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Dephasing at low temperatures

Doron Cohen and Yoseph Imry
Department of Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 6 January 1999!

We discuss the significance and the calculation of dephasing at low temperatures. The particle is moving
diffusively due to a static disorder configuration, while the interference between classical paths is suppressed
due to the interaction with a dynamical environment. At high temperatures we may use the white-noise
approximation, while at low temperatures we distinguish the contribution of zero-point fluctuations~ZPF! from
the thermal noise contribution. We study the limitations of the above semiclassical approach and suggest the
required modifications. In particular we find that the ZPF contribution becomes irrelevant for thermal motion.
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The application of semiclassical considerations into
analysis of interference and dephasing is as old as the his
of quantum mechanics. A particular interest is to apply th
considerations to the theory of diffusing electrons in
metal.1,2 Dephasing, or the loss of ‘‘phase’’ information,
the consequence of the interaction with some other envi
mental degrees of freedom, or with some measurement
vice. The widely accepted dogma is that dephasing is a
ciated with leaving a tracein the environment. Lately this
dogma has been challenged experimentally3 as well as
theoretically,4 leading to an intensive debate5,6 associated
with the question whether zero-point fluctuations~ZPF! of
environmental modes may lead to decoherence at the lim
zero temperature. The most physically appealing theore
considerations are based on the application of Feynm
Vernon ~FV! formalism, and simple semiclassical conside
ations. In particular, the zero-temperature decoherence fo
within the exactly solvable Caldeira-Leggett~CL! model, is
most puzzling. Thus, it is of fundamental importance to a
dress the following:~1! What are the limitations of the sem
classical strategy.~2! What is the applicability of results tha
are based on the CL model.~3! What are the limitations of
the ‘‘one-particle’’ picture when applied to a many-bod
system. In this paper we are going to explore these quest
systematically, using a well controlled strategy. Under c
sideration is the motion of a particle under the combin
influence of static disorder and a dynamical environme
Our reasoning consists of the following three stages:~a! We
take the static disorder into account and write the trans
probability amplitude as a discrete sum over classical tra
tories.~b! We take the stochastic nature of the environm
into account by considering the influence of an effective s
chastic potential.~c! We take the full dynamical nature of th
environment into account by using the FV formalism. Ha
ing an environment whose temperature isT, and a particle
that is injected with an energyE ~not necessarily thermal!,
one should make a distinction between the cases of high
low temperatureT, and analogous distinction between t
cases of large and small energyE. We shall argue that the
validity of the semiclassical approach is not restricted to h
bath temperatures. However, at low bath temperatures
essential modification is required in the case of motion w
small energyE.
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It is assumed that the motion of the particle under
influence of the static disorder is diffusive. The transp
probability amplitude can be written as a su
(Aa exp(iS@xa#/\) over classical trajectories that connect t
observation point with the injection point. We shall deno
by t the total time of the motion, andS@xa# are the corre-
sponding action integrals. The statistical properties of
differencesxb(t2)2xa(t1), wherea and b are a pair of tra-
jectories, will play a major role in later calculations. The
statistical properties can be taken into account via a sin
function P(k,v) that reflects the power spectrum of th
motion7. For diffusive motion a practical approximation is

P~k,v!52Dk2/@~Dk211/t !21v2#, ~1!

whereD is the diffusion coefficient. In the largek regime
where k.(Dt)21/2 this function is a properly normalized
Lorentzian. Note that the collision frequencyv;v2/D,
wherev is the velocity of the particle, should be used as
cutoff to the slow 1/v2 power-law decay. Beyondk;v/D
the above expression is not valid and the power spectrum
the motion is ballisticlike.

We now take the stochastic nature of the environment i
account by introducing into the Hamiltonian a stochastic p
tential that satisfies

^U~x9,t9!U~x8,t8!&5f~ t92t8!•w~x92x8!. ~2!

It is assumed thatw(r) depends only onuru. The intensity of
the noise is characterized by the parameter

n[E
2`

`

f~t!dt•uw9~0!u. ~3!

The power spectrum of the noisef(v) is the Fourier trans-
form of f(t). We shall assumeOhmic environment, mean-
ing that at the classical limitf(v)5n up to some cutoff
frequency 1/tc which is assumed to be larger than any oth
relevant frequency scale. Thus, in the classical limit we c
use the white-noise approximation~WNA!, namely f(t)
5nd(t). For the quantum-mechanical case see Eq.~10!.
Without loss of generality we shall assume the normalizat
w9(0)521. The d-dimensional Fourier transform ofw(r)
will be denoted byw̃(k). The mode density~after angular
11 143 ©1999 The American Physical Society



an
n

a
v

t-

a
sti

h
s
o

ca
a

ee

p-

e
on
ha
th

ric
i

l-

ted
th

ic
-

re

atial
re
der
t
is
he

tor

he
ot

pply.
im-
ce

the
wer

.

