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How to probe the microscopic onset 
of irreversibility with ultracold 
atoms
R. Bürkle1, A. Vardi2, D. Cohen   3 & J. R. Anglin1

The microscopic onset of irreversibility is finally becoming an experimental subject. Recent experiments 
on microscopic open and even isolated systems have measured statistical properties associated 
with entropy production, and hysteresis-like phenomena have been seen in cold atom systems with 
dissipation (i.e. effectively open systems coupled to macroscopic reservoirs). Here we show how 
experiments on isolated systems of ultracold atoms can show dramatic irreversibility like cooking 
an egg. In our proposed experiments, a slow forward-and-back parameter sweep will sometimes 
fail to return the system close to its initial state. This probabilistic hysteresis is due to the same non-
adiabatic spreading and ergodic mixing in phase space that explains macroscopic irreversibility, but 
realized without dynamical chaos; moreover this fundamental mechanism quantitatively determines 
the probability of return to the initial state as a function of tunable parameters in the proposed 
experiments. Matching the predicted curve of return probability will be a conclusive experimental 
demonstration of the microscopic onset of irreversibility.

Put a raw egg in a pot on the stove and turn the burner knob; after a while, turn the knob back. The failure of the 
egg to return to its initial raw state, even though all the control parameters have returned to their initial settings, is 
a paradigm for macroscopic irreversibility. We may extend the egg-cooking paradigm to microscopic irreversibil-
ity by translating it into mechanical terms. Let a system begin in some preparable initial state and evolve under a 
Hamiltonian with a time-dependent control parameter which is slowly tuned away from its initial value and then 
tuned back in exactly the time-reversed manner. When the control parameter is returned to its initial value, does 
the system then also return to its initial state? The egg example shows that the answer can often be No—in a large 
and complex dynamical system. How does this form of irreversibility first begin to arise in small systems, which 
involve only a few degrees of freedom?

Cooking a Microscopic Egg
This question can be answered in a sufficiently well isolated Bose-Einstein condensate (BEC) in which the inter-
acting bosons can only populate two single-particle states. We assume a Bose-Hubbard form of Hamiltonian with 
attractive interaction strength U < 0 and hopping rate Ω:
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where =ˆ ˆ ˆ†n a aj j j and Δ t( ) is a tunably time-dependent energy bias between the two states. Hamiltonians of this 
form have already been realized in cold-atom experiments1–5; if dissipation and external noise can be kept negli-
gible over times ΩT 1/  then this kind of system can be used to probe isolated-system irreversibility.

As the analog for the initial raw egg, let the system be prepared initially in a low-temperature canonical ensem-
ble with large negative ΔI, such that almost all particles are in mode 1. Our microscopic analog for heating and 
cooling the egg will be to sweep Δ(t) slowly from an initial value ΔI at the initial time = −t T  to some Δ0 at 

=t 0, and then reverse the sweep so that Δ(t) is again ΔI at the final time = +t T :
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Our proposal is then to perform a series of identical experiments with this kind of forward-and-back sweep, 
similar to the procedures already used in1, only without dissipative relaxation to local energy minima. In each 
experiment the number n1 of atoms in mode 1 is measured at the final time T and recorded, so that we obtain a 
distribution of final values n1 for that sweep extent Δ0. The whole series of experiments is then repeated for a set 
of different values of Δ0, with no other changes in the procedure.

With attainably large numbers of particles N a semiclassical theory of evolving a cloud of phase space points 
under classical equations of motion should be accurate for such a set of experiments, with quantum corrections 
potentially observable at smaller N6–8. We therefore use this approximation to compute the simulated observa-
tions shown in Fig. 1. Once the semiclassical approximation is established, we deal with a system with only a 
single degree of freedom (see the Hamiltonian below). In comparison to the traditional thermodynamic limit of 
very many classical degrees of freedom, as in an egg or a gas under a piston, this is the ultimate microscopic limit.

Apart from the left-most column of points in Fig. 1, each point represents the final n T( )1  measured in one 
experimental run. Each separate column of points represents the subset of experiments performed with a differ-
ent Δ0; the vertical position of each dot shows n T( )1 , while the horizontal spread of points within each column is 
simply a random offset used to make the points visible. The left-most column of points shows the distribution 

−n T( )1  in the initial ensemble, which is the same for all runs. To simplify our discussions below, the initial ther-
mal ensemble has been idealized as micro-canonical with a finite energy width; real finite temperature will spread 
the point distributions vertically.

