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The Loschmidt echo is a measure of quantum
irreversibility and is determined by the fidelity
amplitude of an imperfect time-reversal protocol.
Fidelity amplitude plays an important role both
in the foundations of quantum mechanics and in
its applications, such as time-resolved electronic
spectroscopy. We derive an exact path integral formula
for the fidelity amplitude and use it to obtain a series
of increasingly accurate semiclassical approximations
by truncating an exact expansion of the path integral
exponent. While the zeroth-order expansion results in
a remarkably simple, yet non-trivial approximation
for the fidelity amplitude, the first-order expansion
yields an alternative derivation of the so-called
‘dephasing representation,’ circumventing the use of a
semiclassical propagator as in the original derivation.
We also obtain an approximate expression for fidelity
based on the second-order expansion, which resolves
several shortcomings of the dephasing representation.
The rigorous derivation from the path integral permits
the identification of sufficient conditions under which
various approximations obtained become exact.

1. Introduction
Because of the unitarity of quantum evolution, the
overlap of two different quantum states remains constant
in time. As a consequence, to measure the stability of
quantum dynamics, one has to perturb the Hamiltonian
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rather than the initial state. For this purpose, Peres has introduced [1] the notion of quantum
fidelity, defined for pure initial states ψ as F(t) := |f (t)|2, where

f (t) := 〈ψ |e+iH′t/h̄ e−iH′′t/h̄|ψ〉 (1.1)

is the fidelity amplitude, H′ is the unperturbed Hamiltonian and H′′ = H′ +�H is the perturbed
Hamiltonian. Equation (1.1) states that the fidelity amplitude is the overlap at time t of two
identical initial states evolved with two different time-independent Hamiltonians.

Fidelity is also referred to as the Loschmidt echo [2] because it can be interpreted as the survival
probability of an initial state ψ evolved for time t with Hamiltonian H′ and subsequently for time
−t with H′′. It has been studied extensively in the past 15 years [3–5], leading to the identification
of various universal regimes of its decay in time, which are closely related to similar observations
in the theory of wavepacket dynamics and to the parametric regimes of the local density of
states [6,7].

Quantum fidelity has a fundamental role in our understanding of quantum irreversibility [8]; it
provides another perspective to the theories of decoherence; and it is important for experimental
realizations of quantum computation [9]. While several nuclear magnetic resonance [10,11],
microwave [12] and atom optics [13,14] experiments were designed specifically to study the
Loschmidt echo or fidelity amplitude, the same correlation function occurs naturally in linear
and nonlinear electronic spectroscopy. For example, within the time-dependent perturbation
theory and Condon approximation, electronic absorption or emission spectra, and time-resolved
spectra, in particular, can be computed via a Fourier transform of an appropriately defined fidelity
amplitude [15–17].

The Loschmidt echo has been studied by many different approaches, which are reviewed in
[3–5]. Here we focus on a path integral approach, in order to gain further understanding of the
often used semiclassical methods. Indeed, many of the analytical expressions for fidelity decay
were obtained by the original semiclassical approach of Jalabert & Pastawski [18], while Cerruti &
Tomsovic [19] performed the first numerical semiclassical calculation, in which they found
explicitly approximately 1000 stationary-phase contributions to the fidelity amplitude. Vaníček
& Heller [20] avoided the search for stationary-phase points and obtained a uniform expression
for fidelity by combining Miller’s initial value representation [21,22] with the semiclassical
perturbation approximation [23]. This surprisingly simple and accurate expression, although
limited to wave packets localized in position, was successfully applied as a starting point
to derive the decay of fidelity in the deep Lyapunov regime [24] and the plateau of fidelity
in neutron scattering [25]. By linearizing the semiclassical initial value representation of the
fidelity amplitude, Vaníček later obtained [26,27] a more general and accurate approximation,
the so-called dephasing representation,

fDR(t) =
∫

d2Dx0

hD ρW(x0) exp
[
− i

h̄

∫ t

0
�H(x(s)) ds

]
, (1.2)

applicable not only to pure states (ρ = |ψ〉〈ψ |), but also to arbitrary mixed initial states ρ.
In equation (1.2), D is the number of degrees of freedom, x := (q, p) is a collective notation
for positions q and momenta p, h = 2π h̄ is the Planck constant, x(t) denotes the phase-space
coordinates at time t of a trajectory of the average Hamiltonian H := (H′ + H′′)/2 with initial
condition x0, and ρW is the Wigner function, i.e. the Wigner transform of the density operator
ρ of the initial state. Note that we use the following convention for the Wigner transform of a
general operator A:

AW(x) :=
∫

dDξ

〈
q − ξ

2
|A|q + ξ

2

〉
eip·ξ/h̄.