-

e

11 144 PRB 59BRIEF REPORTS
integration! is g(k)5„Cd /(2p)d
…kd21w̃(k), whereCd is the

total solid angle. We shall assume that

g~k!5Cl21sks21 for k,1/l , ~4!

wherel characterize the spatial scale of the correlations,
C is a dimensionless constant. In the case of short-ra
Gaussian-type correlationss equals simplyd. For the long-
range Coulomb interaction to be discussed later it equ
d22. In order to have a well-defined model we must ha
uw9(0)u,`, therefore only22,s is meaningful. The re-
gime 22,s<0 is well defined but it requires special trea
ment sincew(0) diverges.

The path-integral expression for the probability to prop
gate from the injection point to the observation point con
tutes a double sum**Dx8Dx9 over the path variablesx8(t)
andx9(t). Averaging over realizations ofU one obtains the
influence functional exp(2SN /\2). See Ref. 8 for details. The
noise action functional is

SN@x8,x9#5
1

2E0

tE
0

t

dt1 dt2f~ t22t1!

3@w~x292x19!1w~x282x18!22w~x292x18!#,

~5!

wherexi is a shorthand notation forx(t i). The corresponding
semiclassical expression for that probability is

(
ab

AaAb* expS 2
SN@xa ,xb#

\2 D expS i
S@xa#2S@xb#

\ D . ~6!

It is obvious that the interference contribution~the termsa
Þb) is suppressed due to the noise, while the classical~di-
agonal! contribution survives.9 This is thedephasingeffect.
See the general discussion in Ref. 2. We are interested
in the computation of these dephasing factors, as well a
illuminating their physical significance. For the purpose
calculating the typical value of the dephasing factor, Eq.~5!
can be replaced by

^SN&'tE
0

`

g~k!dkE
0

`dv

p
f~v!P~k,v!. ~7!

If the integral on the right-hand side is independent oft, then
the typical dephasing factor in Eq.~6! can be written as a
simple exponential exp(2t/tw).

The full analysis should take into account the dynami
nature of the environment. Namely, one should consider
HamiltonianH5H0(x,p)1Henv(x,Qa ,Pa), where the latter
term incorporates the interaction with environmental degr
of freedom. It is possible in principle~but generally not in
practice! to use the FV formalism in order to derive an a
propriate influence functional exp(iSF /\2SN /\2). The
fluctuation-dissipation theorem~FDT! implies that if SN is
known, and the temperature of the bath is further specifi
then also some of the dissipative properties of the envir
ment are determined uniquely. Therefore, it is plausible t
the CL procedure of constructing an effective harmonic ba
is useful in order to derive an actual expression for the f
tion functionalSF . Indeed, this strategy has been adapted
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Ref. 8 and leads to the introduction of the ‘‘diffusion loca
ization and dissipation’’~DLD! model.10 The interaction
with the bath oscillators is

HI5(
a

caQau~x2xa!. ~8!

Herexa is the ~fixed! location of thea oscillator andQa is
its dynamical coordinate. The bath oscillators are distribu
uniformly all over space. The interaction of the particle wi
each of the oscillators is described byu(r ). The range of the
interaction isl , andca are coupling constants. For an Ohm
bath the following expression~generalized here for any di
mension! has been derived:

SF5hE
0

t

dt ¹w~r!•Ṙ, ~9!

whereh is a friction parameter, and the path variables a
r5x92x8 andR5(x91x8)/2. From FDT it follows that if an
Ohmic environment is characterized by a temperatureT then
the friction parameter should beh5n/(2kBT) We shall as-
sume an environment that is characterized by a short sp
autocorrelation scalel , such that the classical trajectories a
well separated with respect to this microscopic scale. Un
such circumstances it has been observed in Ref. 8 thaSF
will have no effect on the interference contribution. Th
statement does not hold in case of the CL model. T
CL version forSF is obtained by taking in Eq.~9! the limit
l→`, which is equivalent to the formal substitutionw(r)5
2r2/2. Averaging the factor exp(iSF /\) over diffusive trajec-
tories one obtains, as in Ref. 5, a nongeneric fac
exp„2(t/tw)2

… where 1/tw5hD/\. This particular result
turns out to be identical, up to a logarithmic factor, with t
genuine result~12!, to be discussed later. However, it is n
consistent to use the CL version forSF in the present circum-
stances, and therefore the approach of Ref. 5 does not a
With the above observations, our semiclassical strategy
plies thatSF of a generic environment has no consequen
on the analysis of dephasing, and Eq.~6! is still valid. Our
main conclusion below will be that this~semiclassically
based! statementfails for a low-energy particle.

