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Semilinear response theory determines the absorption coefficient of a driven system using a resistor network
calculation: each unperturbed energy level of a particle in a vibrating trap, or of an electron in a mesoscopic
ring, is regarded as a node �n� of the network; the transition rates �wmn� between the nodes are regarded as the
elements of a random matrix that describes the network. If the size distribution of the connecting elements is
wide �e.g., log-normal–like rather than Gaussian type� the result for the absorption coefficient differs enor-
mously from the conventional Kubo prediction of linear response theory. We use a generalized variable range
hopping scheme for the analysis. In particular, we apply this approach to obtain practical approximations for
the conductance of mesoscopic rings. In this context Mott’s picture of diffusion and localization is revisited.
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I. INTRODUCTION

Semilinear response theory �SLRT� �Ref. 1–3� provides a
procedure for the calculation of the absorption coefficient of
a driven system, assuming that there are well-defined transi-
tion rates wmn between levels En that are ordered by energy.
In this context it is helpful to regard wmn

−1 as describing resis-
tors that connect nodes of a network, a point of view that has
become popular in the related studies of variable range hop-
ping �VRH�.4–9 In the random matrix theory �RMT� frame-
work wmn is a random matrix whose construction is inspired
by analyzing the statistical properties of the Hamiltonian of
an actual physical system.10,11 Three physical applications
have been discussed so far: �i� metallic rings driven by elec-
tromotive force;12 �ii� metallic grains driven by low-
frequency radiation;3 and �iii� cold atoms that are heated up
due to the vibrations of a wall.13 It is crucial to observe that
depending on the parameters that define the physical model,
the matrix wmn might be banded and sparse.14,15 Conse-
quently, nontrivial results that go beyond linear response
theory �LRT� are obtained.

In order to have a precise mathematical definition of the
RMT model, let us write the random matrix as

wmn = Xmn � B̃�Em − En� . �1�

In this expression B̃��� describes the band profile of the
matrix and Xmn is a random matrix whose entries x are posi-
tive uncorrelated random numbers. If log�x� is widely dis-
tributed over many decades, as in the case of log-normal or
log-box distribution, then we say that the matrix is effec-
tively sparse. Sparsity means that the majority of elements
are very small compared with the average value.

Irrespective of real-space dimensionality, we regard the
index n of the energy levels as labeling the nodes of a one-
dimensional �1D� lattice �see Fig. 1� hence the wmn define a
1D resistor network. The inverse resistivity of this network
�see Appendix A� is denoted as w= ��wmn�� and has the
meaning of diffusion coefficient. In proper units the relation
is

DE = �E
−2 � ��wmn�� , �2�

�G�2, �3�

where �E is the mean density of states �DOS�. The parameter
� represents the RMS amplitude of the driving field: it is the
RMS displacement of a wall element if we consider the heat-
ing of cold atoms in a trap; it is the RMS voltage if we
consider a ring that is driven by an electromotive-force
�EMF�. We assume here that wmn��2, which holds whenever
the standard conditions of the Fermi-Golden rule �FGR� are
satisfied.

Within the framework of the FGR picture the transitions
rates wmn are determined by the matrix elements Vmn of the
perturbation term in the Hamiltonian. The naive expectation
is to obtain the Kubo formula G=��E���Vmn�2��a for the ab-
sorption coefficient G. The calculation involves a weighted
algebraic average

FIG. 1. �Color online� The driving induces transitions between
levels En of a closed system, leading to diffusion in energy space
and, hence, an associated heating. The diffusion coefficient DE can
be calculated using a resistor network analogy. Connected se-
quences of transitions are essential in order to have a nonvanishing
result, as in the theory of percolation.
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���Vmn�2��a = 	
−�

�

��Vmn�2��F̃���
d�

2�
, �4�

where F̃��� is a normalized function that describes the spec-
tral content of the driving source and �..�� is defined as the
average value for �Em−En�
� transitions. A more careful
inspection reveals that the Kubo calculation does not apply
to the problem as defined above. In order to appreciate the
difference we rewrite Eq. �2� as

G = ��E���Vmn�2�� . �5�

The double average notation indicates a resistor-network cal-
culation. This SLRT “average” is bounded from above by the
algebraic average of Eq. �4� and from below by the corre-
sponding harmonic mean. Later in this paper we adopt a
generalized VRH procedure in order to estimate the SLRT
average

���Vmn�2�� � 	
−�

�

��Vmn�2��F̃���
d�

2�
, �6�

where �..�� is the typical value for �Em−En�
� transitions.
The notion of typical value will be defined later: it is deter-
mined by the size distribution of the matrix elements.

Physically the idea behind SLRT is very simple: in order
to have “good” absorption it is essential to have connected
sequences of transitions. Consequently, if wmn is sparse, the
traditional Kubo expression provides gross overestimate be-
cause it is based on an algebraic average calculation. Conse-
quently, our interest is to calculate the ratio between the
SLRT and the LRT conductance, which we define as the
SLRT suppression factor

gSLRT �
���Vmn�2��
���Vmn�2��a

, �7�

where �� . . . ��a denotes the usual weighted algebraic average
that appears in the Kubo formula. Loosely speaking, if the
percentage of large in-band elements is s�1 then a general-
ized VRH estimate might lead to a result of the type

gSLRT 
 exp�−
const

spower . �8�

A few publications have been devoted to report various
partial results that have been obtained using SLRT. The pur-
pose of the present paper is to bridge between SLRT and the
traditional literature, to further develop the analytical tools,
and to provide elaborated tangible results that hopefully can
be tested in actual experiments.

Our main focus concerns the Ohmic conductance GOhm of
small metallic rings, which is related to the G of Eq. �5� via
GOhm=�EG, where E is the Fermi energy. Up to a factor, the
perturbation matrix consists of the elements vmn of the ve-
locity operator. Accordingly, GOhm is the LRT or the SLRT
average over �vmn�2. Past literature has provided a theory for
the conductance in the Debye or adiabatic regimes16,17 where
the FGR picture does not apply. Diffusive rings have been

further analyzed18 in the Kubo regime and later weak-
localization corrections have been incorporated19,20 and veri-
fied experimentally.21–23

Still neither VRH in real space nor SLRT response in the
ballistic regime had been considered in the context of meso-
scopic conductance. In Fig. 2 we present some reprocessed
numerical results that have been reported in Ref. 12. These
numerical results indicate that indeed for both weak and
strong disorder the matrix elements of the velocity operator
become sparse with s�1. As explained in Ref. 12 this is
related to the nonergodicity of the eigenstates. In the present
paper we would like to present a full analysis of the conduc-
tance that starts from the strength of the disorder W as an
input. The disorder determines the sparsity s, and then, using
RMT modeling and a generalized VRH approximation, leads
to some tangible results �Fig. 3� for the SLRT suppression
factor gSLRT. We also explain how this factor can be mea-
sured in an actual laboratory experiment and how semilinear
response can be distinguished from linear response in a way
that does not involve any ambiguities.