In electronic spectroscopy, the dephasing representation and closely related approximations
are known as Mukamel’s phase-averaging method [15,28] or the Wigner-averaged classical limit,
and have been used by various authors [29–32]. In the context of the mixed quantum–classical
Liouville equation, Martens and co-workers obtained a similar expression for the evolution
of coherences of the density operator [33,34]. In the field of quantum chaos, the dephasing
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representation successfully described, for example, the local density of states and the transition
from the Fermi’s golden rule to the Lyapunov regime of fidelity decay [35–37].

Yet the most attractive feature of the dephasing representation is its efficiency: motivated
by numerical comparisons with other semiclassical methods [16], it was proved analytically
[38] that the number of trajectories required for convergence of the dephasing representation
was independent of the system’s dimensionality, Hamiltonian, or total evolution time. Unlike
its efficiency, the accuracy of the dephasing representation is not always sufficient. This
approximation is exact in displaced harmonic oscillators [15,28] and often accurate in chaotic
systems [26,27], but it breaks down in such simple systems as harmonic oscillators with different
force constants. This problem can be partially remedied by augmenting the approximation with
a prefactor [39,40], which, however, is still not exact even for harmonic systems.

Outline. The present paper was motivated by two goals: first, to derive the dephasing
representation from the Feynman path integral, without employing the semiclassical propagator;
and, second, to obtain a semiclassical approximation correcting the drawbacks of the original
version of the dephasing representation. Below, we do exactly that, but on the way also obtain
a recipe for obtaining increasingly accurate semiclassical approximations from the expansion of
the path integral, and explicit expressions for the zeroth-, first- and second-order expansions.
As we will see, the first-order expansion yields the original dephasing representation, and its
inaccuracies can be corrected with the second-order expansion. The paper is organized as follows.
First, in §2, we derive the coordinate-space path integral representation of the fidelity amplitude
by analogy with the path integral for the classical Liouville propagator and quantum propagator
of the density operator. Then, in §3, we provide an alternative and more explicit phase-space
path integral representation of the fidelity amplitude in kicked quantum maps, which allows us
to obtain the zeroth-, first- and second-order approximations. Section 4 discusses under which
circumstances various approximations are exact, while §5 concludes the paper.

2. Coordinate-space path integral representation
In order to simplify our first derivation of a path integral representation of f (t), in this section, we
will consider one-dimensional systems described by the Hamiltonian

H = p2

2m
+ V(q). (2.1)

The derivation is based on analogies with path integral propagators of classical and quantum
densities, which were discussed in detail by Cohen [41] for systems with noise.

(a) Quantum propagator
The quantum propagator of a wave function can be obtained from the well-known Feynman path
integral expression

U(q | q0; t) := 〈q|e−iHt/h̄|q0〉 =
∫ q

q0

Dq exp
{

i
h̄

∫ t

0
dτ
[

1
2

mq̇2 − V(q)
]}

. (2.2)

The density operator evolves as ρ(t) = e−iHt/h̄ρ(0) eiHt/h̄; accordingly, its temporal evolution can
be expressed by a propagator K as

ρ(q′′, q′; t) =
∫

dq′′
0

∫
dq′

0 K(q′′, q′ | q′′
0, q′

0; t)ρ(q′′
0, q′

0; 0). (2.3)

The propagator K of the density operator is trivially related to U, namely,

K(q′′, q′ | q′′
0, q′

0; t) = U(q′′ | q′′
0; t)U(q′ | q′

0; t)∗. (2.4)

Consequently, the path integral expression for K involves summation Dq′Dq′′ over the pair
of paths q′(τ ) and q′′(τ ). Alternatively, we may also use the average and difference coordinates
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q := (q′ + q′′)/2 and r := q′′−q′; thus the summation will be DqDr, namely

K(q, r | q0, r0; t) =
∫ q

q0

Dq
∫ r

r0

Dr exp
[

i
h̄

(∫ t

0
dτmq̇ṙ −

∫ t

0
dτ
[
V
(

q + r
2

)
− V

(
q − r

2

)])]
. (2.5)

As a final step, we transform the quantum propagator to the Wigner representation. Recall that
ρW(q, p) is the Fourier transform of ρ(q, r) in the r �→ p coordinate. It follows that

KW(q, p | q0, p0; t) =
∫ q,p

q0,p0

Dq
∫
Dr exp

(
i
h̄

S[q, r]
)

. (2.6)

The integration Dr in the latter expression is not restricted at the endpoints, whereas the
integration Dq is restricted at the endpoints in both q and q̇. The restriction on q̇ at the endpoints
is implicit, through the relation q̇ = p/m. We have used the notation

S[q, r] = Sfree[q, r] −
∫ t

0
dτ
[
V
(

q + r
2

)
− V

(
q − r

2

)]
, (2.7)

where

Sfree[q, r] = [mq̇(0)r(0) − mq̇(t)r(t)] +
∫ t

0
dτmq̇ṙ = −

∫ t

0
dτmq̈r. (2.8)

In the next subsection, we clarify that the leading-order estimate of the quantum propagator leads
to the expected classical result.