We turn now to discuss some actual results for
dephasing rate. For the Ohmic bath the symmetrized po
spectrum of the noise is

f~v!5huvu\ cothS \uvu
2kBTD for uvu,1/tc . ~10!

For high temperatures 1/tc,kBT/\, one can use the WNA
Substitutingf(t)52hkBT into Eq. ~5!, one obtains8 the
universal high-temperature result

S 1

tw
D

WNA

5
2hkBTl2

\2
for 0,s. ~11!

This result does not apply for22,s<0 ~for electronsd
<2), becausew(0) diverges. Still, using the WNA and do
ing some simple manipulations, one obtainsSN
52hkBTl21s(Dt)2s/2t, leading to a dephasing factor of th
type exp„2(t/tw)(22s)/2

…, where 1/tw}T2/(22s) in agree-
ment with the well-known results.1,2
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We are interested in going beyond the WNA. It is use
to use Eq.~7! in order to perform the actual calculation. Th
domain of integration is illustrated in Fig. 1. If the temper
ture is high enough, such thatD/ l 2,kBT/\, then one can
still use the WNA result. As the temperature becomeslow,
such thatkBT/\,D/ l 2, the dephasing rate 1/tw becomes
larger than the value which is predicted by the WNA. This
due to the ZPF in the frequency zonekBT/\,v where
f(v)5\hv. Later we shall see thatE/\ should be used a
a cutoff for thev integration. Therefore,the present analy-
sis, and Eq. (12) below, does not apply to a low-energy p
ticle. Considering the ZPF contribution, the integral in E
~7! is dominated by (k,v) modes that are concentrated alo
the curve v5Dk2. Moreover, most of the contribution
comes from modes with large wave number, namelyk;1/l .
Thus the ZPF contribution to the dephasing rate is essent
as in Ref. 4 and applies at low temperatures to any22,s

S 1

tw
D

ZPF

5
C

~21s!p
lnF11S lv

D D 4G3
1

\
hD. ~12!

At low but finite temperatures, meaning 1/t,kBT/\!D/ l 2,
one should consider the thermal noise contribution~TNC!
that comes from the lower shaded region of Fig. 1. F
22,s<0 the TNC dephasing factor is determined byk
;(Dt)21/2 modes. For these modesDk2,kBT/\, and there-
fore the previously discussed WNA applies. On the ot
hand, for 0,s one obtains

S 1

tw
D

TNC

5C8l 21sS kBT

\D D s/22hkBT

\2
~13!

where C8 is a numerical factor. The above expression
valid for 0,s,2, where the dephasing process is dom
nated by modes withk;(kBT/\D)1/2. For 2,s the dephas-
ing process is dominated by modes withk;1/l , and Eq.~13!
should be modified by the replacements→2.

The FV path-integral expression isexactin principle. On
the other hand, our semiclassical expression~6! involves the
stationary-phaseapproximation. Therefore, it is important to
understand, physically as well as mathematically, the valid
limits of the semiclassical strategy. Each stationary-ph
point of the exact FV path integral is a paira andb of real
classical trajectories that correspond to the motion of a fi
tiousclassical test particle. Let us assume for simplicity tha
a andb are loops related by time reversal. It is also essen

FIG. 1. The (k,v) plane. The shaded regions indicate tho
environmental modes that are effective in the dephasing proc
The darker region indicates a possible excess contribution du
ZPF.
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in the following argumentation that the interaction with th
environment isshort range, as in the 0,s DLD model with
l which is a small scale. It follows from the definition of th
influence functional that under such circumstancesP51
2exp(2SN@a#) is the probability for a fictitious test particle
to leave a tracealong the way~i.e., to change the quantum
mechanical state of at least one bath oscillator along
loop!. For simplicity one may consider the restricted proble
of a particle that travels across a single bath oscillator, me
ing that Eq.~8! includes only one term. It is well known11

that the semiclassical approximation is equivalent to a s
consistent mean-field scheme, where it is assumed tha
wave function for the particle-oscillator system can be w
ten as a product of a scattered particle and driven oscilla
Such an ansatz implies that for weak scattering we can t
the particle as moving with constant velocityv and solve for
the oscillator. It turns out that this reduction requires t
assumption of small energy transfer. Therefore, one sho
anticipate problems once an oscillator withva larger thanE
is involved. In the latter case, there is no justification to thi
of the particle as decoupled from the bath, moving with so
constant velocity, capable of exciting the oscillator along
way. Therefore, the corresponding probabilityP loses its
physical significance. Still, the interference contribution
the specified loop will be suppressed. It is true that a lo
energy particle (va,E) is not capable of exciting the oscil
lator, but there is a finite probability to be scattered ela
cally, and consequently the original interference contribut
is suppressed. However, this suppression does not have
meaning of genuine decoherence. Rather, it reflects a co
ent ‘‘renormalization’’ of the bare dynamics. One wonde
whether exp(2SN@a#) gives an estimation for the suppressio
of the original interference contribution due to these elas
scattering events. Unfortunately this is not the case. The e
tic scattering off an oscillator involves a second-ord
process of virtual emission followed by absorption of
quanta\va . Therefore, the elastic scattering probability
proportional toca