Up to a certain threshold sweep extent Δ0, the final distribution of n1 remains indistinguishable from the ini-
tial distribution in every experimental run. Above this threshold Δ0, however, some runs will end with n T( )1  far 
below the initial range. As the sweep extent Δ0 is raised further, the proportion of these anomalous runs rises, 
until a plateau is reached. Thus for all values of experimental parameters there is a clearly measurable probability 

Δ ΩP U N( , , , )0  that the final state of the system will be the same as the initial state after the slow forward-and-back 
sweep. This return probability P is one up to a threshold Δ0, then falls smoothly to a lower plateau.

This phenomenon is the microscopic onset of irreversibility. If the initial distribution of −n T( )1  corresponds 
to the raw state of an egg, then the anomalous final state with n T( )1  well below the initial range represents the 
cooked egg. The continuous onset of irreversibility occurs not through the final state gradually becoming more 
distinct from the initial state until a macroscopic difference like that between raw and cooked is attained, but 
rather through an anomalous final state, which even in the microscopic system is quite distinct from the initial 
state, becoming continuously more probable. To support this interpretation it suffices to look at the semiclassical 
theory that describes the experiments.

Figure 1.  Return probability as a function of the sweep extent Δ0 (open circles, right y-axis) as deduced from an 
initial microcanonical ensemble of 2000 points. Probabilistic irreversibility sets in around Δ ∼ .0 80 . Error bars 
indicate the expected sampling error. The solid curve is the theoretically predicted return probability Δ ΩP U N( , , , )0  
for this initial ensemble (see Methods), in the limit → ∞T . Deviations from the theory curve around Δ ∼ 10  are 
due to post-adiabatic corrections (see Methods). Black dots show the final particle number n T( )1  (left y-axis) for a 
smaller sample of 200 simulations. All the dots in one column actually have the same Δ0 but are randomly displaced 
horizontally to let all the dots be seen. The first column (shaded) shows a typical initial distribution −n T( )1 . 
Probabilistic irreversibility manifests itself as the occurrence of dots with final n T( )1  well outside the initial range. The 
parameters for all simulations are ħ = − ΩU N 3 , ∆ = − Ω2I , − . Ω < − < − . Ωħ ħN H T N1 68 ( ) 1 63  and constant 
sweep rate |Δ | + |Δ | = ⋅ Ω−T( )/ 2 10I 0

4 2.
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Phase Space Picture
A mean field approximation of Ĥ9 in convenient canonical variables q p( , ) (see Methods) is
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With the protocol (2) for Δ t( ), our dynamics under H has Loschmidt time-reflection symmetry about the 
instant =t 0: for every solution q t( ), p t( ) to the equations of motion, −q t( ), − −p t( ) is also a solution. Individual 
solutions are in general not their own images under time-reflection, however; even in the quasi-static limit where 

→ ∞T  the solutions may have significantly different initial and final energies, because for Ω < −ħU N / 1 and 
certain ranges of Δ, H can have an unstable fixed point and a separatrix (see Methods) where the adiabatic 
approximation breaks down locally. It is important to note that this breakdown of adiabaticity is unavoidable: it 
persists even in the quasi-static limit of infinitely slow sweep rate, because the evolution of the system becomes 
arbitrarily slow in the vicinity of the unstable fixed point. Thus although the reason for irreversibility of our evo-
lution is ultimately the usual one of adiabaticity breakdown, we have the unusual feature that reversibility cannot 
be recovered by simply making the external parameter change slower.

The effect of the separatrix is illustrated in Fig. 2, which shows five instants in the evolution of a sample of 
phase space points, only some of which return close to their initial state after the slow forward-and-back sweep 
of Δ. Figure 2 also shows the evolution of the energetically allowed phase space shells within which the system 
points adiabatically orbit. The initial ensemble lies entirely within the upper separatrix lobe denoted Au. As Δ 
rises, the separatrix shrinks into the ensemble, which spills non-adiabatically into the lower lobe Al. As this hap-
pens, the energy shell within which all points were initially distributed merges with a higher-energy shell that was 
initially unoccupied. Subsequent adiabatic orbiting distributes the system points throughout the combined shell; 
even without chaos, the many orbits performed during the slow Δ sweep effectively swirls the points uniformly 
throughout the whole energetically available region10,11 (left inset). The fact that this effective ergodization occurs 
with only a separatrix instead of full chaos is surprising but simple (see our Methods), and it makes possible these 
simple experiments.