(b) Classical propagator
The time evolution of a classical phase-space density ρcl(q, p; t), under the dynamics that is
generated by a classical Hamiltonian (2.1), is given by the so-called Liouville propagator. For
an infinitesimal time dτ , the explicit expression for the Liouville propagator is

Kcl(q2, p2 | q1, p1; dτ ) = 2π h̄ δ
(

p2−p1 + ∂V
∂q

dτ
)

· δ
(

q2 − q1 − p
m

dτ
)

. (2.9)

Here a dummy parameter h̄ has been inserted, which cancels with the phase-space measure
dq dp/(2π h̄). Its value does not have any effect here, but the use of h̄ will make a later comparison
with the quantum mechanical version more transparent. The inverse Fourier-transformed (p �→ r)
version, ρ̃cl(q, r; t), of phase-space representation ρcl(q, p; t) is analogous to the coordinate-space
representation ρ(q, r; t) of the quantum density matrix. (A tilde will be used on classical densities
and propagators in the coordinate representation, i.e. if their arguments are q and r, or q′ and q′′.)
The associated Fourier-transformed version of the classical Liouville propagator is accordingly

K̃cl(q2, r2 | q1, r1; dτ ) = m
dτ

exp
{

i
h̄

[
m
(

q2−q1

dτ

)
(r2−r1) −

(
r1 + r2

2

)
∂V
∂q

dτ
]}

. (2.10)

For a finite time, the convolved propagator may be written as a functional integral,

K̃cl(q, r | q0, r0; t) =
∫ q

q0

Dq
∫ r

r0

Dr exp
[

i
h̄

(∫ t

0
dτmq̇ṙ −

∫ t

0
dτ r

∂V
∂q

)]
. (2.11)

Transforming back to the phase-space variables, we get

Kcl(q, p | q0, p0; t) =
∫ q,p

q0,p0

Dq
∫
Dr exp

(
i
h̄

Scl[q, r]
)

, (2.12)

where the classical action is

Scl[q, r] = Sfree[q, r] −
∫ t

0
dτ r

∂V
∂q

. (2.13)

Note that the classical action is the same as the leading-order r expansion of the quantum
action (2.7).
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(c) Fidelity amplitude
Now we use the same procedure to obtain an expression for the quantum fidelity amplitude at
time t assuming that the initial preparation is described by the density matrix ρ(q′′, q′), and the
two Hamiltonians differ only in their potential energies V′(q) and V′′(q). The following is the exact
Feynman path integral with unrestricted integration over all possible paths:

f (t) := Tr(e−iH′′t/h̄ρ eiH′t/h̄) (2.14)

=
∫

dq
∫∫

dq′
0 dq′′

0 ρ(q′′
0, q′

0)
∫ q

q′
0

Dq′
∫ q

q′′
0

Dq′′ exp
[

i
h̄

(S′′[q′′] − S′[q′])
]

(2.15)

=
∫

dq
∫∫

dq0 dr0 ρ(q0, r0)
∫ q

q0

Dq
∫ r

r0

Dr exp
[

i
h̄

(
S′′
[
q + r

2

]
− S′

[
q − r

2

])]
, (2.16)

where the single-primed quantities such as S′ correspond to the evolution with H′ and the double-
primed quantities such as S′′ correspond to H′′. We now use exactly the same manipulations as in
§2a and write this expression using phase-space variables:

f (t) =
∫

dq
∫∫

dq0 dr0 ρ(q0, r0)
∫ q,p

q0,p0

Dq
∫
Dr exp

[
i
h̄
�S[q, r]

]
, (2.17)

where

�S[q, r] = Sfree[q, r] −
∫ t

0
dτ
[
V′′

(
q + r

2

)
− V′

(
q − r

2

)]
. (2.18)

This expression is in one-to-one correspondence with (2.7); so far, no approximations were
involved. The next step is to expand in r, namely

V′′
(

q + r
2

)
− V′

(
q − r

2

)
≈ V′′(q) − V′(q) + r

∂V
∂q

=�V(q) + r
∂V
∂q

(q), (2.19)

where V := (V′ + V′′)/2. Recall that, in the calculation of the quantum propagator, this linear
approximation merely led to the classical propagator as�V(q) was zero. Here we shall see that the
linearization leads to non-trivial quantum results. Note that the approximated action, including
the ‘free’ action of (2.8), is linear in the r(τ ) variables. Also it is possible to express ρ(q0, r0) as a
Fourier integral over ρW(q0, p0), involving exp(ip0r0/h̄). So now all the r(τ ) including r0 appear in
a linear fashion in the exponent. Consequently, the unrestricted Dr integration, including the dr0
integration, results in a product of delta functions. Subsequently, the Dq integration, including the
final dq integration, picks up only the classical trajectories qcl(τ ). We are left with the following
very simple approximation:

f (t) ≈
∫∫

dq0 dp0

h
ρW(q0, p0) exp

[
− i

h̄

∫ t

0
dτ�V(qcl(τ ))

]
, (2.20)

which coincides with the dephasing representation (1.2).

