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Abstract. The analysis of diffusive energy spreading in quantized chaotic driven
systems, leads to a universal paradigm for the emergence of a quantum anomaly.
In the classical approximation a driven chaotic system exhibits stochastic-like
diffusion in energy space with a coefficient D that is proportional to the intensity
ε2 of the driving. In the corresponding quantized problem the coherent transitions
are characterized by a generalized Wigner time tε, and a self-generated (intrinsic)
dephasing process leads to non-linear dependence of D on ε2.

A major theme in mechanics concerns the response of a system to a driving source
f(t), given that the interaction term is Hint = f(t)V . This leads to the well known
framework of linear response theory (LRT) with its celebrated fluctuation-dissipation
relation. Below we assume a stationary driving source which is characterized by a
power spectrum S̃(ω) = FT[〈f(t)f(0)〉], where FT stands for Fourier transform. In
the absence of driving the stationary fluctuations of the system are characterized by
the spectral function C̃(ω) = FT[〈V (t)V (0)〉]. In the presence of driving the main
three effects are: the decay of the initial preparation; the spreading and eventually the
diffusion in energy space; and the associated heating.

1. LRT and Kubo

Strict LRT behavior means that the diffusion in energy space [1] and the related
absorption coefficient [2, 3, 4] are linear functional of the spectral function S̃(ω).
Specifically, the Kubo formula for the diffusion coefficient in energy space is

D =
1
2

∫ ∞
−∞

ω2dω C̃(ω)S̃(ω) (1)

It follows that the diffusion is proportional to the intensity of the driving ε2 as
defined below. We are going to consider on equal footing driving by a quasi-constant
perturbation f(t)∼const, and quasi-linear DC driving with ḟ(t)∼const. The notation
“∼const” means that it is constant over large time intervals of duration tϕ, with some
characteristic RMS value that we call ε. Accordingly the associated spectral functions
is

S̃(ω) = ε2ω−σδγ(ω) (2)

where δγ(ω) = (γ/π)/(ω2 + γ2) with γ = 1/tϕ, while the spectral exponent is σ=0 for
quasi-constant perturbation, and σ=2 for quasi linear DC driving.
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2. Paradigms

We are looking for circumstances where the Kubo formula is not applicable. This
means that either D is still proportional to the strength of the driving but with an
anomalous coefficient, or more generally D might depend in a non-linear way on the
strength of the driving. Paradigms for non-LRT response with which we are familiar
are: (i) Classical non-LRT route that follows from the Kolmogorov-Arnold-Moser
scenario as in the driven (kicked) rotator problem [5]; (ii) Quantum semi-LRT due
to sparsity and textures that characterize the perturbation matrix [6]; (iii) Quantum
corrections due to dynamical localization effect [7, 8]. (iv) Quantum absorption due
to Landau-Zener transitions between neighboring energy levels [2]; (v) Quantum non-
perturbative anomalies that are associated with having a finite spectral bandwidth [9].

3. Scope and main observation

One should notice that all the mentioned non-LRT paradigms above become irrelevant
if we consider the continuum limit of a universal quantized chaotic system. By
definition “continuum” means that the Heisenberg time (see definition later) can be
taken as infinite, while “universality” means that the correlation time (see definition
later) can be taken as zero. The term “chaos” means that mixed phase-space dynamics
is out of scope as well. In the present work we show that even with all these
assumptions and exclusions there is still room for a novel manifestation of quantum
mechanical anomalies in the response to external driving. A central role is played by
the generalized Wigner time tε which characterizes a coherent spreading process in
energy space, and by what we call intrinsic dephasing time t(eff)ϕ .

Beyond any technical details it is important to realize that for a universal chaotic
system (as assumed in RMT studies) the Kubo formula of LRT can be deduced
merely via dimensional analysis. The non-Ohmic generalization of this statement
[Eq.(10)], as established in this communication, implies a universal quantum anomaly
in the response characteristics of non-Ohmic systems. This prediction has potential
applications e.g. with regard to the rate of heating of cold atoms in vibrating traps.