Outline. Section II motivates the study by introducing the
physical model, including subsections that relate to the char-
acterization of metallic rings and their Kubo-Drude conduc-
tance. Some more details are given in Appendices B and C.
Section III discusses the RMT modeling in general. Section
IV briefly reviews the SLRT calculation procedure. Section
V elaborates on the generalized VRH approximation. Section
VI introduces the analysis of some prototype non-Gaussian
ensembles. Some more details are given in Appendices D
and E. Section VII discusses the semiclassical theory of the
matrix elements that are required for the calculation of the
mesoscopic conductance. Section VIII discusses the SLRT
calculation in the ballistic regime. Section IX discusses the
SLRT calculation in the Anderson localization regime. Sec-
tion X clarifies the relation between SLRT and the traditional
VRH calculation. Section XI questions the possibility to get
VRH from proper LRT analysis. Section XII contrasts VRH
with nonthermal hopping due to noisy source. Section XIII
proposes how to experimentally test SLRT via conductance
measurements. Section XIV summarizes the major observa-
tions regarding the relation between SLRT, LRT, and VRH.

II. PHYSICAL MODEL

In order to physically motivate the analysis, we consider a
particle of mass m in a rectangular box of length Lx=L and
width Ly. In one problem, that of Ref. 13, we had assumed
Dirichlet boundary conditions and considered the response
for vibrations of the wall. In the present paper we assume
ring geometry with periodic boundary conditions on Lx and
consider the response to EMF. In both cases the Hamiltonian
matrix can be written as

H = diag�En� + �Um,n� + f�t��Vm,n� , �9�

where n= �nx ,ny� labels the unperturbed eigenstates of a
clean box/ring, U�x ,y� describes the potential floor �either
smooth deformation or uncorrelated disorder�, and V is
the perturbation matrix due to the driving. Given that the
energy of the particle is E we define kE= �2mE�1/2 and
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vE= �2E /m�1/2. The associated number of open modes, i.e.,
the number of energetically allowed ny values, is

M =
kELy

�
. �10�

The density of states is

�E =
m

2�
LxLy = M L

2vE

. �11�

The static part of the Hamiltonian can be diagonalized
and in the new basis the Hamiltonian takes the form

H = diag�En� + f�t��Vmn� , �12�

where En are the perturbed energies. The power spectrum

S̃���=�2F̃��� of the low-frequency driving ḟ is either rect-
angular with sharp cutoff at some frequency �c or exponen-
tial

F̃��� =
1

2�c
exp�−

���
�c

 . �13�

We assume that �c is small compared with any relevant
semiclassical energy scale but larger compared with the
mean-level spacing. If the driving is by a thermal source then
�c can be identified as the temperature of the source. This

latter point of view is useful in the discussion of the relation
between SLRT and VRH.

In the case of an EMF driven ring � is the RMS of the
voltage and the interaction −f�t�V of the particle with the
magnetic flux f�t� involves V=−�e /L�v, where v is the ve-
locity operator. Hence

Vmn =
e

L
vmn =

e

L
�Em − En�2rmn, �14�

where r is the position operator. Thus an LRT or an SLRT
study of the conductance reduces to a study of the statistical
properties of the so-called dipole-matrix elements. These sta-
tistical properties become nontrivial for either weak or strong
disorder and they should be described by a non-Gaussian
ensemble. The following subsections contain some extra de-
tails regarding metallic rings and can be skipped in first
reading.

A. Characterization of metallic rings

A metallic ring is characterized by the Fermi velocity vE,
the Fermi momentum kE, the length of the ring L, its width
L�, and the strength of the disorder W. The latter determines
the mean-free path �. The Fermi velocity vE can be regarded
as providing conversion between “length” and “time” hence
we have two dimensionless parameters: the number of open
modes M
�kEL��d−1 and the degree of disorder L /�. For-
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FIG. 2. �Color online� �a� The ergodicity of the eigenstates is characterized by the PN which is calculated in various representations �see
Appendix B�. The bandwidth b of vnm constitutes another measure for mixing. The clean, ballistic, diffusive, and localization regimes �see
Sec. II A� are separated by vertical lines. �b� The sparsity parameters �q, p, and s� that characterize the perturbation matrix vnm are plotted
versus the disorder W. �c� The scaled conductance in arbitrary units equals ���vmn�2��. The Drude, the LRT, and the SLRT results are displayed
versus the strength of the disorder W. �d� The same plot in the logarithmic scale. We see that in the ballistic regime the SLRT conductance
becomes worse as the disorder becomes weaker, in opposition with the Drude expectation.
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mally there is a third independent dimensionless parameter
kEL but we assume it to be very large compared with M and
hence it has no significant role in the analysis below. The
various regimes in this problem are described below and in
the diagram of Fig. 4: �a� clean ring �L /��	1 /M, �b� bal-
listic ring �L /��	1, �c� diffusive ring �L /��
1, and �d�
Anderson regime �L /��
M.

It is a matter of terminology whether to exclude the
“clean” case from the ballistic regime and the “Anderson”
case from the “diffusive” regime. The time scale which is

associated with the length of the rings is tL=L /vE, the time
scale which is associated with the scattering is mean-free
time t�=� /vE, and the time scale which is associated with
quantum recurrences is the Heisenberg time tH=MtL. If the
very strong condition t�
 tH is satisfied then we call it “clean
ring” meaning that the disorder does not mix the levels and
its effect can be treated using first-order perturbation theory.

More generally we define the ballistic regime by the con-
dition ��L. If the disorder is strong enough then the levels
are mixed nonperturbatively leading to genuine semiclassical
ballistic behavior with

tL 	 t� 	 tH �Ballistic� . �15�

In the diffusive regime it is meaningful to define the ergodic
�Thouless� time via the relation D0t
L2 where D0=vE�,
leading to terg= �L /��tL. In the strict diffusive regime we have

t� 	 terg 	 tH �Diffusive� . �16�

If we have �formally� terg
 tH then there is no ergodization
but rather a strong �Anderson� localization effect shows up.
This means that one expects a breaktime tloc that marks a
crossover from diffusion to saturation. A standard argumen-
tation �see below� gives the estimate tloc=M2t�. One ob-
serves that in the Anderson regime

t� 	 tloc 	 tH �Anderson� . �17�

The self-consistent determination of �� originates in old stud-
ies of dynamical localization in the quantum kicked rotator
problem. Assuming that the localization length is ��, the lo-
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FIG. 3. �Color online� The SLRT suppression factor gSLRT ver-
sus the sparsity parameter �p or q� for bimodal distribution with
rectangular power spectrum �upper panel�; �log-box distribution
with exponential power spectrum �middle panel�; and log-normal
distribution with rectangular power spectrum �lower panel�. The
resistor network and the VRH calculation were done for 100 real-
izations of 256�256 matrices with b=10. In the bimodal case VRH
is not satisfactory. In the log-normal case the VRH result is con-
trasted with the naive median based estimate.
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cal level spacing is �=�vE /M��, and hence the breaktime
is tloc=2� /�. The self-consistency condition is Dtloc
��

2,
leading to

�� � M� . �18�

The identification of the Anderson regime is via the require-
ment L
��. Finally we note that the largest meaningful
value of disorder is �L /��=kEL, for which � equals the Fermi
wavelength.

B. Kubo-Drude conductance

The coefficient G is defined through the expression
DE=G�2 for the one-particle diffusion coefficient, where � is
the RMS of the voltage. Taking Eq. �14� into account it fol-
lows that

G = ��E � � e

L
2

���vmn�2�� . �19�

The Ohmic conductance is defined as the coefficient in the
Joule formula GOhm�2 for the rate of energy absorption. For
an N particle system at temperature T it is related to G via a
general diffusion-dissipation relation

GOhm = �E � G �Fermi� , �20�

GOhm = �N/T� � G �Boltzmann� . �21�

The Boltzmann occupation applies to semiconductors, where
N /L is the density of the particles. For Fermi occupation
�E /L is the density of states at the Fermi energy per unit
length of the ring and it is in agreement with the Boltzmann
result if we regard N=�ET as the effective number of carri-
ers.