4 . At the same timeP is proportional toca
2

in leading order. Therefore, under such circumstanc
exp(2SN@a#) does not reflect any physically meaningf
quantity. It should be emphasized that the above argume
tion does not applyoncel becomes large compared with th
distance that is explored by the particle. In case of the
model (l→`) the decoherence process is no longer de
mined by thescattering mechanism. Rather, we have a cross
over to a nonperturbativespreading mechanism. See detailed
discussion of this point in Ref. 7.

The semiclassical strategy cannot be trusted if some of
effective bath oscillators are such thatE/\,va . For diffu-
sive motion such a situation will occur ifE/\,D/ l 2. Note
that the notion of large/small energy is in complete analo
with the notion of high/low temperature. For thermal motio
E;kBT and the two notions coincides. In order to see h
expression~7! should be modified for small-energy motion
let us obtain it using an elementary perturbative calculati
This is straightforward for the short-range interacti
(0,s), since it is plausible that 1/tw has then the signifi-
cance of inelastic scattering rate. The leading-order inela
scattering probability is expressed in terms of the diago
matrix elements of the scattering matrix, namelyP5^1
2u^ncuSunc&u2&b . The subscriptb implies thermal average

ss.
to
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over the quantum-mechanical statesn of the bath oscillators.
The incoming particle is described by the wave functionc.
Note that the precise definition of the ‘‘dephasing rate’’ b
comes vague once the semiclassical approach is aband
It seems plausible thatP should be averaged over eigensta
of the disordered potential. Using second-order perturba
theory

^ncuSunc&512
1

\2E0

tE
0

t2
dt2 dt1^ncuHI~ t2!HI~ t1!unc&.

Standard manipulations which are based on the definitio
the Ohmic DLD model lead to the resultP51/tw where

1

tw
5

1

\2E dk

~2p!dE dv

2p
w̃~k!F~v!Pqm~2k,2v!.

~14!

Here F(v)5\huvun(v) is the nonsymmetrized versio
of f(v), where n(v)51/@exp(\v/kBT)21# for 0,v,
and n(v)5@11n(uvu)# for v,0. At zero temperature
F(0,v)50. The quantum-mechanical power spectrum
the motion is defined as the~complex! Fourier transform of
Pqm(k,t) which is the correlator of the operator exp(ikx).
Using the semiclassical estimatePqm(k,v)'P(k,v) one
obtains again the integral expression in Eq.~7! for the
dephasing rate. However, the validity of the semiclass
estimate forPqm(k,v) is restricted to the frequency rang
uvu,E/\. Quantum mechanics cannot support larger f
quencies. For thermal motion the result of the quantal FD
related to the result of the classical FDT as follows:
C

,

-
ed.
s
n

of

f

l

-
is

Pqm~k,v!5
\uvu
kBT

n~v!P~k,v!. ~15!

Thus, it is suggested that for thermal motionkBT/\ should
serve as an effective cutoff in thev integration of Eq.~7!.
Consequently the ZPF contribution for the dephasing r
should be omitted. For nonthermal motionE/\ is the proper
cutoff and some~or all! of the ZPF contribution should be
included.

Finally, one wonders whether additional modifications a
required once we turn to treat~semiclassically! the problem
of dephasing of electrons in a metal, taking into account
presence of the Fermi sea. Here we consider ballistic
motion as a test case. The average scattering rate ca
calculated by using a kinetic picture. The transition rate
unit volume is W(p8up)5w̃(k)F(v)/\2, where k5(p8
2p)/\ and v5@E(p8)2E(p)#/\. The average scatterin
rate is proportional to**dp8 dp@12 f (E8)# f (E)W(p8up).
Standard manipulation leads to Eq.~14! with Eq. ~15!. Note
that for the ballisticlike motion under consideration o
should substituteP(k,v)51/(vuku) for uvu,vuku and zero
otherwise. This calculation implies that the dephasing rat
similar to the inelastic scattering rate also for the many-bo
case~provided 0,s).
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