4. Modeling

In a system that is described by a time dependent Hamiltonian H[R] with R =
R0+f(t) the transitions between the adiabatic energy levels En are induced by the
perturbation matrix Vnm = (dH/dR)nm. The spectral function that characterizes the
fluctuations of V in the absence of driving is

C̃(ω) =
∑
n

|Vn,n0 |22πδ
(
ω − En−En0

~

)
(3)

with implicit average over n0 as determined by the energy window of interest. We
assume below that

C̃(ω) = 2π|ω|s0−1 for ω0 < |ω| < ωcl (4)

and distinguish between the Ohmic (s0=1), subOhmic (0<s0<1), and superOhmic
(1<s0<2) cases. Without loss of generality, by appropriate rescaling of f(t), we set the
prefactor in Eq.(4) as 2π. The infrared cutoff ω0 = (~%)−1 is the mean level spacing,
as determined by the density of states. The ultraviolet cutoff ωcl is determined by
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the classical dynamics and is known as the bandwidth or as the ballistic version of
the Thouless energy. The associated time scales are the Heisenberg time tH = 2π~%
and the classical correlation time tcl = 2π/ωcl. In a later paragraph we define the
generalized Wigner time tε that depends on the strength of the driving. This time
scale characterizes the coherent spreading process. We assume below mesoscopic
circumstances for which

tcl � (tε, tϕ) � tH [mesoscopics] (5)

where tϕ is the correlation time of the driving source as define with relation to Eq.(2).
Our interest is in results that remain well defined for tcl → 0 (universal limit) and
tH →∞ (continuum limit). The existence of a universal limit is the underlying
postulate in Random Matrix Theory (RMT) modeling. We distinguish in the analysis
between weak (tε > tϕ) and strong (tε < tϕ) driving.

5. DC driving

The common interest is in Ohmic systems (s0 = 1) with quasi-linear DC driving
(σ = 2), for which Kubo formula gives D = πε2. This result is not sensitive to tϕ,
and is independent of the infrared and ultraviolet cutoffs. Our purpose if to generalize
this result for the case of non-Ohmic fluctuations. We shall see that this requires to
go beyond LRT.

The key observation is that the problem of quasi-linear DC driving reduces, with
some reservations, to the analysis of quasi-constant perturbation. This is done by
transforming the Hamiltonian into the adiabatic basis where it takes the form

H̃ = diag{En}+ ḟ

{
i

~Vnm
En − Em

}
(6)

If we ignore the implicit time dependence of the adiabatic energies and matrix
elements, then this Hamiltonian is the same as that of quasi-constant perturbation
but with effective exponent s = s0 − 2. In particular quasi-linear driving of an Ohmic
system corresponds to s = −1.

At this point one wonders what is the effect of the residual implicit time
dependence of the Hamiltonian Eq.(6). Obviously we should not be too worried about
the wiggles of the levels, because they take place on a very small energy scale and
would be of relevance only if we were considering times of the order of the Heisenberg
time. The variation of the matrix elements is more troubling, and we shall come back
to this issue later.

6. The generalized Wigner time

Universality (irrelevance of ωcl) is a common built-in assumption in numerous
“quantum chaos” studies that utilize the standard random matrix ensembles.
Furthermore a quasi-continuum assumption (irrelevance of ω0) is implicit in the
standard derivations of LRT. If we believe that in the continuum limit (ω0 → 0)
there exists a universal limit (ωcl → ∞) that leads to a generalized response theory,
then disregarding tϕ the only relevant time scale that might emerge in the dynamics
is implied by dimensional analysis:

tε = (~/ε)2/(2−s) (7)
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One immediately realizes that it is the generalized Wigner time of Ref.[10]. For a
quasi-constant perturbation of Ohmic system it is literally the Wigner time

tε = (~/ΓE), for s = 1 (8)

where ΓE = (2π/~)ε2 is the Fermi-golden-rule rate of transitions. For a quasi-linear
driving of Ohmic system it is the breaktime scale that has been introduced in Ref.[4],

tε = (~2/D)1/3, for s = −1 (9)

where D = πε2 in derived from the Kubo formula.
More generally, in the non-Ohmic case, we can associate with the generalized

Wigner time an energy scale ~/tε and a diffusion coefficient

Dε =
~2

t3ε
= ~−2 s+1

2−s ε
6

2−s , [s = s0−σ] (10)

At this point one should wonder whether this expression might emerge from the
analysis of the spreading process in some universal limit. Note that it is only in
the Ohmic (Kubo) case that Dε becomes ~ independent.

7. Coherent spreading

If the perturbation matrix in Eq.(6), call it Wnm, were strictly time independent, then
the induced wavepacket dynamics would lead to a steady state, with a saturation
profile that reflects the local density of states. Specifically, let us assume that the
system is prepared in the unperturbed state n for which the unperturbed energy En
is well defined, then in the perturbed basis it has the energy distribution

P∞(E) =
∑
ν

|〈ν|n〉|2δ(E−Eν) (11)