In the case of a diffusive ring it makes sense to relate the
diffusion in energy to the diffusion in real space. This rela-
tion holds in the strict dc limit. Using the Einstein relation
GOhm= �e /L�2�ED we deduce that

D = ��E � ���vmn�2���c
0. �22�

It is important to keep in mind that for a disconnected ring
D=0 but still we can get from Eq. �22� a nonzero result
G�0 because the spectral content of the driving may have a
finite cut-off frequency �c.

The reference case for all our calculations is the Drude
result which is obtained for a diffusive ring in the semiclas-
sical approximation �see Appendix C�. Assuming a mean-
free path � we write the Drude result as

GDrude =
e2

2��
M�

L
, �23�

where L is the length of the ring and M is the number of
open modes �proportional to its cross section�.

The quantum Kubo calculation gives in leading order the
same result as Drude: this is well known and obviously it is
also a by-product of the subsequent analysis. One observes
that the there is a maximum Kubo conductance which is ob-
tained in the limit of a clean ring, i.e., for � /L=M. For
completeness we note that for a ring with transmission g0,

the following formal identification applies �see Appendix C�:

�

L
⇔

g0

1 − g0
�	M� . �24�

This makes transparent the relation between the Drude and
the Landauer results.

In later sections our interest is to find the SLRT suppres-
sion factor gSLRT that determines the ratio GOhm /GDrude. For
this purpose we have to find not only the average value of
�vmn�2 but also their statistics.

III. RMT MODELING

Regarded as a random matrix Vmn is characterized by its
band profile and by the size distribution of its elements. The
standard RMT modeling due to Wigner assumes either full or
banded matrix with elements that are taken out of a Gaussian
distribution. But our interest is in circumstances where the
size distribution is wide, i.e., the elements of �Vmn�2 look like
realizations of a random variable x whose logarithmic value
�log�x�� is distributed over several decades.

In practice the �Vmn�2 of a physical model does not have an
idealized flat band profile. Consequently, we write

�Vmn�2 = Xmn � C̃�Em − En� , �25�

where C̃��� describes the band profile of the matrix. Numeri-
cally the band profile is obtained by averaging separately
each diagonal ��n−m�=const� of the matrix and plotting the
result against �= �Em−Em���n−m��E

−1.
The question arises, given a matrix Amn that consist of real

non-negative elements, how to numerically define its band-
width b, its sparsity s, and the associated distribution ��x� of
its in-band elements. For the purpose of this paper it was
important to adopt an unambiguous definition of s, which
loosely speaking is defined as the percentage of large in-band
elements. The suggested procedure below is based on the
participation number �PN� concept. The PN of a set �xi� is
defined as

PN =

��
i

xi�2

�
i

xi
2

�26�

and reflects the number of the large elements. The procedure
to determine s and b goes as follows: �1� we consider a
truncated Amn within the energy window of interest. �2� We
calculate the band profile by averaging separately the ele-
ments over each diagonal. �3� We construct an untextured
matrix Amn

utx by performing random permutations of the ele-
ments along the diagonals. �4� We construct a uniformized
matrix Amn

unf by replacing each of the elements of a given
diagonal by their average. �5� We calculate the participation
number of the elements in Amn. This is like counting the
number of large elements. �6� We calculate the participation
number of the elements in Amn

unf. This is like counting the
number of in-band elements. �7� The ratio of the numbers
that have been calculated in the previous step is defined as
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the sparsity s. �8� Likewise the bandwidth b is deduced from
the number of in-band elements.

The size distribution ��x� refers to the in-band elements.
In order to verify that Amn is really like a random matrix we
perform the SLRT calculation �see Sec. IV� once on Amn and
once on the untextured matrix Amn

utx. If the results are signifi-
cantly different we say that texture, i.e., the nonrandom ar-
rangement of the large elements, is important. The RMT
analysis in this paper assumes that texture is not too signifi-
cant.

In particular, we are interested in the bimodal, log-box,
and log-normal ensembles. The bimodal distribution is char-
acterized by the probability p of having a large value x=x1,
otherwise x=x0�x1, hence

��x� = �1 − p���x − x0� + p��x − x1� . �27�

In the case of a log-box distribution the variable ln�x� has
uniform distribution within �x0 ,x1�, hence

��x� =
1

ln�x1/x0�
1

x
. �28�

In the case of a log-normal distribution the variable ln�x� has
a Gaussian distribution with mean ln�x0� and standard devia-
tion �, hence

��x� =
1

�2��

1

x
e−�ln�x/x0��2/2�2

. �29�

A random variable can be characterized by the algebraic,
geometric and harmonic averages

��x��a = �x� , �30�

��x��g = exp��ln x�� , �31�

��x��h = ��1/x��−1. �32�

The sparsity of a matrix that consists of uncorrelated realiza-
tions can be characterized by a parameter s or optionally by
the parameters p and q that are defined as follows:

s = �x�2/�x2� , �33�

p = Prob�x 
 �x�� , �34�

q = ��x��median/�x� . �35�

By this definition p is the fraction of the elements that are
larger than the algebraic average and q is the ratio between
the median and the algebraic average. We regard a matrix as
sparse if s�1 or equivalently if p�1 or q�1.

IV. SLRT CALCULATION

As in the standard derivation of the Kubo formula, also
within the framework of SLRT, the leading mechanism for
absorption is assumed to be FGR transitions. These are pro-
portional to the squared matrix elements �Vmn�2. The power

spectrum of ḟ�t� is S̃���=�2F̃���, where � is the RMS value

of the driving amplitude. Consequently, the FGR transition
rates are

wmn = 2�
�Vmn�2

�Em − En�2 S̃�Em − En� . �36�

From Eqs. �1�, �25�, and �36� one deduces the identification

B̃��� =
2�

�2 C̃���S̃��� . �37�

The inverse resistivity of the network has the meaning of
diffusion coefficient and from the definition of G in Eq. �3�
we deduce the SLRT formula Eq. �5� with

���Vmn�2�� � ��2�E
−3 �Vmn�2

�Em − En�2 F̃�Em − En��� . �38�

This should be contrasted with the Kubo formula that in-
volves an algebraic instead of SLRT average

���Vmn�2��a � ��E
−1�

m

�Vmn�2F̃�Em − En��
avr

�39�

with average over the reference state n. The average is done
over all the states whose energy En is within the energy
window of interest. In the metallic context it is an average
around the Fermi energy.

It is a simple exercise to verify that if all the matrix ele-
ments are the same, say �Vmn�2=c0, then ���Vmn�2��=c0 too.
Also it is a simple exercise to verify that the SLRT formula
coincides with the Kubo formula if there is no randomness,
i.e., if �Vmn�2 is a well-defined function of Em−En. But if the
matrix is structured or sparse then

���Vmn�2��h 	 ���Vmn�2�� � ���Vmn�2��a. �40�

If only neighboring levels are coupled then “adding resistors
in series” �see Appendix A� implies equality of the SLRT
average to the harmonic average

���Vmn�2��h � ��E
−1�

m

1

�Vmn�2
F̃�Em − En��

avr

−1

. �41�

More generally the harmonic average is a gross underesti-
mate. A generalized VRH scheme that we present in Sec. V
provides the following approximation for the SLRT average:

���Vmn�2�� 
 ��E
−1��Vmn�2��F̃����max, �42�

where the maximum is calculated with respect to �. The
typical value �Vmn��

2 for � transitions will be defined pre-
cisely in Sec. V and it reflects the size distribution of the
matrix elements. The VRH integral Eq. �6� is an ad hoc
refinement of Eq. �42� that better interpolates with the LRT
result and therefore it is advantageous for actual numerical
analysis. Further analysis �see Sec. VI� indicates that com-
pared with the weighted harmonic average ���Vmn�2��h, of Eq.
�41�, the corresponding geometric average ���Vmn�2��g pro-
vides in most cases a better lower bound.

