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Dephasing at low temperatures
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We discuss the significance and the calculation of dephasing at low temperatures. The particle is moving
diffusively due to a static disorder configuration, while the interference between classical paths is suppressed
due to the interaction with a dynamical environment. At high temperatures we may use the white-noise
approximation, while at low temperatures we distinguish the contribution of zero-point fluctuéi®Rsfrom
the thermal noise contribution. We study the limitations of the above semiclassical approach and suggest the
required modifications. In particular we find that the ZPF contribution becomes irrelevant for thermal motion.
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The application of semiclassical considerations into the It is assumed that the motion of the particle under the
analysis of interference and dephasing is as old as the histomfluence of the static disorder is diffusive. The transport
of quantum mechanics. A particular interest is to apply thes@robability amplitude can be written as a sum
considerations to the theory of diffusing electrons in aZA,exp(Sx,]/#) over classical trajectories that connect the
metall? Dephasing, or the loss of “phase” information, is observation point with the injection point. We shall denote
the consequence of the interaction with some other envirory t the total time of the motion, an8[x,] are the corre-
mental degrees of freedom, or with some measurement déponding action integrals. The statistical properties of the
vice. The widely accepted dogma is that dephasing is assahfferencesx,(t;) —x,(t1), wherea andb are a pair of tra-
ciated withleaving a tracein the environment. Lately this jectories, will play a major role in later calculations. These
dogma has been challenged experimentatis well as statistical properties can be taken into account via a single
theoretically* leading to an intensive debafeassociated function P(k,w) that reflects the power spectrum of the
with the question whether zero-point fluctuatio@®PF of motion’. For diffusive motion a practical approximation is
environmental modes may lead to decoherence at the limit of
zero temperature. The most physically appealing theoretical P(k,w)=2DK?/[(DK*+ 1/t)*+ »?], 1)
considerations are based on the applilcatior.l of Feyr_wmarwhereD is the diffusion coefficient. In the largk regime
Vgrnon(FV) fprmahsm, and simple semiclassical conS|der—Where k>(Dt)~ 2 this function is a properly normalized
ations. In particular, the zero-temperature decoherence found, . \-ian  Note that the collision frequenay~v2/D,

within the exactly solvable Caldeira-Leggé@L) model, is wherev is the velocity of the particle, should be used as a

most puzzling. Thus, it is of fundamental importance to "_“d'cutoff to the slow 12 power-law decay. Beyond~u/D

dres; the following(1) Wh"’.“ are the I|.m|ta.t_|ons of the semi- the above expression is not valid and the power spectrum of
classical strategy2) What is the applicability of results that i il

based the CL modeB) What the limitat P the motion is ballisticlike.
are based on the modéB) at are the fimitations o We now take the stochastic nature of the environment into

the “one-particle™ picture when applied t0 a many-body ;.00 oy by introducing into the Hamiltonian a stochastic po-
system. In this paper we are going to explore these questiong .-\ hat satisfies

systematically, using a well controlled strategy. Under con-

sideration is the motion of a particle under the combined (U EUNX )= bt —t') - W(X"—X"). 2)
influence of static disorder and a dynamical environment.

Our reasoning consists of the following three stagasWe It is assumed thaw(r) depends only ofr|. The intensity of
take the static disorder into account and write the transpofihe noise is characterized by the parameter

probability amplitude as a discrete sum over classical trajec-

tories. (b) We take the stochastic nature of the environment _ - "