3. Phase-space path integral representation
In this section, we will use a phase-space path integral approach and generalize the analysis of the
previous section by considering a system with D degrees of freedom described by the separable
Hamiltonian

H(x) := T(p) + V(q), (3.1)

where T(p) and V(q) are arbitrary functions describing the kinetic and potential energies.
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(a) Quantum propagator
For short times τ , the quantum evolution operator U(τ ) := exp(−iHτ/h̄) corresponding to
Hamiltonian H can be approximated as

e−iτH/h̄ = e−iτT/h̄ e−iτV/h̄ + O(τ 2). (3.2)

In order to avoid questions of convergence of the path integral and to make our derivations
rigorously exact for as long as possible, we will consider kicked quantum maps, in which the
error term in the factorization (3.2) is zero by definition. In other words, in a kicked quantum
map, the evolution operator for a single time step is defined to be

U := e−iτV/h̄ e−iτT/h̄. (3.3)

The quantum propagator from position qn to qn+1 in a single time step of the map,

U(qn+1, qn; τ ) := 〈qn+1|U|qn〉 = h−D
∫

dDpn exp
{

i[pn(qn+1 − qn) − τH(qn+1, pn)]
h̄

}
, (3.4)

is obtained by inserting the resolution of identity Id = ∫
dpn|pn〉〈pn| between the potential and

kinetic evolution operators in (3.3). By concatenating N single-step propagators, one finds the
propagator from q0 to qN in time t = Nτ :

U(qN , q0; Nτ ) = 〈qN|UN|q0〉 =
∫ N−1∏

n=1

dDqn

N−1∏
j=0

dDpj

hD eiSN/h̄ (3.5)

and

SN :=
N−1∑
n=0

[pn(qn+1 − qn) − τH(qn+1, pn)], (3.6)

where qn and pn denote the positions and momenta after n steps. An appealing feature of the
phase-space path integral is the absence of a complicated prefactor; one only has to consistently
use the standard phase-space measure dDq dDp/hD.

(b) Fidelity amplitude
To find the path integral representation of fidelity amplitude (1.1), we first express f (t) in terms of
the quantum propagators:

f (t) = 〈ψ |(U′)−N(U′′)N|ψ〉 = Tr[(U′′)Nρ(U′)−N]

=
∫

dDq′
0 dDq′′

0 dDq′
N dDq′′

N U′′(q′′
N , q′′

0; Nτ )ρ(q′′
0, q′

0)U′(q′
N , q′

0; Nτ )∗δ(q′′
N − q′

N), (3.7)

where the single-primed quantities such as U′ again correspond to H′ and double-primed
quantities such as U′′ to H′′. By having expressed fidelity amplitude as a trace of the evolved
density ρ, all our derivations below remain valid for general mixed states. After substituting the
path integral expression (3.5) for the two propagators, we get

f (t) =
∫

dDq′
N dDq′′

N

N−1∏
n=0

d2Dx′
n

hD
d2Dx′′

n

hD ρ(q′′
0, q′

0) exp
[

i(S′′
N − S′

N)
h̄

]
δ(q′′

N − q′
N). (3.8)

Now it is convenient to change the independent integration variables to the average and
difference coordinates x := (x′ + x′′)/2 and �x := x′′ − x′,

f (t) =
∫

dD�qN

N∏
n=0

d2Dxn

hD

N−1∏
j=0

d2D�xj

hD ρ(q′′
0, q′

0) eiAN/h̄

and AN := S′′
N − S′

N − pN�qN ,

(3.9)
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where we have also expressed the delta function δ(�qN) in terms of an integral over a new variable
pN . After substituting the N-step action (3.6) for S′

N and S′′
N and simplification, one obtains an

explicit expression for the phase,

AN = −τ
N−1∑
n=0

[H′′(q′′
n+1, p′′

n) − H′(q′
n+1, p′

n)] +
N−1∑
j=0

(qj+1 − qj)�pj −
N∑

k=1

(pk − pk−1)�qk − p0�q0.