We have argued in Ref.[10], following previous studies, that this energy distribution
has a semicircle-like core that extends within |E−En| < ~/tε, coexisting with outer
perturbative tails that are determined by the first order expression |Wnm|2/(En−Em)2

for the overlaps. The associated variance is ∆E(∞)2 = ωsclε
2 for s > 0, and

∆E(∞)2 = (~/tε)2 for s < 0.
In the time dependent analysis the steady state profile of Pt(E) is achieved only

after tε, but the crossover is not necessarily observed in the spreading ∆E(t), which
is a second moment calculation. Specifically we get

∆E(t) = ε ω
s/2
cl for [s>0],[t>tcl] (12)

∆E(t) = ε t|s|/2 for [s<0],[tcl<t<tε] (13)
∆E(t) = ~/tε for [s<0],[t>tε] (14)

For s > 0 the spreading saturates as soon as t > tcl, and to detect the crossover at tε
one should look on the survival probability or on percentiles of the distributions as
described in Ref.[10]. But for s < 0 the second moment of the evolving distribution
exhibits the crossover to saturation at tε, and not at tcl. This can be deduced using
the following simple reasoning. First order perturbation theory implies that the tail
grows like |Wnmt|2 within the shrinking interval ~γ(t) < |E − En| < ~/t. In the outer
|E−En| > ~/t region the tail is saturated due to recurrences. The lower cutoff γ(t)
is determined by a self-consistency condition, saying that the integral over the 1st
order tail of Pt(E) from γ(t) to infinity should be O(1). This leads to the estimate
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γ(t) =
[
t|s| + (εt/~)−2

]−1/|s|
. Steady state is achieved at tε when γ(t) ∼ 1/t. Up to

this time the second moment of the evolving distribution is dominated by the growing
piece of the tail leading to Eq.(13). This is a diffusive-like growth (∆E(t) ∝ t1/2) in
the case of a quasi-linear DC driving.

8. Diffusion

The dephasing time tϕ indicates the crossover from coherent to stochastic spreading
behaviour. The central limit theorem implies that the long time spreading is diffusive
with coefficient

D =
∆E(tϕ)2

2tϕ
(15)

where ∆E(t) is the time dependent coherent spreading that we have discussed in the
previous paragraph. This result is classical in nature (no ~) and it is easily checked
that it agrees with the Kubo formula Eq.(1) provided we use Eq.(12) or Eq.(13),
leading to

D = ε2 ωscl t
−1
ϕ for [s>0] (16)

D = ε2 t|s|−1
ϕ for [s<0],[tϕ<tε] (17)

Both results are ∝ ε2. In particular Eq.(16) applies to quasi-constant perturbation
and is merely the well known hopping estimate for the noise-induced diffusion is system
with ‘localization’.

Consider a general system with quasi-linear DC driving, such that s < 0. If the
driving is weak (tϕ < tε) it is justified to substitute Eq.(13) in Eq.(15), thus getting
the LRT result Eq.(17). In particular we note that in the standard case of DC-driven
Ohmic system (s = −1) we get a tϕ independent result. Otherwise the result is tϕ
dependent. For |s| 6= 1 one observes that in the limit tϕ →∞ the LRT result is either
zero or infinity. This suggests that in such circumstances a realistic theory should lead
to an ~ dependent result.

9. Beyond LRT

So far the elaborated spreading picture that we have introduced gave for D the same
result as Kubo. So now we would like to see whether there are circumstances where
this picture leads to novel physics beyond LRT. Considering s < 0 and strong driving
tε < tϕ, it seems that one should substitute Eq.(14) in Eq.(15), leading to a sub-linear
dependence on the strength of the driving:

D = ~
2|s|

2+|s| ε
4

2+|s| t−1
ϕ , [s<0], [tϕ>tε] (18)

However, one should be critical with regard to this result. The saturation of the
coherent spreading process assumes a time-independent perturbation in Eq.(6). This
would be the case if σ = 0 but not if σ = 2.

10. Intrinsic dephasing hypothesis

Considering the general problem of having a driving source with arbitrary spectral
exponent σ, one realizes that as far as the integrand of the Kubo formula Eq.(1) is
concerned the effective spectral exponent is s = s0 − σ. If a breakdown of this spectral
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equivalence rule is observed, it constitutes a demonstration of a quantum anomaly.
Indeed in the numerical experiment of Fig. 1, we contrast the dynamics which is
generated by a time-dependent (σ= − 2) perturbation, with that of a frozen (σ=0)
perturbation that has the same s. We find that only the latter shows the coherent
saturation of Eq.(14).