In the backwards sweep the single adiabatic shell splits back into disjoint inner and outer shells, in the exact 
time-reverse of the forward sweep. The distributed points do not all find their way back into the inner shell from 
which they started, however. Instead, because the initial points are effectively randomly distributed throughout 
the larger shell, the fraction of a thin initial energy shell which finally returns to that shell is given by the ratio of 
the phase space area of the initial shell to the larger area which the ensemble quasi-ergodically fills at =t 0. To 
generalize beyond thin initial energy shells to a general equilibrium phase space distribution function f E( )i  with 
negligible support outside the initial separatrix, we can simply integrate over initial energy Ei. In our Methods we 
use the Kruskal-Neishtadt-Henrard theorem12–15 to derive the return probability
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where A E( )i i  is the area enclosed by the initial energy contour − =H q p T E( , , ) i. For each Ei, A E( )l i  is the area 
that the lower lobe of the separatrix will have at the time when the upper lobe has area Δ =A A E( ) ( )u i i ; note that 
this implies ′ <A E( ) 0u i . The minimum energy ΔE ( )0  is the lowest initial energy contour which will meet the 
separatrix before the sweep reverses at =t 0. This formula defines the curve in Fig. 1, for the finite-width micro-
canonical ensemble specified in the caption.

Our entire scenario is thus a surprisingly simple realization within a two-dimensional phase space of the 
same dynamical mechanism that makes Joule expansion of a classical gas irreversible. An episode of spontane-
ous non-adiabatic evolution, during which an initial ensemble expands into a larger phase space volume, is fol-
lowed by effective ergodization which finely mixes the ensemble throughout that larger volume, without breaking 
Liouville’s theorem. In the microscopic case the non-adiabatic episode is the separatrix crossing, where adiaba-
ticity breaks down due to intrinsic dynamical instability in the system even though external parameter change 
remains slow. The subsequent ergodic-like mixing within each energy shell occurs without chaos as the ensemble 
swirls around the larger shell many times10,11. In the microscopic system the larger space into which the ensem-
ble is mixed is larger only by a modest factor. In the higher-dimensional phase space of a macroscopic system, 
however, the basic mechanism of expansion and ergodization can easily account for macroscopic irreversibility 
by bringing the return probability P to near zero. In the latter case chaos is generically involved as discussed in16.

Outlook
The microscopic onset of irreversibility can be observed unambiguously with ultracold atoms as a dramatic phe-
nomenon with final ‘raw’ and ‘cooked’ states that differ by particle numbers large enough to be distinguished 
without precise atom-counting. Detailed agreement between measured and predicted Δ ΩP U N T( , , , , )0  will 
also confirm that it is really the target phenomenon of microscopic irreversibility that is being observed.

Once this is confirmed, the experimental foothold in the frontier of microscopic irreversibility can be 
expanded in many directions. Reducing atom number N will strengthen quantum effects17. The quantum version 
of our scenario presents a series of avoided level crossings, and the transition probabilities can be calculated by the 
Landau-Zener formula. In contrast to the classical case discussed here the quantum evolution always becomes 
reversible in the quasi-static limit. The energy gaps at the avoided crossings are exponentially small in N, however, 
so that already for N of order 10 the sweep time T has to be extremely many times Ω−1 to yield a high return prob-
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ability. For realistic sweep times therefore the quantum evolution also becomes irreversible, and the return prob-
ability can be compared to the classical values obtained here. Details will be published elsewhere. Letting more 
than two modes be populated can introduce dynamical chaos16,18. And protocols more complex than the symmet-
ric forward-and-back sweep can seek to test when the microscopic ‘egg’ not only fails to return to its raw state 
adiabatically but becomes impossible to ‘uncook’ by any available means. The simple case we have shown will be 
just the beginning.

Figure 2.  Evolution of 500 initial points (black dots) in q p( , ) phase space under (3, 2) with = − ΩħU N 3 , 
Δ = . Ω0 6I , Δ = . Ω1 20  and = Ω−T 3000 1, shown at the times − − +T T T T( , /2, 0, /2, ). The gray shaded 
region is the energetic envelope of all the points at time 0, evolved backward in time to −T/2 and −T as well as 
forward to +T/2 and +T. Since the shaded region at time 0 has reflection symmetry in p, its evolution has time 
reversal symmetry, and so it is the same at times ±T/2 and ±T. The dashed line indicates the separatrix; the 
areas of its Δ-dependent upper and lower lobes are denoted ΔA ( )u l, . The left inset panel is a zoom of a small 
region inside the indicated box in the energy shell at =t 0, and shows what a continuous ensemble that 
uniformly filled the inner energy shell at = −t T  would look like at =t 0. Within the small zoomed region the 
stripes are indistinguishable from instantaneous energy contours, but around the energy shell the stripe energies 
slowly drift: in fact the many stripes are a single continuous swirl that wraps around the shell many times. The 
initial microcanonical ensemble is thus spread uniformly through the larger, merged energy shell at =t 0, yet 
without violating Liouville’s theorem. The finite set of black points samples this effectively ergodizing ensemble; 
the fraction of points that return to the inner shell can be computed in terms of phase space areas via 
the Kruskal-Neishtadt-Henrard theorem.
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Methods
Mean field approximation of (1).  Instead of using âi operators we can express the Hamiltonian operator 
(1) using the Schwinger angular momentum representation
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with = +ˆ ˆ ˆN n n1 2. The mean field approximation corresponds to replacing the Hermitian L̂i by real variables Li 
within each subspace of N̂  eigenvalue N. We can then introduce canonical coordinates q p( , ) via =L pz  and 

