝ 1=T.
We assume negative xI large enough that for early and

late times hopping between sites is adiabatically suppressed
(they are far detuned). During these initial and final stages,
therefore, the three occupation numbers n̂j are adiabatically
invariant and evolution is trivial. With large −xI we assume
that an initial state can be prepared at t ¼ −T, which is cold
enough that most atoms are in the lowest-energy site j ¼ 1.
We do not require an initial coherent state of definite phase,
but a low-temperature thermal mixed state. To simplify our
explanation of the subsequent evolution, we idealize this
realistic state as a narrow, low-energy microcanonical state.
A more realistic canonical distribution will show similar
behavior, just with a larger range of energies. The data that
will show hysteresis will be the occupation numbers n̂j,
measured at t ¼ þT and recorded for many runs (repeated
or parallel) of the experiment. High-precision atom count-
ing is not required because the final states that must be
distinguished differ by significant numbers. Both state
preparation and final readout are performed at times when
the system dynamics is trivial, and so both are cleanly
separated as physical processes from the nontrivial dynam-
ics that they allow us to see.
Simulated results.—Throughout this Letter, we describe

the quantum many-body evolution of our Bose-Hubbard
system in the semiclassical truncated Wigner approxima-
tion, evolving an initial ensemble representing the quantum
mixed state with the Gross-Pitaevskii equation (discrete
nonlinear Schrödinger equation) that is associated with
Eq. (1) [21]. This approximation should be accurate for
attainably large particle numbers N.

Numerical results simulating Hamiltonian hysteresis for
two representative values of the interaction parameter u ¼
UN=Ω are shown in Fig. 1. Measurements of n1;3 in the
initial state at t ¼ −T will show a distribution like that
shown in Figs. 1(a) and 1(b): Almost all atoms are in site 1.
If x0 is below a critical value xS when u ¼ −40, or below a
threshold xC when u ¼ −5, the system returns to its initial
state at t ¼ þT. However, if the parameter sweep extends
beyond these thresholds, some experimental runs end up in
significantly different states with different n1;3. We define
the fraction of runs in which the final n1;3 populations are
indistinguishable from their initial values to be the mea-
sured return probability Pðx0Þ. Dramatic differences are
observed between the post-threshold final population
distributions of Figs. 1(a) and 1(b). Whereas the final
n1;3 values for u ¼ −40 are nearly binary, i.e., tightly
localized around either the original values or around a
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FIG. 1. Simulations of Hamiltonian hysteresis with Eq. (1). The
occupations ðn1; n3Þ at the end of the sweep protocol Eq. (2).
(Upper) Each dot represents a separate run of the experiment.
(Insets) Enlargements of the relevant regions (upper-left and
lower-right corners) to show the time dependence of the size of
the cloud in (a) and the very low return probability in (b).
Different colors correspond to different sweep rates: (a) For
u ¼ −40, with xI=Ω ¼ −100 and x0=Ω ¼ 60 (blue: ΩT=ℏ ¼
5333, red: ΩT=ℏ ¼ 53333, green: ΩT=ℏ ¼ 106667). (b) For
u ¼ −5, with xI=Ω ¼ −40 and x0=Ω ¼ 6 (blue: ΩT=ℏ ¼ 7667,
red: ΩT=ℏ ¼ 30667, green: ΩT=ℏ ¼ 122667). The black curves
are contours of constant energy just after the exit from chaos (for
details, see Supplemental Material [21]). Different contours
correspond to different energies. (c) Return probabilities Pðx0Þ
defined as the fraction of 400 runs that comes back to the initial
distribution. (d) Dependence of the entropy S (log area of the n
distribution) on the sweep time T for simulations in case (b). The
red line shows a fit to −a logðΩT=ℏÞ þ S0 before S levels off to a
residual value. For the simulation in (a), the width of the
distribution is negligible.
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single alternative, the n1;3 ensemble for u ¼ −5 traces a
strip whose width becomes smaller as the sweep becomes
slower. Rather than vanish in the limit of an infinitely
slow sweep, the strip’s width saturates to a finite value,
implying a significant final-state entropy.
In what follows, we show that these observations provide