into account by considering the influence of an effective sto- Y= ffwd)(T)dT' [w(0)]. ©
chastic potential(c) We take the full dynamical nature of the ) ) )
environment into account by using the FV formalism. Hav- The power spectrum of the noig(») is the Fourier trans-
ing an environment whose temperatureTisand a particle form of ¢(7). We shall assum®hmic environmentmean-
that is injected with an energl (not necessarily therml  Ing that at the classical limit)(w)=v up to some cutoff
one should make a distinction between the cases of high arféequency 1#. which is assumed to be larger than any other
low temperatureT, and analogous distinction between the relevant frequency scale. Thus, in the classical limit we can
cases of large and small enery We shall argue that the Use the white-noise approximatiaVNA), namely ¢(7)
validity of the semiclassical approach is not restricted to high= »o(7). For the quantum-mechanical case see Ed).
bath temperatures. However, at low bath temperatures, afithout loss of generality we shall assume the normalization
essential modification is required in the case of motion withw"(0)=—1. The d-dimensional Fourier transform af(r)
small energyE. will be denoted byw(k). The mode densityafter angular
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integration is g(k):(cd/(zw)d)kd—le(k) whereC, is the Ref. 8 and leads to the introduction of the “diffusion local-
total solid angle. We shall assume that ' ization and dissipation”(DLD) model’® The interaction
with the bath oscillators is

g(k)=CI?*7k°~ 1 for k<1/, (4)

wherel characterize the spatial scale of the correlations, and Hi= % CaQaU(X—X,). ®

C is a dimensionless constant. In the case of short-range

Gaussian-type correlations equals simplyd. For the long-  Herex, is the(fixed) location of thea oscillator andQ,, is

range Coulomb interaction to be discussed later it equalds dynamical coordinate. The bath oscillators are distributed

d—2. In order to have a well-defined model we must haveuniformly all over space. The interaction of the particle with

|w”(0)| <, therefore only—2<¢ is meaningful. The re- each of the oscillators is described bfr). The range of the

gime —2<¢=0 is well defined but it requires special treat- interaction isl, andc, are coupling constants. For an Ohmic

ment sincew(0) diverges. bath the following expressiofgeneralized here for any di-
The path-integral expression for the probability to propa-mension has been derived:

gate from the injection point to the observation point consti- .

tutes a double sunfif Dx’' Dx” over the path variables' () Se= ,,f drvw(r)-R, 9

andx”(7). Averaging over realizations @f one obtains the 0

influence functional expfSy/%?). See Ref. 8 for details. The

. . ; . where 7 is a friction parameter, and the path variables are
noise action functional is

r=x"—x"andR=(x"+x")/2. From FDT it follows that if an
1 [t [t Ohmic environment is characterized by a temperalutigen
Snx' X' ]= 5] f dt; dta(ta—ty) the friction parameter should bg=v/(2kgT) We shall as-
0Jo sume an environment that is characterized by a short spatial
autocorrelation scalk such that the classical trajectories are
well separated with respect to this microscopic scale. Under
(5) such circumstances it has been observed in Ref. 83pat
will have no effect on the interference contribution. This
statement does not hold in case of the CL model. The
CL version forSg is obtained by taking in Eq9) the limit
| — o, which is equivalent to the formal substitutiov(r) =
S AAE exp( _ Sulxa =Xb]) exp{i S[xa]—S[xb]>. 6)  —r’/2. Averaging the factor ex%: /%) over diffusive trajec-
aAp (6) . : ; .
ab 72 fi tories one obtains, as in Ref. 5, a nongeneric factor
) . i o exp(—(t/r(P)Z) where 1f,=7D/A. This particular result
It is obvious that the interference contributidiie termsa  y,ins out to be identical, up to a logarithmic factor, with the
#b) is suppressed due to the noise, while the classtiial  genuine result12), to be discussed later. However, it is not
agonal contribution survives.This is thedephasingeffect.  consistent to use the CL version f8¢ in the present circum-
See the general discussion in Ref. 2. We are interested heggances, and therefore the approach of Ref. 5 does not apply.
in the computation of these dephasing factors, as well as ifuith the above observations, our semiclassical strategy im-
illuminating their physical significance. For the purpose Ofplies thatS: of a generic environment has no consequence
calculating the typical value of the dephasing factor, &). 5 the analysis of dephasing, and E6). is still valid. Our