V. GENERALIZED VRH APPROXIMATION

A 1D network is characterized by its inverse resistivity
w= ��wmn��. Inspired by Ref. 6, the inverse resistivity can be
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estimated analytically by finding the maximum threshold
such that the elements wmn
w0 form a connected cluster.
This leads in the present context to a generalized VRH esti-
mate which we explain in the following paragraph.

Given a threshold w and truncating the bandwidth at �, a
sufficient condition for having a connected cluster is to have
at least one nonzero element per � segment

�E� � Prob�xB̃��� 
 w� larger than unity. �43�

We define the typical value x� for range � transitions via the
relation

�E� � Prob�x 
 x�� 
 1 �44�

and rewrite the condition for having a connected cluster in
the following suggestive form:

w 	 x�B̃��� . �45�

Thus an underestimate for the diffusion coefficient is
D
w�2 based on hopping rate w with steps �. The VRH
estimate is based on the idea to optimize this underestimate
with respect to � and w, leading to

DE 
 ��2x�B̃����max, �46�

where the maximum is with respect to the hopping range �.
In the FGR context this leads to Eq. �42� with

��Vmn�2�� � x�C̃��� . �47�

VI. SLRT ANALYSIS OF SOME PROTOTYPE
NON-GAUSSIAN ENSEMBLES

In this section we derive results for SLRT suppression
factor gSLRT for the bimodal, for the log-box, and for the
log-normal ensembles. The bimodal distribution is the sim-
plest for pedagogical purpose while the log-box and log-
normal ensembles are of greater physical relevance. The
main results are summarized below while further details of
the calculation are given in Appendices D and E. Figure 3
presents the outcome of numerical analysis that tests the ac-
curacy of the generalized VRH approximation. In later sec-
tions we shall see that the presented results are of relevance
to the study of conductance in the limits of strong and weak
disorders.

The bimodal ensemble. In this case there is a minority of
large elements �x=x1� that have percentage p�1 and a ma-
jority of small elements �x=x0�1� that have percentage
1− p. Consequently, the typical value for � transition has a
percolationlike crossover from x�=x0 to x�=x1 at the fre-
quency �= ��Ep�−1. Therefore

gSLRT 
�qF̃�� 
 0� bp 	 1

�1/p�F̃�1/��Ep�� bp 
 1,
� �48�

where b=�E�c is the dimensionless bandwidth and
q�x0 / �px1�. The first expression reflects the possibility of
majority dominance of the small elements while the second
expression reflects the possibility of minority dominance of

the large elements. Note that the VRH approximately implic-
itly assumes that F��� drops �say� exponentially such that
gSLRT�1, otherwise the result cannot be trusted.

The log-box ensemble. In this case the probability distri-
bution of ln�x� is uniform over many decades. Therefore, it is
reasonable to assume that the result for gSLRT is minority
dominated. It is natural to characterize the log-box distribu-
tion of Eq. �28� by a parameter p̃= �ln�x1 /x0��−1, and to real-
ize that the percentage of large elements is p�−p̃ ln p̃. Note
that the corresponding sparsity parameter is s�2p̃. The typi-
cal value for � transitions is

x� �
1

p̃
exp�−

1

p̃�E�
��x��a �49�

and the VRH estimate, assuming an exponential bandprofile
gives

gSLRT 

1

p̃
exp�− 2� 1

p̃b
1/2� . �50�

Note the similarity, as well as the subtle difference, com-
pared with the bimodal minority dominance expectation.

The log-normal ensemble. In this case the probability dis-
tribution of ln�x� is a Gaussian centered around the median.
Therefore, it is reasonable to assume that the result for gSLRT
is majority dominated. It is natural to characterize the log-
normal distribution of Eq. �29� by a parameter q, which is
defined as the ratio of the median to the algebraic average.
Note that the corresponding sparsity parameter is s=q2. The
VRH calculation gives the result

gSLRT 
 q exp��factor � ln�1

q
ln�b��1/2� , �51�

where the factor is determined by the band profile �it is 2 for
an exponential bandprofile and 4 for a rectangular bandpro-
file�. Note that gSLRT
q is the simplest guess that reflects
the majority dominance expectation.

VII. SEMICLASSICAL ESTIMATE
OF THE OHMIC CONDUCTANCE

There is a well-established semiclassical procedure to de-
duce the algebraic average of the matrix elements �Vmn�2 that
correspond to the energy difference �=Em−En from the as-
sociated correlation function �V�t�V�0��. We would like to
apply this procedure in order to estimate the conductance of
metallic rings. Hence our interest is in the matrix elements of
the velocity operator. The semiclassical estimate is based on
the following observation:

���vmn�2��� =
1

2��E
FT��v�t�v�0��� , �52�

where FT stands for Fourier transform. The velocity-velocity
correlation function can be obtained via a time derivative of
the time-dependent diffusion coefficient D�t�, which is the
time derivative of the spreading ��r�t�−r�0��2�.

In the Drude “classical” approximation one assumes an
exponential decay of the velocity-velocity correlation func-
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tion and long-time diffusion D0 as determined by the mean-
free path �see Appendix C�. This is satisfactory in the ballis-
tic and diffusive regimes, and leads to a Lorentzian line
shape

���vmn�2��� =
1

b
vE

2 R���
1 + �t���2 , �53�

where b=ML /� is the dimensionless bandwidth of the ma-
trix and R���=1.

But in the Anderson regime we know that there is a break-
time tloc that marks the crossover form diffusion to localiza-
tion and hence for a bulk system formally D=0. Conse-
quently, the FT consideration of Eq. �53� leads to the
conclusion that in the limit �→0 the band profile should
vanish if the system is infinite. The simplest reasoning9 leads
to the expression

R��� =
L

��

e−2L/�� +
1

1 + �tloc��−2 , �54�

where the first term reflects the finite length of the system
and it is deduced using Eq. �24�. We shall see in Sec. IX,
using a different more refined approach, that the second term
is almost correct. Namely, the more careful analysis using
the Mott’s picture predicts that the small frequency depen-
dence is not ���2 but �� log����2.

The quantum-mechanical analysis should further take into
account �i� the statistics of the levels and �ii� the fluctuations
in the size of the matrix elements. The former implies
wiggles in R��� for small frequencies while the latter imply
that the average size of the matrix elements does not neces-
sarily reflect their typical value. Figure 4 summarizes the
dependance of the matrix elements on the disorder.

It should be clear that we always have the sum rule

�
m

�vmn�2 = vE
2 . �55�

In the clean ring limit the sum is dominated by the diagonal
or near diagonal element while all the other off-diagonal el-
ements become negligible. Still the estimate Eq. �53� for the
other off-diagonal matrix elements remains valid and can be
justified using first-order perturbation theory. If the ring is
ballistic �but not clean� then the semiclassical estimate Eq.
�53� implies that the large elements form a band of width
b
1. If the matrix is not sparse then the contribution of all
the b in-band elements to the sum rule is comparable. But if
�say� only a fraction s�1 of of elements are contributing
then their typical value �vmn�2
���vmn�2��� /s is much larger
compared with the average. We shall come back to a more
detailed discussion of “sparsity” in the subsequent sections.