a clear and experimentally observable hallmark of chaos in
Hamiltonian hysteresis. For u ¼ −40, the classical dynam-
ics of Eq. (1) remains integrable throughout our hysteresis
scenario. Irreversibility is then generated by essentially
the same mechanism that produces it in the double-well
example above or in the Bose-Hubbard dimer [9]. Here it is
the simple merging, at x ¼ xS, of two tori in phase space
[21]. By contrast, for u ¼ −5, the classical dynamics
becomes chaotic at x > xC, with dramatic effects on the
final nj distribution [21].
Phase-space structure.—Discounting the conserved

total particle number N, the Bose-Hubbard trimer has
2 degrees of freedom, with two pairs of canonical variables
ðq1; q2; p1; p2Þ spanning its phase space [21]. Energy
surfaces are therefore 3D and the dynamics in any given
region of phase space can be either quasi-integrable or
chaotic, depending on the values of u and x. In the
integrable regions of phase space, we can define action
angle variables ðIa;φaÞ and ðIb;φbÞ, so that the quasistatic
motion at any given value of x takes place on the surface
of the 2D tori defined by the actions Ia;b. Each 3D
energy surface consists of multiple tori, all satisfying
HðIa; Ib; xÞ ¼ E.
Different types of adiabaticity.—During periods of

integrable motion, adiabaticity is maintained in the
Einstein-Landau sense [22], as the conservation of Ia;b
under sufficiently slow variation of x. In our scenario, this
means that 1=T ≪ ωB, where ωB are the perturbative
Bogoliubov frequencies around the followed stationary
point [21]. The system remains on a single I≡ ðIa; IbÞ
torus whose energy changes as EðtÞ ¼ H½I; xðtÞ�. By
contrast, when the dynamics becomes chaotic, the Ia
and Ib motions become coupled and can exchange energy.
Rather than follow a single torus, the system is then free
to ergodize over the entire 3D energy surface (or over the
chaotic part of a mixed energy surface). As long as chaos
prevails, the system’s energy will follow the adiabatic
energy surface, as discussed by Ott [3]. Unlike in integrable
adiabaticity where the two actions are adiabatic invariants,
the single adiabatic invariant in the Ott regime is the
enclosed phase-space volume.
While the actions Ia;b are generally rather complex

functions of the canonical variables q1;2; p1;2, their form
at t ¼ �T is quite simple: They correspond closely to the
measured populations n1;3. Furthermore, since the actions
do not change during integrable motion, our final popu-
lation distribution can be considered a snapshot of the
action distribution upon exit from the Ott regime.

Quasi-integrable scenario.—Analyzing the Hamiltonian
hysteresis scenario for u ¼ −40, we find that the dynamics
remains quasi-integrable throughout the process [21]. This
is illustrated in the Poincaré sections of Fig. 2(a) at
representative x values [21]. All black points within a
given section have the same energy E. The magenta points
indicate the quasistatic evolution, at each value of x, of
those points in our actual ensemble with energy near E.
Since energy is not a constant of motion, several E sections
are required in order to illustrate the ensemble at a given
moment. The time-dependent energy for some of the
ensemble trajectories is plotted as well. During the forward
sweep, the evolving trajectories remain restricted to the
initially occupied torus I0. Beyond x ¼ xS the occupied
torusmergeswith another (empty) torus I1. When x ¼ xS is
crossed again on the backward sweep, the ensemble splits
between the two tori I0;1. Subsequently, the two suben-
sembles evolve to different energies, as implied by
Einstein-Landau adiabaticity, namely, EðtÞ ¼ H½Ik; xðtÞ�.
Those trajectories that come back to the initial torus I0

contribute to Pðx0Þ. Their fraction can be determined by the
Kruskal-Neishtadt-Henrard theorem [9,16–20].
Passage through chaos scenario.—Analyzing the