+ = −L iL p p ex y
iq

0
2 2 , where = ħp N /20 . In these coordinates the mean field Hamiltonian is (3) after dropping 

an inconsequential constant.

Unstable fixed point and separatrix.  When an external parameter in a Hamiltonian is slowly varied, the 
adiabatic theorem ensures the conservation of the action (enclosed phase space area) of each orbit. This means 
that orbits are smoothly deformed, but the evolution with the time dependence of the external parameter inverted 
would lead to exactly the same deformation in reverse. The occurrence of irreversibility in our system is due to a 
localized failure of the adiabatic theorem. This happens because our system can have an unstable fixed point, in 
whose vicinity the orbital period diverges and the condition for the validity of the adiabatic theorem can never be 
met. The condition for a fixed point q p( , )c c  is = ∂ ∂ =q̇ H p/ 0 and ˙ = −∂ ∂ =p H q/ 0, which leads in our case to 

=p 0c  and

Ω + + Δ = .p q U p q q p qsin( ) 2 sin( )cos( ) cos( ) 0 (7)c c c c0 0
2

0

This equation can be solved analytically, but the solutions are lengthy expressions. For any given values of 
Ω ΔU N, , ,  the equation is also easily solved numerically. It turns out that there always exist at least two dynami-
cally stable solutions (the energy maximum and minimum). For Ω < −ħU N / 1 and certain ranges of Δ there exist 
two more solutions, corresponding to an additional energy minimum and an unstable fixed point19–22. The sepa-
ratrix is then the figure-eight-shaped energy contour passing through the unstable fixed point, as shown in Fig. 2. 
We refer to the two regions that are bounded by the separatrix figure-eight as the upper and lower lobes (see 
Fig. 2); they meet at the unstable fixed point but are otherwise disjoint. In all our Δ sweeps, the upper lobe may 
be said to exist from the beginning, with the lower lobe appearing and growing while the upper lobe shrinks. If 
the sweep extends far enough, the upper lobe eventually disappears.

The location of the fixed point depends on the bias Δ, and so also does the separatrix energy =E H q( , 0)c c . 
The areas of the upper and lower separatrix lobes,
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where qmin and qmax are the roots in q of =H q E( , 0) c, are thus also both functions of Δ.

Kruskal return probability.  The Kruskal-Neishtadt-Henrard theorem12–15 deduces the fraction of a thin 
adiabatic energy shell that will exit a shrinking separatrix lobe into one of two growing regions, from the facts 
that adiabaticity only fails near the separatrix, and that Liouville’s theorem remains valid everywhere. During our 
forward sweeps the upper lobe is shrinking, and so is the region outside both separatrix lobes, so the theorem 
prescribes that the orbits being squeezed out of the upper lobe all go into the lower lobe.

During the reverse sweep, conversely, the lower lobe shrinks while both upper lobe and outer regions are 
growing, so some orbits migrate into both growing regions of phase space. The phase space area which is squeezed 
out of the shrinking lower lobe, in a time interval over which δΔ → Δ − , is δ| ′ Δ |A ( )l ; meanwhile the upper lobe 
gains area δ| ′ Δ |A ( )u . The share of migrating orbits gained by the upper lobe in this interval is thus | ′ | | ′ |A A/u l .

By our Loschmidt symmetry around =t 0, the areas Au l,  of both lobes when our thin energy shell spills back 
out of the lower lobe on the return sweep are the same as they were when the shell spilled into the lower lobe on 
the forward sweep. And since the area initially enclosed by an adiabatic orbit is conserved until the shrinking 
separatrix lobe shrinks down to meet it, the value of Δ at which an initial thin energy shell around initial energy 
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Ei will spill through the shrinking separatrix is the Δ E( )c i  found by solving Δ =A A E( ) ( )u c i i  for Δc. This solution 
then defines both the lobe areas at separatrix crossing ΔA E( ( ))u l c i,  as functions of initial energy Ei.