In the diffusion regime R��� mainly reflects the level-
spacing statistics of the individual levels, which is a “micro-
scopic” effect that leads to small weak-localization correc-
tions that had been studied extensively.19,20 But in the strong-
localization Anderson regime the implication of the
breaktime leads to the dramatic conclusion that R����1 for
���, where the local level spacing � is not related to the
volume-dependent microscopic level spacing �E

−1 but to the
strength of the disorder.

In the Anderson regime it is evident that ���vmn�2��� is not
the typical value of the matrix elements. Roughly speaking
and disregarding the � dependence

�vmn� 

vE

M
exp�−

�r�
��
 , �56�

where r� �0,L /2� has a uniform distribution, implying a
log-box distribution for the size of the elements. Accord-
ingly, the typical value is exponentially small in the length of
the ring while the average is determined by the small per-
centage of large elements and comes out in agreement with
the semiclassical estimate. In Sec. IX we further elaborate on
the statistical analysis of the sparsity in the Anderson regime
using the Mott’s picture of localization.

VIII. RMT STATISTICS IN THE BALLISTIC REGIME

For zero disorder W=0 each energy level is doubly de-
generate in the basis of real eigenfunctions and the couplings
are pairwise, i.e., the matrix element between states of dif-
ferent energies is zero. See Fig. 5. Consequently, the EMF
cannot induce connected sequences of transitions and the
SLRT conductance should be zero. The nonzero elements of
the perturbation matrix according to the sum rule �Eq. �55��
are �vnm�=vE. The algebraic average of the near diagonal
elements equals this value �of the large size elements� mul-
tiplied by their percentage p0�1 /2. Consequently

(b)

(a)

FIG. 5. �Color online� Images of 100�100 pieces of the pertur-
bation matrix �vnm�2 in the clean �W=0.001� and ballistic �W=0.1�
regimes. The dashed lines correspond to the ballistic bandwidth
M=10, which is associated with the time scale tL.
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���vnm�2��a �
1

2
vF

2 . �57�

For sufficiently small W these large-size matrix elements are
not affected, and therefore, the algebraic average stays the
same. Consequently, in the clean-ring limit the Kubo conduc-
tance is formally finite and attains the maximal value as dis-
cussed with regard to Eq. �23�.

In the clean as well as in the whole ballistic regime the
algebraic average ���vmn�2��� does not reflect the sparsity and
the textures of the vmn. See Figs. 6 and 7. When we look on
the image of vmn the immediate reaction is to be impressed
by the texture and therefore we discuss it first. Subsequently,
we discuss the sparsity, which is in fact more significant for
the analysis.

The mean DOS of the two-dimensional ring is �E. But
Lx�Ly and, therefore, it is not uniform. As the disorder W is
increased, levels start to mix first in the high DOS regions,
and only later in the low DOS regions. This is the reason for
the appearance of textures. Let us be more detailed about the

nonuniformity of the DOS. As a function of the energy E
each time that a mode is opened the DOS is boosted. Con-
sequently, �E is modulated. This systematic modulation is
associated with the opening of a single additional mode at
every threshold energy and, therefore, scales like 1 /M. On
top there is an additional weaker nonsystematic modulation
of the DOS because the levels of low-density modes add up
to the levels of the high-density modes. It is the latter type of
modulation which is reflected in Figs. 5 and 6, where the
energy window contains throughout exactly ten open modes.

In the regions where levels are not yet mixed one can
estimate the majority of small matrix elements using first-
order perturbation theory: Due to the first-order mixing of
the levels, the typical overlap ��m �n�� between perturbed and
unperturbed states is

��m�n�� = � Unm

En − Em
� . �58�

The typical size of a small vnm element is the multiplication
of this overlap, calculated for �En−Em�
�E−1, by the size
of the nonzero �vnm�=vE element. As a priori expected this
first order estimate gives a result that agrees with the semi-
classical estimate Eq. �53� evaluated for �
�E

−1. Thus

q � ML

�
�for white disorder� . �59�

Above some threshold, first-order perturbation theory fails
everywhere, meaning that nonperturbative mixing takes
place in any energy. Still, due to the modulation of the DOS,
the mixing range is wider in the near-thresholds energies and
therefore the matrix elements there are smaller. So now we
have the opposite situation, of high-DOS bottleneck instead
of low-DOS bottleneck.

One easily observes that the crossover from weak disorder
�that features separated mixing regions and low-DOS bottle-
necks� to stronger disorder �that features a connected mixing
region and high-DOS bottlenecks� is associated with the
crossover from the clean to the ballistic regime. The width of
the crossover region depends on the nonuniformity of the
DOS and therefore diminishes as the number of open modes
becomes large.

The above reasoning implies that the texture might be
important in the SLRT analysis primarily in the clean ring
regime but much less in the genuine ballistic regime. But
what about sparsity? Using the FGR in order to determine
the energy range over which mixing takes place, we obtain
an estimate for the bandwidth of the perturbation matrix

b = 2��E
2 �Unm�2 � ML

�
, �60�

which agrees with the semiclassical estimate. But in the bal-
listic regime b	M. This means that a typical eigenstates
cannot occupy all the M open modes. Rather it has there a
participation number M =b smaller than M �see Fig. 2�.
Consequently, we deduce that the sparsity of the perturbation
matrix is
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FIG. 6. �Color online� The mean of the in-band values of the
�vnm�2 matrix elements as a function of �n+m� /2 for different values
of disorder. The pronounced modulation in the ballistic regime is an
indication for texture.
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s =
M

M
�

L

�
� q2 �for smooth disorder� , �61�

where the identification of s with q2 is based on the assump-
tion of a log-normal distribution which we further discuss in
the next paragraph. Unlike the texture, the sparsity persists
via the whole ballistic regime up to the border with the dif-
fusive regime. For this reason we regard the sparsity as the
main ingredient in the SLRT analysis.

The discussion of sparsity in the previous paragraph is
somewhat meaningless unless one specifies the distribution
to which s refers. At this point of the discussion it is essential
to distinguish between white disorder for which the scatter-
ing is isotropic and smooth disorder for which only nearby
modes are coupled �small scattering angle�. The latter applies
if the potential floor within the ring has a smooth rather than
erratic variation with respect to the Fermi wavelength. As-
suming smooth disorder it becomes essential to extend the
perturbation theory of Appendix B beyond first order. It
makes sense to say that �vmn�
�W�r, where the order r is
bounded by M. Therefore, log��vmn�� has some bounded dis-
tribution which can be approximated �say� by a Gaussian. It
follows that a log-normal ensemble should be qualitatively
appropriate to describe the statistical properties. It follows
that gSLRT can be estimated using Eq. �51� with the q of Eq.
�61�. On the other hand in the case of white disorder �vmn�
of the majority elements is given by first-order perturbation
theory and then one should use Eq. �51� with the q of
Eq. �59�.