X[W(xa=x7) +W(Xp—X1) = 2W(X5—X1) ],

wherex; is a shorthand notation foi(t;). The corresponding
semiclassical expression for that probability is

can be replaced by main conclusion below will be that thigsemiclassically
based statemenfails for a low-energy particle.
<SN>~tfwg(k)ko’md—w¢(w)P(k,w). ) We turn now to discuss some actual results for the
0 o T dephasing rate. For the Ohmic bath the symmetrized power

. ) L spectrum of the noise is
If the integral on the right-hand side is independent, dhen

the typical dephasing factor in E¢6) can be written as a | |

simple exponential exp(t/z,). ()= n|w|h COt"(m) for |w|<lr.. (10)
The full analysis should take into account the dynamical

nature of the environment. Namely, one should consider afor high temperatures 4/<kgT/#, one can use the WNA.

Hamiltonian™ = Hq(X,p) + Hend X, Q. , P,), Where the latter  Substituting ¢(7) =27kgT into Eqg. (5), one obtain® the

term incorporates the interaction with environmental degreegniversal high-temperature result

of freedom. It is possible in principléut generally not in

practice to use the FV formalism in order to derive an ap- 1

propriate influence functional exgt/A—Sy/#%). The -

fluctuation-dissipation theoreFDT) implies that if Sy is

known, and the temperature of the bath is further specifiedThis result does not apply for 2<o=<0 (for electronsd

then also some of the dissipative properties of the environ=2), becausav(0) diverges. Still, using the WNA and do-

ment are determined uniquely. Therefore, it is plausible thathg some simple manipulations, one obtainSy

the CL procedure of constructing an effective harmonic bath=27kgTI1?>"?(Dt) "%, leading to a dephasing factor of the

is useful in order to derive an actual expression for the frictype exg—(t/7,)?~ "), where 1f,«T?2 ) in agree-

tion functionalSg . Indeed, this strategy has been adapted irment with the well-known results?

2 kg TI?
278 foro<o. (11)

Tol wNA
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Ao Elh in the following argumentation that the interaction with the
environment isshort range as in the 6<¢o DLD model with
| which is a small scale. It follows from the definition of the
influence functional that under such circumstanées 1
—exp(—Sy[a)) is the probability for a fictitious test particle
to leave a tracealong the way(i.e., to change the quantum-
L mechanical state of at least one bath oscillator along the
loop). For simplicity one may consider the restricted problem
FIG. 1. The k) plane. The shaded regions indicate thoseof g particle that travels across a single bath oscillator, mean-
environmental modes that are effective in the dephasing procesfg that Eq.(8) includes only one term. It is well knowh
The darker region indicates a possible excess contribution due 4t the semiclassical approximation is equivalent to a self-
ZPF. consistent mean-field scheme, where it is assumed that the
, i ) , wave function for the particle-oscillator system can be writ-
We are interested in going beyond the WNA. It is usefulieny a5 a product of a scattered particle and driven oscillator.
to use Eq(7) in order to perform the actual calculation. The g\,ch an ansatz implies that for weak scattering we can treat
domz?un pf integration is |Ilustrate(21I in Fig. 1. If the tempera- 4,4 particle as moving with constant velocityand solve for
ture is high enough, such thab/I°<kgT/#, then one can  he ogcillator. It turns out that this reduction requires the
still use the WNA reszult. As the temperature becort®®  ;55umption of small energy transfer. Therefore, one should
such thatkgT/A<D/I%, the dephasing rate 4/ becomes ,nicinate problems once an oscillator with, larger thanE
larger than the value which is predicted by the WNA. This isig inyolved. In the latter case, there is no justification to think
due to the ZPF in the frequency zom@T/i<w where  ofhe narticle as decoupled from the bath, moving with some
$(w)=1 nw. Later we shall see th&t/# should be used as gnstant velocity, capable of exciting the oscillator along the
a cutoff for thew integration. Thereforethe present analy- way. Therefore, the corresponding probabillyloses its
sis, and Eq. (12) below, does not apply to a low-energy parpnysical significance. Still, the interference contribution of
ticle. Considering the ZPF contribution, the integral in EQ. {he specified loop will be suppressed. It is true that a low-
(7) is dominated bzyK"") modes that are concentrated along energy particle ¢, <E) is not capable of exciting the oscil-
the curve w=Dk*". Moreover, most of the contribution |ator "put there is a finite probability to be scattered elasti-