The ratio of rates of change of lobe areas in the Kruskal-Neishtadt-Henrard formula can then trivially be 
expressed in terms of derivatives with respect to Ei:

− = −Δ

Δ

Δ

Δ

,
(10)

A

A

E A
E

E A
E

d
d
d
d

d
d

d
d

d
d

d
d

u

c

l

c

i

c

u

i

i

c

l

i

yielding the Kruskal-Neishtadt-Henrard return fraction for a thin initial energy shell around Ei as
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for all Ei that will actually encounter the separatrix before the sweep reverses at =t 0. Initial energies below the 
ΔE ( )0  which solves Δ = ΔE( )c 0 will instead have return probability =P 1, since they never cross the separatrix. 

Integrating over thin energy shells with the phase space measure =A E A Ed d d /di i i i and the ensemble density 
f E( )i  then yields (4).

If Δ0 is large enough that a given shell crosses the separatrix, Fig. 3 shows that the return probability P E( )i  can 
range from near zero to near one. This implies a predictable and observable dependence of return probability on 
the system’s initial temperature. Note that the nearly straight sloping region of the ΔP( )0  curve in Fig. 1 may 
become less straight for ensembles that are broader in energy. Our simulated data points fit the infinite-T curve 
less closely for smaller Δ0 because the system spends more time close to the unstable fixed point in these runs 
than it does for larger Δ0. This weakens the adiabatic approximation; neo-adiabatic corrections23–27 to provide a 
more accurate finite-T prediction in this regime may be pursued in future work.

Swirling vs. coarse graining.  At =t 0, just as the sweep is reversing, our ensemble effectively fills the 
merged energy shell, in the sense that it is swirled throughout the energy shell very finely, as shown in the left inset 
panel of Fig. 2. A traditional interpretation is that coarse-graining makes this finely swirled ensemble equivalent 
to an ergodic distribution; irreversibility is then explained by asserting that information in the initial ensemble 
which has been carried into fine-grained features is effectively lost forever. This explanation may be appealing 
because fine structures can certainly be lost to human perception, but our proposed experimental scenario pro-
vides an explicit counter-example to the hypothesis that simple system dynamics cannot reassemble simple 
shapes out of fine-grained swirls. The reflection in p of our finely swirled ensemble at =t 0 is exactly as finely 
swirled as the unreflected ensemble, but our time reversal symmetry implies that the simple separatrix crossing 
dynamics of our system will reassemble that finely swirled reflected ensemble back into the coarse microcanonical 
shell that was our initial state. The irreversibility in our scenario is therefore not due to the fact that finely swirled 
ensembles in general can never dynamically reassemble into coarse ones, because this is not a fact.

Irreversibility occurs instead simply because the finely swirled ensemble f q p t( , , ) that we have reached at 
=t 0 is not the same as the finely swirled ensemble −f q p( , , 0) that would evolve back into our initial state. See 

Fig. 4. The return fraction for each thin energy shell around Ei can be defined exactly as a classical version of the 
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Figure 3.  Kruskal-Neishtadt-Henrard return probability P for energy contours with initially enclosed area Ai in 
the upper lobe for = − ΩħU N 3 . The return probability can be much lower than in Fig. 1 if Ai is small enough.
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so-called ‘Loschmidt echo’, as follows. Define the un-normalized initial distribution function −f q p T E( , , ; )i  
which is simply one within the initial thin shell and zero outside it. Evolve this un-normalized distribution func-
tion under the Hamiltonian from = −t T  to =t 0. The exact return fraction for this initial energy shell is then

∫
∫

≡
−

.
 



P E
q p f q p E f q p E

q p f q p E
( )

d d ( , , 0; ) ( , , 0; )

d d ( , , 0; ) (12)
i

i i

i

The two finely swirled distributions ±f q p E( , , 0; )i  are related simply to each other by p-reflection, but this is 
a global relationship which has nothing in particular to do with the local swirling structure of either distribution. 
As Fig. 4 shows, in any typical small region of phase space the thin stripes of ±f q p E( , , 0; )i  fail to overlap pre-
cisely, so that <P E( ) 1i .

Our return formula (4) according to the Kruskal-Neishtadt-Henrard theorem is thus not really based on the 
naive assumption that the swirled distribution f q p E( , , 0; )i  is exactly equivalent to the ergodic distribution fill-
ing the =t 0 energy shell uniformly at coarse-grained density P E( )i . Rather, it is equivalent to assuming that the 
time-forward and time-reversed distributions ±f q p E( , , 0; )i , both of which are finely swirled, are ergodic with 
respect to each other, in the sense that their overlap with each other in (12) is the same as the overlap of either with 
the ergodic distribution.
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