IX. RMT STATISTICS IN THE ANDERSON REGIME

The simplest picture of localization regards the lattice as
composed of segments of size �� and assumes that each
eigenstate is well localized in one of this segments. Accord-
ingly, non-negligible matrix elements are only between states
that reside in the same space segment. We shall refer to this
as the “zero-order” picture. Taking into account that the ma-
trix element of the velocity operator are related to those of
the position operator by the relation �vmn�2=�2�rmn�2, it fol-
lows that R���
�� /��2 in consistency with the semiclassi-
cal reasoning of Sec. VII, which is summarized by Fig. 8.

In order to refine this picture we use the following proce-
dure due to Mott. The zero-order basis is determined by ig-
noring the possibility of the particle to hop from segment to
segment. In order to find the “true” eigenstates we have to
take into account the residual interaction. It is reasonable to
postulate that if the distance between two zero-order eigen-
states is r=rn−rm then the residual interaction is

� = � exp�− �r�/��� . �62�

The prefactor is the natural educated guess, which is later
justified �see below� by requiring consistency with the semi-
classical result.

If we have two zero-order eigenstates that do not reside at
the same segment but have distance r in space and distance �
in energy then the true eigenstates have energy difference
�=��2+�2 and the dipole-matrix element becomes
�rmn�= �� /��� �r /2� instead of zero. Originally the zero-
order eigenstates had a density ��E /L�d�dr but now the re-
gion ���	exp�−�r� /��� is depleted and forms a density
d� /� of so-called Mott resonant states. If we slice all those
states that have energy difference � then

�vmn� 
 ��re−�r�/�� off res

���r� on res,
� �63�

where

r� = �� log��/�� . �64�

This implies that the size distribution of the �vmn� elements
that reside inside a band of width � is within

vE

M
� � L

��

e−L/��, 1� for ��� 
 � �65�

vE

M
� � L

��

e−L/��,
�

�

log��

�
� for ��� 	 �. �66�

Compared with Eq. �54� this is a refinement that takes prop-
erly into account the � dependence of the matrix elements.
Disregarding a logarithmic correction it reproduces the semi-
classical result Eq. �53�.

If we ignore the Mott resonant states, then a log-box dis-
tribution is implied. The Mott resonant states form a box
distribution on top. In a log scale the Mott resonant states
contributes a peak of large elements. But this peak does not
affect the x� calculation. Consequently, for practical purpose
we can regard the matrix elements in the SLRT calculation as
having a simple log-box distribution as reflected by the crude
approximation of Eq. �56�. The sparsity of this distribution is
characterized by

p̃ = M�

L
�67�

and the SLRT suppression factor is given by Eq. �50�.

X. SLRT VS VRH CALCULATION

In order to appreciate the similarities and the differences
between SLRT and the conventional Hopping calculation, we

∆ ξ

SLRT

LRT

−L/le ξ

2|nmv|
Drude

1/tl

versus energy difference

ω

(Anderson localization regime)

FIG. 8. Schematic plot that illustrates the dependence of the
average and the typical values of the matrix elements on the energy
separation �. These are labeled as “LRT” and “SLRT,” respectively,
and compared with the semiclassical �Drude� expectation. The plot
refers to the Anderson regime. For a corresponding numerical illus-
tration in the ballistic regime see Fig. 7.
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cast the latter into the SLRT language. Equation �4.4� of Ref.
6 for the dc hopping conductance due to phonon-induced
transitions is

GOhm =
1

N�� e2

T
�1 − f�En��f�Em�wmn

� ��
�

. �68�

The notation �� . . . ��� implies that the resistance of the
network is calculated between states at the same energy
E
EE that reside in opposite sides of the sample. Due to the
Fermi occupation factor, the network contains effectively
N=�ET nodes. The division by N is required because we
have defined the �� . . . �� as inverse resistivity and not as in-
verse resistance of the network.

The occupation factor �1− f�En��f�Em� /T gives O�1�
weight only to the N levels that reside within a window of
width T. If we ignore the relaxation effects and regard the
fluctuating environment as a noise source that induces tran-
sitions wmn

� �exp��Em−En� /T�, we still should get the same
result for G, even if we omit the occupation factor. This point
of view allows to bridge between the noisy driving problem
that we consider in this paper and the phonon-induced hop-
ping in the prevailing literature.

The Einstein relation GOhm= �e /L�2�ED relates the con-
ductance and diffusion in real space. We deduce that

D = � L

N2

†�wmn
� �‡� . �69�

This should be compared with the SLRT expression for the
noise-induced energy diffusion

DE = � 1

�E
2

†�wmn
� �‡�. �70�

Here the resistance of the network is calculated between
states that reside far away in energy. The SLRT result for DE
and the hopping implied result for D are both simple and
manifestly equivalent: the diffusion coefficient equals the
transition rate ��wmn

� �� times the step squared. In the SLRT
calculation the step in energy space is 1 /�E while in the
standard real-space analysis the step is L /N. Optimization of
the hopping with respect to the distance � in energy is
equivalent to optimization with respect to the distance r in
space.

XI. CAN WE GET VRH FROM KUBO?

The analysis that we have introduced in this paper gives
the impression that SLRT is essential in order to derive the
VRH result. This statement looks to be in contradiction with
the prevailing common wisdom and therefore deserves fur-
ther clarification. In the discussion below we explain that
VRH can be obtained from Kubo for an artificial toy model
but not for the physical model that we have analyzed in this
paper following Anderson and Mott.

It is instructive to point out that the Kubo formula, Eq.
�39�, can be rephrased as saying that

D = �Dn�avr, �71�

where Dn is the diffusion coefficient for a spreading process
that start at state n. If we consider an artificial model where

the eigenstates are labeled as n= �i�� with energies Ei�=��

and matrix elements Vi�,j�
exp�−�ri−rj� /���, such that

wi�,j� 
 exp�−
�ri − rj�

��

−
��� − ���

�c
� �72�

then all the Dn are the same value. Furthermore, their com-
mon value is given by a VRH-like expression which reflects
an optimization of the hopping distance. Consequently, the
average D is also given by the exactly the same VRH-like
expression.

However, in the physical model that we have considered
in this paper the Dn in the Anderson regime are typically
dominated by one term only and therefore wildly fluctuate. It
is then clear that an algebraic average would give a very
large result which is dominated by the minority of large el-
ements. In fact our analysis, which merely reproduces Mott’s
original analysis, shows that up to logarithmic correction the
Kubo formula gives G��c

2. In order to get VRH we have to
perform an SLRT analysis rather than LRT analysis.

In the above discussion one could wonder whether a good
strategy for obtaining an SLRT estimate would be to take a
harmonic instead of algebraic average over Dn. In fact there
are circumstances where such procedure gives a very good
result.1 However, in general, such procedure is expected to
underestimate the correct result because it is based on the
assumption that the hopping is always with the same optimal
step, as in series addition of resistors, without the possibility
to bypass in parallel.