(3.10)

Note that expression (3.9) with (3.10) is exact for kicked quantum maps even for finite N.

(c) Expansion of the path integral
The explicit expressions above in terms of the average and difference trajectories xn and �xn

will now pay off because we can make increasingly more accurate expansions of the difference
H′′(x′′) − H′(x′) in powers of �x, which is the only term in the exponent AN preventing us
from performing the path integral (3.9) analytically. This expansion must be done with care
because both the trajectory and Hamiltonian change. Let us start with the full expansion, which
is guaranteed to be exact if both H′ and H′′ have Taylor series that converge on the entire phase
space:

H′′(x′′) − H′(x′) = H′′(x′′) − H′′(x) + H′′(x) − H′(x) + H′(x) − H′(x′)

=
∞∑

n=0

1
n!
∂nH′′(x)
∂xn

(
�x
2

)n
+�H(x) +

∞∑
n=0

1
n!
∂nH′(x)
∂xn

(
−�x

2

)n

=
∞∑

n=0

1
22n

[
1

(2n)!
∂2n�H(x)
∂x2n (�x)2n + 1

(2n + 1)!
∂2n+1H(x)
∂x2n+1 (�x)2n+1

]
, (3.11)

where we have introduced the average Hamiltonian H := (H′ + H′′)/2 and the difference
Hamiltonian (or perturbation) �H := H′′ − H′. Note that, for simplicity, we have for the moment
used one-dimensional notation, and moreover, as both H′ and H′′ are separable in coordinates
and momenta, so are H and �H, and expressions such as (∂nH(x)/∂xn)(�x)n stand for
(∂nT(p)/∂pn)(�p)n + (∂nV(q)/∂qn)(�q)n, etc. There are two important observations to make.

First, in the �x expansion (3.11), derivatives of the average Hamiltonian H appear only with
odd powers of �x and derivatives of the perturbation �H appear only with even powers of �x.
Second, the average Hamiltonian appears naturally and plays a prominent role. The average
Hamiltonian must be used in order to preserve the order of the expansion. Otherwise (e.g. if
H′ were used as a reference in displaced harmonic oscillators) what appears to be a first-order
expansion in �x would in fact be of second order. This has a consequence, explained below in
§4, that in displaced harmonic oscillators, the dephasing representation (1.2) mentioned in the
introduction is exact if the average Hamiltonian H is used as reference, but not if H′ is used
instead (see equation (4.3)).

It turns out to be useful to truncate expansion (3.11) at increasing powers of�x. As we will see
later, both the zeroth- and first-order expansions yield simple analytical results, the latter agreeing
exactly with the dephasing representation. The second-order expansion cannot be solved fully
analytically, but nevertheless yields an appealing extension of the dephasing representation.

(d) Zeroth-order expansion
Truncating expansion (3.11) at the zeroth power of �x, i.e. setting

H′′(x′′) − H′(x′) ≈�H(x), (3.12)

permits an analytical evaluation of almost all integrals in equation (3.9) as they involve
either exponentials or delta functions. The result is the zeroth-order approximation of fidelity
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amplitude,

f (0)(t) = h−D
∫

dD�q0 d2Dx0

N∏
n=1

d2Dxn δ(xn − xn−1)

× ρ(q′′
0, q′

0) exp

⎧⎨
⎩− i

h̄

⎡
⎣p0�q0 + τ

N−1∑
j=0

�H(qj+1, pj)

⎤
⎦
⎫⎬
⎭

= h−D
∫

d2Dx0ρW(x0) e−it�H(x0)/h̄ = 〈e−it�H(x)/h̄〉ρW(x), (3.13)

where t := Nτ and the last expression employs the notation

〈A(x)〉ρ(x) := h−D
∫

d2Dx ρ(x)A(x), (3.14)

for a phase-space ‘average’ of a quantity A weighted by a normalized quasi-probability
distribution ρ. Normalization means that h−D ∫

ρ(x) d2Dx = 1, which is true for the Wigner
function ρW.

Note that, in equation (3.13), we have obtained a new approximation for quantum fidelity
amplitude—one that is cruder than the dephasing representation (1.2) and does not even require
running trajectories!

Although approximation f (0) only requires phase-space sampling of the perturbation at initial
time, in general, it yields a time-dependent fidelity amplitude. If one replaces ρW by the classical
Boltzmann distribution, the zeroth-order approximation for fidelity amplitude coincides with an
approximation used for calculations of inhomogeneously broadened spectra and known as the
static classical limit [31,32].