comes from modes with large wave number, nantelyll.  cajly, and consequently the original interference contribution
Thus the ZPF contribution to the dephasing rate is essentially suppressed. However, this suppression does not have the
1 whether exp{-S[a]) gives an estimation for the suppression
Xz nD. (120 of the original interference contribution due to these elastic
At low but finite temperatures, meaningt&/kgT/A<D/1?,  process of virtual emission followed by absorption of a
one should consider the thermal noise contributi®hlC)  quantafw,. Therefore, the elastic scattering probability is
—-1/2 2
~(Dt)”** modes. For these modB“<kgT/%, and there- oy gra]) does not reflect any physically meaningful
fore the previously discussed WNA applies. On the othety,aniity. It should be emphasized that the above argumenta-

4

as in Ref. 4 and applies at low temperatures to <o meaning of genuine decoherence. Rather, it reflects a coher-
ent “renormalization” of the bare dynamics. One wonders

( 1) C | 1+(Iv

—_— [ — n —_—

T 2+o D . .

¢l zer )m scattering events. Unfortunately this is not the case. The elas-

tic scattering off an oscillator involves a second-order
that comes from the lower .shaded region of Eig. 1. Forproportional toci. At the same timé is proportional toci
—2<0=0 the TNC dephasing factor is determined by i |eading order. Therefore, under such circumstances,

hand, for 6<o one obtains tion does not applyncel becomes large compared with the
distance that is explored by the particle. In case of the CL
1 keT\ 722 nkeT m_odel (—x) the d_ecoherencg process is no longer deter-
- =C’|2te D > (13 mined by thescattering mechanisniRather, we have a cross-
Tel Tne fi over to a nonperturbativepreading mechanisnsee detailed

discussion of this point in Ref. 7.

where C’ is a numerical factor. The above expression is The semiclassical strategy cannot be trusted if some of the
valid for 0<o<2, where the dephasing process is domi-effective bath oscillators are such thath <w,. For diffu-
nated by modes witk~ (kg T/%#D)2 For 2< o the dephas- sive motion such a situation will occur B/ <D/I2. Note
ing process is dominated by modes with 1/1, and Eq.(13)  that the notion of large/small energy is in complete analogy
should be modified by the replacement-2. with the notion of high/low temperature. For thermal motion

The FV path-integral expression éxactin principle. On  E~kgT and the two notions coincides. In order to see how
the other hand, our semiclassical expresg@rinvolves the expression7) should be modified for small-energy motion,
stationary-phasapproximation Therefore, it is important to let us obtain it using an elementary perturbative calculation.
understand, physically as well as mathematically, the validityThis is straightforward for the short-range interaction
limits of the semiclassical strategy. Each stationary-phas€0<o), since it is plausible that ] has then the signifi-
point of the exact FV path integral is a parandb of real  cance of inelastic scattering rate. The leading-order inelastic
classical trajectories that correspond to the motion of a fictiscattering probability is expressed in terms of the diagonal
tious classical test particleLet us assume for simplicity that matrix elements of the scattering matrix, name®y=(1
aandb are loops related by time reversal. It is also essentiat-|(ny|S|ni)|?) ;. The subscripB implies thermal average
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over the quantum-mechanical statesf the bath oscillators. fi| ]

The incoming particle is described by the wave functi@an qu(k-w):m”(w)P(k'w)- (15
Note that the precise definition of the “dephasing rate” be-

comes vague once the semiclassical approach is abandonddhus, it is suggested that for thermal motikgil/A should

It seems plausible th& should be averaged over eigenstatesserve as an effective cutoff in the integration of Eq.(7).