XII. VRH VS HOPPING

It is customary to assume that a noisy nonthermal source
has a Lorentzian power spectrum

F̃��� =
1

�

�c

�2 + �c
2 . �73�

Let us consider the Anderson regime and assume that
�c��. It should be clear that the VRH result is not appli-
cable here. This is because the transport is dominated by �

� transitions. In this case SLRT give the same result as
Kubo, which we call simple hopping9

D � �ctlocD0 =
����2

tc
, �74�

where tc=1 /�c. This is as expected from heuristic consider-
ations. It describes a random walk hopping process with
steps of size �� and time ��. This type of result has been
highlighted in old studies of the quantum-kicked rotator
problem.24

XIII. EXPERIMENTAL DEMONSTRATION
OF SEMI LINEAR RESPONSE

For a given metallic ring the experimentalist has control
over the frequency and on the strength of the driving. These
can be adjusted such that FGR transitions are the dominant
mechanism for energy absorption. This excludes the adia-
batic regime where near-neighbor transitions dominate either
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due to Landau-Zener17 or Debye relaxation mechanism.16

Assuming that FGR transitions are the dominant mecha-
nism, this does not automatically imply linear response. The
rate of the driven transitions can be smaller or larger com-
pared with the environmental induced rate of transitions and
accordingly we expect a crossover from LRT to SLRT.1

The simple-minded indication for semilinear response is a
drop in the value of the absorption coefficient if the driving
is strong enough �see estimates below�. What can be mea-
sured is the SLRT suppression factor gSLRT and its depen-
dence on the spectral content of the driving.

As observed in Ref. 3, the distinction of semilinear from
linear response is not ambiguous. The theory is called
SLRT because on the one hand the power spectrum

S̃�����S̃��� leads to D��D but on the other hand

S̃���� S̃1���+ S̃2��� does not lead to D�D1+D2. This
semilinearity can be tested in an experiment in order to dis-
tinguish it from linear response.

Let us discuss in more details the experimental conditions
that are required in order to observe semilinear response. The
problem is characterized by the following parameters:

system: ��0,�c
sys� , �75�

driving: ��c,�� , �76�

bath: ���,�rlx� , �77�

where �c
sys is the frequency that characterizes the semiclas-

sical motion; �0=�E
−1 is the frequency corresponding to the

mean-level spacing; �c and � are the cut-off frequency and
the RMS value of the driving �EMF�; and �� ,�rlx are the
dephasing and the relaxation rates due to the environment.

As already stated we are not interested in adiabatic driv-
ing ��c	�0� but rather in what we call dc driving. The
conditions that have to be satisfied in an SLRT-oriented ex-
periment are

dc driving: �0 � �c � �c
sys, �78�

FGR condition: �0 � w� � �c, �79�

LRT condition: w� � � , �80�

SLRT condition: � � w�, �81�

where w� is the FGR transition rate �Eq. �36��.
There are several experimental methods which could sup-

port the theoretical predictions of our paper. The experiment
can be based on metallic rings �gold,25,26 copper,27 silver28�,
GaAs and other semiconductor heterostructures,29,30 molecu-
lar wires, etc. To estimate the experimental numbers let us
consider a semiconductor �GaAs� ring driven by time-
dependent magnetic flux

M = 5, L = 0.1 �m, � = 50 �m, �82�

vF = 2.7 � 105 m/s. �83�

The long mean-free path is required in order to be deep in
the ballistic regime with sparsity

q = ML

�

 0.01. �84�

By Eq. �11� the mean-level spacing is

�0 =
2vF

ML
� 1 meV. �85�

The ballistic time is tL=L /vF�3.7�10−13 s hence

�c
sys =

2�vF

L
� 11 meV, �86�

which is 
1013 Hz in frequency units. In order to satisfy the
dc driving condition we assume a power spectrum of width
�c��c

sys. The EMF is induced by a time-dependent mag-
netic field ����cL

2�B. The FGR rate is estimated using Eq.
�36� with En−Em
�0

w� �
e2M3L

�c�
� �2 �

e2M3L5�c

�
� B2. �87�

In order to satisfy the FGR condition the magnetic field
should be at least 180G. The expected crossover between
linear to semi-linear response occurs for w�
�. Assuming,
for example, trlx
2�10−12 s we get �
3�0 leading to

BSLRT threshold 
 320G . �88�

Under the above conditions we expect that as B is increased
there will be crossover from linear to semilinear response
with suppression factor gSLRT�0.3, where we used Eq. �51�.
The crossover is of course not sharp because w� is after all
distributed over a wide range. In fact the functional shape of
the crossover can be used in order to deduce this
distribution.31 In any case it should be reemphasized that the
experimental verification for the nature of the crossover re-
quires merely to test whether the absorption rate depends in
a nonlinear way on the spectral content of the driving.

XIV. SUMMARY AND DISCUSSION

Possibly the nicest thing about SLRT is that it consists a
natural extension of LRT that places under one roof various
results for the conductance in different regimes. It should be
clear that in the strict dc limit ��c→0�, irrespective of the
functional form of the power spectrum, we always get for G
a result that formally agrees with the Landauer formula. See
the discussion in Sec. II B. In the diffusive regime it be-
comes equivalent to the Drude formula with small weak lo-
calization corrections. But in the other regimes �Anderson
and Ballistic�, if the low-frequency driving has some arbi-
trary spectral content, then very different results are obtained
�Hopping, VRH, and generalized VRH�.

It is interesting that in our “minimal” treatment of the
problem there is no need to introduce relaxation due to
phonons in order to get a VRH result. Rather, we regard
VRH as arising from the competition between the statistical
properties of the matrix elements and the power spectrum of
a noisy driving field.

The formalism allows to take various limits involving the
size of the system �L�, the driving frequency ��c� and its
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intensity ���, and the rate of the environmentally induced
transitions ���. The order of the limits is very important. In
particular: if we take the limit L→� followed by �→0,
keeping � constant, then we get LRT; while if we take
L→� followed by �→0, keeping � constant, then we get
SLRT. Also note that if we keep L constant and take
�c→0 we get the adiabatic limit and not the dc limit of
LRT/SLRT.

We have dedicated Sec. XIII to introduce actual estimates
that are required in order to observe SLRT in a real experi-
ment. It is important to realize that the experimental proce-
dure allows to distinguish in a nonambiguous way between
LRT and SLRT by playing with the spectral content of the
driving source. Furthermore, one can test specific predictions
for the gSLRT suppression factor, e.g., Eq. �50� with Eq. �67�,
and Eq. �51� with Eq. �59� or Eq. �61�. We note that
the explicit incorporation of the environmentally induced
transitions into the resistor-network calculation and the sub-
sequent analysis of the resulting SLRT steady state is
straightforward.31

The SLRT calculation is based on a resistor network pic-
ture of transitions between energy levels, for which an RMT
framework is very appropriate and effective. In the so called
“quantum chaos” context Wigner �in the nuclear context� and
later Bohigas �in the mesoscopic context� have motivated the
interest in Gaussian ensembles but there are circumstances
where non-Gaussian ensembles are appropriate, which lead
to novel physics. Indeed we have faced in this paper the
analysis of log-normal and log-box ensembles corresponding
to the weak and strong disorder limits. We have demon-
strated that for such ensembles a large SLRT suppression
effect is expected that could not be anticipated within the
LRT framework.
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APPENDIX A: THE RESISTOR NETWORK
CALCULATION

In this appendix we explain how the inverse resistivity
G= ��Gnm�� of a one-dimensional resistor network is calcu-
lated. We use the language of electrical engineering for this
purpose. In general this relation is semilinear rather than lin-
ear, namely, ���G��=���G��, but ��A+B��� ��A��+ ��B��.
The experimental implications of this observation in the
SLRT context are discussed in Sec.XIII.