Example: A sufficient condition for the zeroth-order approximation (3.13) for fidelity amplitude
to be exact is that the zeroth-order expansion (3.12) itself is exact, which requires the average and
difference Hamiltonians to be of the form H = α and �H =�α +�β · q +�γ · p, where α′, α′′,
�β and �γ are constants, implying that the original Hamiltonians must be H′ = α′ − 1

2�β · q −
1
2�γ · p and H′′ = α′′ + 1

2�β · q + 1
2�γ · p. Corresponding classical motions are linear growth

(or decrease) with time of phase-space coordinates for H′, H′′, and no motion at all for the
average Hamiltonian H. Under such conditions, the zeroth-order approximation f (0)(t) is exact
for arbitrary initial states ρ.

This can be verified independently by first expressing the fidelity amplitude as

f (t) = Tr[ρE(t)], (3.15)

in terms of the echo operator

E(t) := U′(t)†U′′(t), (3.16)

then using the phase-space representation of the trace in equation (3.15),

f (t) = h−D
∫

d2Dx ρW(x)EW(x, t) = 〈EW(x, t)〉ρW(x) (3.17)

and finally evaluating explicitly the Wigner transform of the echo operator (3.16), which,
after some algebra, in this case turns out to be EW(x, t) = exp[−it�H(x)/h̄], in agreement with
equation (3.13).

Incidentally, the above sufficient condition is not necessary. For example, for �H = 0,
expression (3.13) is trivially exact, f (0)(t) = 1, for arbitrary H even though one neglects the
non-vanishing higher-order terms of the average Hamiltonian H in expansion (3.11).
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(e) First-order expansion
The first-order expansion of (3.11) approximates the Hamiltonian difference as

H′′(x′′) − H′(x′) ≈�H(x) + ∂T
∂p

·�p + ∂V
∂q

·�q. (3.18)

Again, most of the integrals can be solved analytically and one obtains, without any other
approximation,

f (1)(t) = h−D
∫

dD�q0 d2Dx0

N∏
n=1

d2Dxn δ

(
qn − qn−1 − τ

∂T
∂p

(pn−1)
)

× δ

(
pn − pn−1 + τ

∂V
∂q

(qn)
)
ρ(q′′

0, q′
0) exp

⎧⎨
⎩− i

h̄

⎡
⎣p0�q0 + τ

N−1∑
j=0

�H(qj+1, pj)

⎤
⎦
⎫⎬
⎭

= h−D
∫

d2Dx0 ρW(x0) exp

⎡
⎣− i

h̄
τ

N−1∑
j=0

�H(qj+1, pj)

⎤
⎦ , (3.19)

where qn and pn appearing as arguments of �H in the last expression are no longer independent
path integral variables; instead, they are the uniquely defined position and momentum
coordinates of a trajectory starting at x0 after n steps of the classical symplectic map given by
the average Hamiltonian H and corresponding to the quantum map (3.3); these trajectories are
given by the recursive relations between qn, pn and qn−1, pn−1 expressed by the delta functions in
the preceding equation.

To return from quantum maps to continuous Hamiltonian systems, one takes the limits τ → 0
and N → ∞, so that Nτ = t is constant, obtaining

f (1)(t) = h−D
∫

d2Dx0 ρW(x0) exp
[
− i

h̄

∫ t

0
�H(x(s)) ds

]

=
〈
exp

[
− i

h̄

∫ t

0
�H(x(s)) ds

]〉
ρW(x0)

= fDR(t). (3.20)

As promised, by using the first-order expansion of H′′ − H′ in the path integral representation
of quantum fidelity, we have obtained exactly the dephasing representation (1.2). On the one
hand, this may seem remarkable, as we did not explicitly employ the semiclassical propagator
which had been used in the original derivation of the dephasing representation [27]. On the
other hand, the semiclassical propagator can be obtained by a quadratic expansion of the
Feynman path integral propagator, and because we used a linearization of the path integral,
we implicitly went beyond the semiclassical approximation since, in contrast with usual semi-
classical approximations, expression (3.20) for f (1) ≡ fDR does not even require Hessians of H or
�H. Finally, we note that our result also agrees with a linearized path integral approximation
obtained for a more general correlation function Tr(A e−iH′′t/h̄B eiH′t/h̄) by a similar approach by
Shi & Geva [42] in the context of non-radiative electronic relaxation rates.

Example: A sufficient condition for the first-order approximation (3.20) for fidelity amplitude
to be exact is that the first-order expansion (3.12) itself is exact, which requires the average
Hamiltonian to be at most a quadratic function, and the perturbation at most a linear function
of positions and momenta, i.e.