of the disordered potential. Using second-order perturbatio€onsequently the ZPF contribution for the dephasing rate

theory should be omitted~or nonthermal motioii/7% is the proper
cutoff and somegor all) of the ZPF contribution should be
1 (t(t included.
(nylSing)=1- ﬁfo fo dtp dty(nyg|Hy (t2) Hi(ta) [ngh). Finally, one wonders whether additional modifications are

. _ . o required once we turn to treéemiclassically the problem
Standard manipulations which are based on the definition odf dephasing of electrons in a metal, taking into account the

the Ohmic DLD model lead to the resit= 1/, where presence of the Fermi sea. Here we consider ballisticlike
motion as a test case. The average scattering rate can be
1 1 dk (do~ calculated by using a kinetic picture. The transition rate for
- 3 df—W(k)CI)(w)qu(—k,—w)- . y using NS P ) o
7o #2J) (2m)d) 27 unit volume is W(p'|p)=w(k)®(w)/%*, where k=(p

(14 —p)/h and w=[E(p’)—E(p)]/h. The average scattering
rate is proportional tof fdp’ dg1—f(E')]f(E)W(p’|p).
Standard manipulation leads to EG4) with Eq. (15). Note
that for the ballisticlike motion under consideration one
(should substituteP (k, ) = 1/(v|k|) for |w|<v|k| and zero
otherwise. This calculation implies that the dephasing rate is
similar to the inelastic scattering rate also for the many-body
case(provided 0< o).

Here ®(w)=%7|w|n(w) is the nonsymmetrized version
of ¢(w), where n(w)=1[expfiw/ksT)—1] for O0<w,
and n(w)=[1+n(|w|)] for w<0. At zero temperature
®(0<w)=0. The quantum-mechanical power spectrum o
the motion is defined as thieompleX Fourier transform of
Pqm(k,7) which is the correlator of the operator ewk).
Using the semiclassical estimat,(k,»)~P(k,») one
obtains again the integral expression in Ed) for the This research was supported by the Israel Science Foun-
dephasing rate. However, the validity of the semiclassicatlation and by the German-Israeli Foundati@iF), Jerusa-
estimate forP(k,w) is restricted to the frequency range lem. The authors are grateful to the Newton Institute Cam-
|o|<E/f. Quantum mechanics cannot support larger fredridge for hospitality when this work started. We thank Y.
guencies. For thermal motion the result of the quantal FDT isSefen, D.E. Khmelnitskii, Y. Levinson, U. Smilansky, and
related to the result of the classical FDT as follows: A. Stern for useful discussions.

1B.L. Altshuler, A.G. Aronov, and D.E. Khmelnitskii, J. Phys. C 8D. Cohen, Phys. Rev. B5, 1422 (1997); Phys. Rev. Lett78,

15, 367(1982. 2878(1997).

2Y. Imry, Introduction to Mesoscopic Physi¢®xford University 9|t is always true that &S, . However, the concept of dephasing
Press, Oxford, 1997 and references therein. implies thatSy— o for long trajectories. The assumption of hav-

3P. Mohanty, E.M. Jariwala, and R.A. Webb, Phys. Rev. LZ3}. ing short 7. is important here. If we takeb(7)=const, then
3366(1997). some important interference contribution will not be suppressed

“D.S. Golubev and A.D. Zaikin, Phys. Rev. Legtl, 1074(1998: in the t—« limit. See Ref. 8 for details. This observation is
Phys. Rev. B59, 9195(1999. essential in order to understand, within the path-integral ap-

SM. Vavilov and V. Ambegaokar, cond-mat/970924npub- proach, whystatic disorder leads to either weak or strong local-
lished. ization effect.

l.L. Aleiner, B.L. Altshuler, and M.E. Gershenson, °Obviously, these three effects come out naturally from the solu-
cond-mat/9808053 unpublishegt Phys. Rev. Lett.82, 3190 tion of the DLD model. Note, however, that localization effect is
(1999. out of the scope of the preset application.

’D. Cohen, J. Phys. 81, 8199(1998. we thank Uzy Smilansky for pointing this out.