There are a few cases where an analytical expression is
available. If only near-neighbor nodes are connected, allow-
ing Gn,n+1=gn to be different from each other, then “addition
in series” implies that the inverse resistivity calculated for a
chain of length N is

G = � 1

N
�
n=1

N
1

gn
�−1

. �A1�

If Gnm=gn−m is a function of the distance between the nodes
n and m then it is a nice exercise to prove that “addition in
parallel” implies

G = �
r=1

�

r2gr. �A2�

In general an analytical formula for G is not available and we
have to apply a numerical procedure. For this purpose we
imagine that each node n is connected to a current source In.
The Kirchhoff equations for the voltages are

�
m

Gmn�Vn − Vm� = In. �A3�

This set of equation can be written in a matrix form

GV = I , �A4�

where the so-called discrete Laplacian matrix of the network
is defined as

Gnm = ��
n�

Gn�n��n,m − Gnm. �A5�

This matrix has an eigenvalue zero which is associated with
a uniform voltage eigenvector. Therefore, it has a pseudoin-
verse rather than an inverse and the Kirchhoff equation has a
solution if and only if �nIn=0. In order to find the resistance
between nodes nin=0 and nour=N, we set I0=1 and IN=−1
and In=0 otherwise, and solve for V0 and VN. The inverse
resistivity is G= ��V0−VN� /N�−1.

APPENDIX B: MODEL DETAILS

In the numerical study we consider the Anderson tight
binding model, where the lattice is of size L�M with
M �L, and lattice constant a. The longitudinal and the trans-
verse hopping amplitudes per unit time are c� and c�, respec-
tively. The random on-site potential in the Anderson tight-
binding model is given by a box distribution of width
determined by W.

The numerical calculations of Ref. 12 assume c� =1 and
c�=0.9. Thus in the middle of the band there is a finite-
energy window with exactly M=M open modes. Rings of
length L=500 with M =10 modes has been considered. In
our reprocessed Fig. 2 the default cutoff is �E�c�7 as in
Ref. 12 but as the disorder becomes weaker it is adjusted
such that the dc condition �E�c�b is always satisfied.

For white �uncorrelated� disorder the Hamiltonian is
given by Eq. �9� with the isotropic scattering term

�Unm�2 �
a

ML
W2. �B1�

The eigenstates of the Hamiltonian can be found numeri-
cally. The degree of ergodicity is characterized by the par-
ticipation number PN����2�−1, which is calculated in vari-
ous representations: in position space �rx,ry

= ��rx ,ry ����2, in
position-mode space �rx,ky

= ��rx ,ky ����2, and in mode space
�ky

=�rx
��rx ,ky ����2, where ky = �� / �M+1��� integer.

APPENDIX C: THE DRUDE FORMULA

The velocity-velocity correlation function, assuming iso-
tropic scattering, is proportional to the survival probability
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P�t�=e−t/t�. Ignoring a factor that has to do with the dimen-
sionality d=2,3 of the sample the relation is

�v�t�v�0�� � vE
2 P�t� = vE

2e−�t�/t�. �C1�

The rate of the scattering can be calculated from the FGR,
also know as the Born approximation

1

t�

= 2��E�Umn�2 =
�a

vE
W2, �C2�

where in the last equality we used Eq. �B1�. From here we
deduce that the mean-free path �disregarding prefactors of
order unity�

� = vEt� �
1

a
�vE

W
2

�C3�

and the diffusion coefficient in real space

D0 =
1

2
	

−�

�

�v�t�v�0�� � vE� . �C4�

By the Einstein relation we deduce the Drude formula

GOhm = � e

L
2

�ED0 =
e2

2��
M�

L
. �C5�

A literally equivalent route to derive the Drude formula is to
semiclassically deduce ���vmn�2�� from the velocity-velocity
correlation function as in Sec.VII and then to substitute in
Eq. �19�. This has the advantage of allowing easy generali-
zations of the Drude formula in the ballistic and in the
Anderson regimes. In this context it is useful to realize32 that
in the semiclassical picture the integral over the velocity-
velocity correlation function is related to the transmission g0
of the ring �if it were dissected�. This leads to the identifica-
tion in Eq. �24�.

In the diffusive regime Mott has demonstrated that it is
optionally possible to obtain a direct estimate of the dipole
matrix elements, using a random-wave picture. Namely, it is
assumed that in the diffusive regime the eigenstates of the
Hamiltonian are ergodic in position space and look like ran-
dom waves with a correlation scale �. Locally the eigenstates
are similar to free waves. The total volume Ld is divided into
domains of size �d. Hence we have �L /��d such domains.
Given a domain, the condition to have nonvanishing overlap
upon integration is �q�n−q�m��	2�, where q� is the local wave
number within this domain. The probability that q�n would
coincide with q�m is 1 / �kE��d−1. The contributions of the non-
zero overlaps add with random signs hence

�vmn� = � 1

�kE��d−1 � �L

�
d�1/2

� ��2�d�vE. �C6�

Assuming ergodicity �2�1 /Ld and we get the same esti-
mate as in the semiclassical procedure.

APPENDIX D: THE LOG-BOX ENSEMBLE

The cumulative distribution function that corresponds to
Eq. �28� is

Prob�X 	 x� =
ln x − ln x0

ln�x1/x0�
. �D1�

The algebraic, geometric, and harmonic averages are

��x��a =
x1 − x0

ln�x1/x0�
, �D2�

��x��g = �x1x0, �D3�

��x��h = ln�x1/x0�
x1x0

x1 − x0
. �D4�

Note that for this distribution the median equals the geomet-
ric average. The sparsity parameters are

s = 2p̃
e−1/p̃ − 1

e−1/p̃ + 1
, �D5�

p = − p̃�ln p̃ + ln�1 − e−1/p̃�� , �D6�

q = �2p̃ sinh
1

2p̃
−1

, �D7�

where we defined p̃= �ln�x1 /x0��−1. If the distribution is very
stretched reasonable approximations are

s � 2p̃ , �D8�

p � − p̃ ln p̃ . �D9�

For the VRH calculation

x� = x1� x0

x1
1/�E�

�
��x��a

p̃
exp�−

1

p̃�E�
 . �D10�

For a rectangular F̃��� the VRH optimization is trivial and
gives ��x�c

, leading to

gSLRT �
1

p̃
exp�−

1

p̃�E�c
� . �D11�

For an exponential F̃��� the VRH optimization gives

gSLRT �
1

p̃
exp�− 2� 1

p̃�E�c
1/2� , �D12�

which is the same as in the traditional VRH optimization.

APPENDIX E: THE LOG-NORMAL ENSEMBLE

The cumulative distribution function that corresponds to
Eq. �29� is

Prob�X 	 x� =
1

2
+

1

2
erf� ln�x� − �

��2
� . �E1�

The algebraic, geometric, and harmonic averages are

��x��a = e�+�2/2, �E2�
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��x��g = e�, �E3�

��x��h = e�−�2/2. �E4�

The sparsity parameters are

s = q2, �E5�

p =
1

2
erfc� �

2�2
 , �E6�

q = e−�2/2. �E7�

The VRH estimate is

x� = exp�� + ��2erfinv�1 −
2

�E�
�

� ��x��g exp��ln�1

q
2�ln

�E
2�2

2�
− ln ln

�E
2�2

2�
� .

�E8�

For a rectangular F̃��� the VRH optimization is trivial and
gives ��x�c

, leading to

gSLRT � q exp�2�− ln q ln��E�c�� . �E9�

For an exponential F̃��� the VRH optimization gives

gSLRT � q exp��− ln q ln
− �E

2�c
2 ln q

�
−��− 4� ln q

�E�c
�

� q exp��− 2 ln q ln��E�c�� . �E10�

Due to the minority dominance the functional form is more
robust compared with the log-box case.
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