H = α + β · q + γ · p + qT · δ · q + pT · ε · p

and �H =�α +�β · q +�γ · p,
(3.21)
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implying that the original Hamiltonians must be of the form

H′ = α′ + β ′ · q + γ ′ · p + qT · δ · q + pT · ε · p

and H′′ = α′′ + β ′′ · q + γ ′′ · p + qT · δ · q + pT · ε · p.
(3.22)

In other words, the two Hamiltonians describe harmonic (or inverted harmonic) systems that
can be displaced in phase space, have different zeros of energy, but must have the same
‘masses’ and force constants in corresponding degrees of freedom. In one dimension, classical
motions corresponding to Hamiltonians H′, H′′ are motions along ellipses or hyperbolas in phase
space, where the centres of these conical sections in phase space may be displaced between
H′ and H′′, but otherwise the phase portraits must be the same for the two Hamiltonians. For
systems described by Hamiltonians (3.22), the first-order approximation f (1)(t), i.e. the dephasing
representation, is exact for arbitrary initial states ρ. Such systems can be used to describe,
for example, electronic absorption and emission spectra in molecules, where the displacement
occurs only in coordinate space (i.e. �β �= 0 and �γ = 0) and results in vibrational excitation of a
molecule upon electronic absorption. By contrast, Hamiltonians with displacement in momentum
space (�β = 0 and�γ �= 0) are useful for representing inelastic collisions, such as inelastic neutron
scattering [25].

Indeed, it is not surprising that the first-order approximation (3.20) is exact for quadratic
Hamiltonians with linear perturbation, as many semiclassical approximations are exact in such
situations. What is intriguing about the dephasing representation (3.20) is its surprising accuracy
in chaotic systems. So the approximation is exact for Hamiltonians (3.22) and accurate in chaotic
Hamiltonians, yet the most severe breakdown for it occurs in simple systems, such as quadratic
Hamiltonians with quadratic perturbations. Next, we turn to deriving an expression that will
correct this drawback.

(f) Second-order expansion
In order to simplify the presentation of the second-order expansion, we shall assume that D = 1
and �H(x) ≡�V(q). The quadratic expansion of (3.11) approximates the Hamiltonian difference
as

H′′(x′′) − H′(x′) ≈�V(q) + ∂T
∂p
�p + ∂V

∂q
�q + 1

8
∂2�V
∂q2 (�q)2. (3.23)

With this expansion, the phase (3.10) in the path integral representation (3.9) becomes

A(2)
N = −τ

N∑
n=1

�V(qn) +
N−1∑
j=0

(
qj+1 − qj − τ

∂T
∂p

(pj)
)
�pj

− h̄
N∑

k=1

(ak(�qk)2 + bk�qk) − p0�q0, (3.24)

where

h̄ak := τ

8
∂2�V
∂q2 (qk)

and h̄bk := pk − pk−1 + τ
∂V
∂q

(qk).

(3.25)

Again, the integrals over �pn in (3.9) yield delta functions with arguments agreeing with
Hamilton’s equations of motion for qn, and the integral over �q0 gives the Wigner function of
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the initial state:

f (2)(t) =
∫

d2x0

h
ρW(x0)

N∏
n=1

d2xn

h
d�qn δ

(
qn − qn−1 − τ

∂T
∂p

(pn−1)
)

eiB(2)
N /h̄

and B(2)
N := −τ

N∑
n=1

�V(qn) − h̄
N∑

k=1

(ak(�qk)2 + bk�qk).

(3.26)

Although the complex Gaussian integrals over�qn do not yield simple Dirac delta functions, they
can be evaluated analytically and the fidelity amplitude becomes

f (2)(t) = h−1
∫

d2x0 ρW(x0)
N∏

n=1

d2xn δ

(
qn − qn−1 − τ

∂T
∂p

(pn−1)
)
δ̃(pn − pn−1; qn)

× exp

⎡
⎣− i

h̄
τ

N−1∑
k=0

�V(qk)

⎤
⎦ , (3.27)

where δ̃ is a ‘smeared’ delta function, given by a complex Gaussian

δ̃(pn − pn−1; qn) := h−1
∫

dξ ei(anξ
2+bnξ ) = h−1

√
π

|an| exp

[
i
4

(
πsgn an − b2

n
an

)]
. (3.28)

This smeared delta function replaces Hamilton’s equation for pn with a ‘smeared Hamilton’s
equation’—the expectation value of momentum pn is still at the classical value pn−1 −
τ (∂V/∂q)(qn), but it is not deterministic as in classical mechanics. Equation (3.27) for the second-
order fidelity amplitude thus has a simple interpretation, not unlike the dephasing representation:
first, one samples initial conditions x0 from the density ρW(x0). Then one runs trajectories starting
from these points, where the kinetic propagation of positions is classical and hence deterministic,
whereas the propagation of momenta is non-classical and stochastic. Although we have been able
to evaluate three quarters of the integrals in the exact path integral representation (3.9) of f (t),
the remaining N integrals over pn render the resulting expression (3.27) still a formidable path
integral, which is difficult to evaluate numerically. Note that, if we allowed the perturbation
to affect also the momenta, then the propagation of positions would also be stochastic; the
corresponding generalization of equation (3.27) is straightforward.