Consequently we would like to conjecture that the implicit time-independence of
the perturbation in Eq.(6) leads to an intrinsic dephasing time teffϕ which is finite in the
limit tϕ →∞. We have in our problem only one time scale, the generalized Wigner
time, and therefore the natural speculation would be teffϕ ∼ tε. If this speculation is
true, then the replacement tϕ 7→ teffϕ in Eq.(18) leads to the universal result Eq.(10).
For the standard Ohmic case this implies that diffusive spreading persists beyond
tε, and that LRT-like result ∝ ε2 still holds. For the non-Ohmics case this implies
that the sub-diffusive or super-diffusive coherent spreading turns into normal diffusion
with non-linear dependence on ε2. Both expectations are supported by the numerical
experiment of Fig.1 that we further discuss and analyze below.

11. RMT numerics

In order to have a model that captures and tests the question of spectral equivalence
it is convenient to use not the standard Wigner model, but rather its parametric
invariant variation:

Hij(t) = Eiδij + cos[f(t)] V (1)
ij + sin[f(t)] V (2)

ij (19)

where V (1)
ij and V

(2)
ij are two independent realizations of a banded matrix, that has a

bandprofile λ|ω|sλ−1, in the sense of Eq.(3), but with n 7→ i. The energies En(t) are
obtained via diagonalization of H(t) and the perturbation matrix Vnm(t) should be
written in the same basis. The bandprofile of Vnm is related to that of Vij as discussed
in [11]. We have set %=1 and λ=1 and verified that s0 ≈ sλ. We consider DC driving
ḟ = const, and accordingly ε2 = λḟ2.

In the time dependent adiabatic basis the perturbation matrix in the transformed
Hamiltonian Eq.(6) is Wnm(t) = iḟVnm/(En−Em), whose bandprofile is characterized
by s = s0−2. This matrix changes with time but it preserves its statistical properties.
The question is whether its implicit time dependence generates an effective dephasing
process.

The numerical experiment is simple. On the one hand we make simulations with
the time dependent Hamiltonian H. On the other hand we use a frozen version of
Eq.(6) which we write in the ij basis as

Hij(frozen) = Eiδij + Uij + ḟ Wij(0) (20)

The initial state is assumed to be localized at i = 0, and an ensemble average over
realizations is taken. Comparing the simulations (Fig.1) we deduce that there is
intrinsic dephasing due to the implicit time dependence of the driving in Eq.(6).

In order to figure out what is the intrinsic dephasing time we plot in Fig.2
the scaled diffusion D/Dε versus the strength of the driving. The Ohmic case as
conjectured is ‘boring’. In contrast to that the sub-Ohmic and the super-Ohmic case
exhibit departure from the universal expectation for large and small ε respectively,
indicating that the effective dephasing time becomes shorter than tε. We associate this
systematic deviation with the infrared and ultraviolet cutoffs respectively: otherwise
dimensional analysis implies that such deviation cannot emerge. We explain this
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sensitivity as follows: The value of D is most sensitive to tϕ in the slow diffusion
stage. In the sub (super) Ohmic case the slow diffusion stage is for long (short) times,
and accordingly the sensitivity is to the lower (upper) cutoff, in-spite of the fact that
the spreading is dominated by the high (low) frequency transitions.

12. Conclusions

LRT gives a finite classical-like result for the response of a low frequency driven Ohmic
system. But in the case of a sub-Ohmic or super-Ohmic system, classical LRT predicts
in the same limit either zero or infinite response. This is the notch where quantum-
mechanics becomes most relevant, leading to an anomalous non-linear response.

The analysis highlights the role which is played by the generalized Wigner time of
[10], which is the only relevant time scale in the universal continuum limit, and leads
to a single-parameter expression Eq.(10) for the diffusion in energy space.

The results might have a direct application concerning the heating rate of cold
atoms in vibrating traps [12], where the experimentalist has control over both the
shape (hence C̃(ω)) and the power spectrum (S̃(ω)) of the driving.
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Figure 1. (color online) Variance of energy spreading versus time for three
different s0-values, and two different driving rates ḟ=5 (thick black lines) and
ḟ=12 (thin blue lines). The time-axis is rescaled according to the Wigner time
tε given by Eq.(7). Solid lines correspond to the simulations based on the
Hamiltonian of Eq.(19), while the dotted are for its frozen version Eq.(20).
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Figure 2. (color online) Dependence of diffusion on the rate of the driving for
various values of s0. The axes are X = ε2/(2−s) and Y = D/ε6/(2−s), where
s = s0−2. Note that ω0 < X < ωcl where the level spacing is ω0 = 1 and the
bandwidth is ωcl = 50. The deviation of D from universlity is due to the finite
infrared or ultraviolet cutoffs: We see that in the superOhmic case (s0 > 1) the
diffusion D becomes ω0 independent for large ε, while in the subOhmic case
(s0 < 1) it becomes ωcl independent for small ε.