Hamiltonian hysteresis scenario for u ¼ −5, we observe
in the Poincaré sections of Fig. 2(b) that for x > xC the
initially regular orbits around an energy minimum merge
into a chaotic zone [21]. The ensemble trajectories spread
ergodically throughout this chaotic zone, which is a section
of a three-dimensional phase-space region within the energy
shell. On the backward sweep, the ergodized ensemble
emerges from chaos step by step, gradually breaking into
a range of many different integrable tori. Each final torus
corresponds to a pair of adiabatically conserved action
variables, which at late times can be identified as the
occupation numbers n1;3.
The scatter of points in Fig. 1(b) is thus the direct

experimental signal of the spreading of the ensemble into
many tori after passage through chaos, while Fig. 1(a)
shows the two final tori of the integrable scenario. The
larger dispersion in phase space due to chaotic ergodization
is responsible for the much lower return probabilities PðxÞ
for x > xC in Fig. 1(c).
Energy spreading.—Had all tori formed at the same

detuning x ¼ xC in the reverse sweep, one would expect
that the final distribution in Fig. 1(b) would trace a single
contour in the n1;3 plane and the energy would spread
according to the formula EðtÞ ¼ H½I; xðtÞ�, where the
actions belong to the surface H½I; xC� ¼ EC, with EC ¼
H½I0; xC� that corresponds to the initially occupied torus.
However, the transition from chaos to integrability is
gradual, occurring over an intermediate mixed-phase-space
interval during which integrable tori are formed one by one
within the chaotic sea. Accordingly, each torus joins a
different energy shell as it becomes Einstein-Landau
adiabatic. Some of these newly formed tori may later
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merge into chaos again, so that a trajectory may undergo
several transitions from Ott to Einstein-Landau adiabaticity
and back before it finally emerges from chaos. Thus the
action distribution on the final exit from chaos is observed
to have an intrinsic energy width due to the gradual nature
of the transition, even if the sweep is infinitely slow.
After the final exit from chaos, energies spread out

adiabatically according to the formula EðtÞ ¼ H½I; xðtÞ�,
where the actions I are conserved. This Einstein-Landau-

adiabatic spreading of energy is not irreversible. The
energy contours shown in Fig. 1(b) are those of the
Hamiltonian just after exit from chaos, however (see
Supplemental Material [21]). Indeed, the plotted n1;3
distribution in Fig. 1(b) corresponds to a broadened energy
shell whose width decreases as the sweep becomes more
adiabatic, but saturates to a finite value in the limit of an
infinitely slow sweep [Fig. 1(d)]. Between this intrinsic
energy width and ergodic spreading along energy contours,

FIG. 2. Evolution of an ensemble of trajectories for (a) u ¼ −40 and (b) u ¼ −5. The upper-left plot in each set shows the time-
dependent energies of the ensemble trajectories vs xðtÞ. The vertical dashed lines indicate the critical values xS and xC, respectively.
Arrows indicate x values for which Poincaré sections are displayed for the forward (black) and backward sweep (red). In the backward
sweep, the ensemble is no longer monoenergetic. In (a) just two E sections are required because only two tori are involved, but in (b) a
range of energy surfaces is occupied and three representative sections are shown. Black points in the Poincaré sections are
monoenergetic trajectories of the instantaneous Hamiltonian, while the magenta points show actual ensemble points within a narrow
range of energies, evolving for several orbits under the instantaneous Hamiltonian.
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the final ensemble after Hamiltonian hysteresis with chaos
has the substantial entropy shown in Fig. 1(d) [21].
If the sweep is slow, but not strictly adiabatic, there will

be additional energy spreadingΔE. Under Einstein-Landau
adiabaticity, the spreading is negligible [∼ expð−1=j_xjÞ],
but for fully developed chaos Ott’s theory predicts diffusion
in energy, namely, ΔE2 ∝ _x2tα with α ¼ 1, as opposed to
the transient ballistic value α ¼ 2. The duration of our
“sweep through chaos” is t ∝ T ¼ ðjxIj þ x0Þ=j_xj; hence,
we expectΔE ∝ j_xja with a ¼ 1 − α=2. The numerical data
of Fig. 1(d) fit the value of a ∼ 0.2, which is between the
a ¼ 0 of ballistic dynamics and the a ¼ 0.5 that would be
expected in the diffusive case, before it levels off. The
plateau that is observed for small _x (large T) indicates that
the quasistatic regime has been reached.
Conclusion and outlook.—Experiments like those we

have simulated will be able to show the decisive role of
chaos right from the microscopic onset of irreversibility in
small isolated systems, by observing the dramatic depend-
ence of final nj distributions and the associated return
probability P on x0, on u, and on sweep rate. Quantum
corrections to the semiclassical results at smaller particle
numbers warrant future investigation.
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