Example: A sufficient condition for the second-order approximation (3.27) for fidelity
amplitude to be exact is that the second-order expansion (3.23) itself be exact, which requires
the average Hamiltonian to be at most a quadratic function of q and p, and the perturbation at
most a cubic function of q, i.e.

H = α + βq + γ p + δq2 + εp2

and �H =�α +�βq +�δq2 +�φq3,
(3.29)

implying that the original Hamiltonians must be of the form

H′ = α′ + β ′q + γ p + δ′q2 + εp2 − 1
2�φq3

and H′′ = α′′ + β ′′q + γ p + δ′′q2 + εp2 + 1
2�φq3.

(3.30)
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4. Discussion
The derivations based on the Feynman path integral bypass the conventional semiclassical
approximations and therefore allow us to introduce several rigorous statements. If the
Hamiltonian is up to quadratic and the perturbation up to linear, the dephasing representation
(or phase averaging [15] or weighted average classical limit [31]) is exact. For example, for
displaced simple harmonic oscillators

H′ = p2

2m
+ 1

2
k
(

q − a
2

)2

and H′′ = p2

2m
+ 1

2
k
(

q + a
2

)2
,

(4.1)

the dephasing representation is exact [15] if the classical trajectories are propagated with the
average Hamiltonian H since then the Hamiltonian difference (3.11) is indeed linear in �q and
�p:

H′′(x′′) − H′(x′) = p
m
�p + kq(a +�q). (4.2)

By contrast, the dephasing representation is not exact even in this simple system if H′ is used for
dynamics, as quadratic terms in both �q and �p appear:

H′′(x′′) − H′(x′) = 1
2m

(2p′ +�p)�p + 1
2

k(2q′ +�q)(a +�q). (4.3)

Similarly, the dephasing representation is not exact (in fact, breaks down rather severely) for
simple harmonic oscillators with different force constants,

H′ = p2

2m
+ 1

2
k′q2 and H′′ = p2

2m
+ 1

2
k′′q2, (4.4)

as the perturbation is quadratic in �q even if the average Hamiltonian is used for dynamics:

H′′(x′′) − H′(x′) = p
m
�p + kq�q + 1

2
�k

[
q2 + 1

4
(�q)2

]
. (4.5)

The last simple example provides a particularly bad scenario for the dephasing representation,
which can be remarkably accurate in much more complex, even chaotic systems such as the kicked
rotor. Unfortunately, undisplaced harmonic oscillators provide a good model for the ‘silent’
modes in electronic spectra, i.e. the modes which are not excited by the electronic transition, and
hence are not displaced, but may have a different force constant in the excited state. Especially in
large molecules, the majority of the modes are silent, but the dephasing representation produces
an artificially fast decay of fidelity amplitude [40], which in turn gives rise to artificially broadened
spectra, often to the point that any structure is lost. Typical molecules are slightly anharmonic, so
one cannot always use simple semiclassical methods such as the thawed Gaussian approximation
[43], but they are not very chaotic, and hence the surprising accuracy of dephasing representation
in chaotic systems does not help. Yet, the second-order approximation (3.27) for f (t), which
is, by definition, exact in harmonic systems with different force constants, could—if evaluated
efficiently—provide an accurate method for computing electronic molecular spectra even in the
presence of anharmonicity and wavepacket splitting.

5. Conclusion
In conclusion, we derived a path integral formula for the quantum fidelity amplitude, which
bypasses the conventional semiclassical approximations of past publications. Our first approach

 on May 2, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


13

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150164

.........................................................

used a coordinate path integral for continuous systems and benefited from the explicit connection
with the classical Liouville propagator. We note that this path integral approach allows in
principle to incorporate the influence of the environment using the familiar Feynman–Vernon
formalism. All that is required is adding the appropriate bath terms to the action. The effect of
thermal noise would be to broaden the delta functions that arise from the Dr integration, leading
to smearing of the phase factor in equation (2.20).

Our second approach relied on the phase-space path integral for kicked quantum maps. In
the latter context, we also obtained an exact expansion of the exponent of the path integral
and derived explicit expressions for the fidelity amplitude in the zeroth-, first- and second-
order expansions; the first-order expansion yields exactly the dephasing representation, whereas
the second-order expansion yields an approximation which corrects several drawbacks of
the dephasing representation and other approximations based on linearizing the semiclassical
propagator or path integral. It remains to be seen if it can be implemented efficiently.

Finally, the rigorous manipulation of the path integral has allowed us to make several rigorous
statements about the validity of various approximations for fidelity amplitude.
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